Skip to main content

Nanotechnology and Plant Tissue Culture

  • Chapter
  • First Online:
Plant Nanobionics

Abstract

Plant biotechnology is a great tool in several fields of human life such as medicine, pharmacology, agriculture, biomass, and biofuels. The use of nanotechnology represent and improvement in plant tissue culture that is a technique mostly used to produce clones of a plant in a method known as micropropagation with different stages. In this chapter tissue culture in modern agriculture and the use of nanomaterials for genetic transformation of plants; nanosilver as antimicrobial agent; nanomaterials for callus induction, organogenesis, and somatic embryogenesis; and titanium dioxide nanoparticles to remove bacterial contaminants will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-elsalam KA (2013) Fungal genomics and biology nanoplatforms for plant pathogenic fungi management. Fungal Genomics Biol 2:e107

    Google Scholar 

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing. (ISBN 978-3-319-91161-8) https://www.springer.com/us/book/9783319911601

  • Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30:709–714. https://doi.org/10.1007/s11738-008-0169-z

    Article  CAS  Google Scholar 

  • Adel Ahmed AS, Shaimaa Mohamed M (2010) Commercial production of tissue culture date palm (Phoenix dactylifera L.) by inflorescence technique. J Genet Eng Biot 8(2):39–44

    Google Scholar 

  • Aghdaei M, Salehi H, Sarmast MK (2012) Effects of silver nanoparticles on Tecomella undulata (Roxb.) seem, micropropagation. Adv Hortic Sci 26:21–24

    Google Scholar 

  • Ahloowalia BS (1986) Limitations to the use of somaclonal variation in crop improvement. In: Semal J (ed) Somaclonal variation and crop improvement. Martinus Nijhoff Publishers, Dordrecht, pp 14–27

    Chapter  Google Scholar 

  • Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Ozden Y (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Org Cult 117(1):65–76

    Article  CAS  Google Scholar 

  • Akhter S, Ahmad MZ, Singh A, Ahmad I, Rahman M, Anwar M, Jain GK, Ahmad FJ, Khar RK (2011) Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des 17:1834–1850

    Article  CAS  PubMed  Google Scholar 

  • Akin-Idowu PE, Ibitoye DO, Ademoyegun J (2009) Tissue culture as a plant production technique for horticultural crops. Afr J Biotechnol 8:3782–3788

    Google Scholar 

  • Alharby HF, Metwali EMR, Fuller MP, Aldhebiani YA (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci 68:723–735

    Article  Google Scholar 

  • Alister BM, Finnie J, Watt M, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 425–442

    Chapter  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and Leishmania parasites. Future Microbiol 6:933–940

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Eck JV, Voytas DF, Walbot V, Wang K, Zhang J, Stewart CN (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Effect of temporary immersion of explants. Plant Cell Tissue Org Cult 32(1):55–60

    Article  Google Scholar 

  • Anwaar S, Maqbool Q, Jabeen N, Nazar M, Abbas F, Nawaz B, Hussain T, Hussain SZ (2016) The effect of green synthesized Cuo nanoparticles on callogenesis and regeneration of Oryza sativa L. Front Plant Sci 7:1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2:2314–2321

    Article  CAS  Google Scholar 

  • Arab M, Yadollahi M, Hosseini-Mazinani A, Bagheri S (2014) Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of Gx N15 (Hybrid of almond peach) rootstock. J Genet Eng Biotechnol 12:103–110

    Article  Google Scholar 

  • Arcioni S, Pezzotti M, Damiani F (1987) In vitro selection of alfalfa plants resistant to Fusarium oxysporum f. sp. medicaginis. Theor Appl Gen 74(6):700–705

    Article  CAS  Google Scholar 

  • Asmah NH, Hasnida NH, Nashatul Zaimah NA, Noraliza A, Nadiah Salmi N (2011) Synthetic seed technology for encapsulation and regrowth of in vitro derived Acacia hybrid shoot and axillary buds. Afr J Biotechnol 10(40):7820–7824

    Article  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart., Article ID 689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Azlin-Hasim S, Cruz-Romero MC, Morris MA, Cummins E, Kerry JP (2015) Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packag Shelf Life 4:26–35

    Article  Google Scholar 

  • Bansod S, Bawskar M, Rai M (2015) In vitro effect of biogenic silver nanoparticles on sterilisation of tobacco leaf explants and for higher yield of protoplasts. IET Nanobiotechnol 9:239–245

    Article  PubMed  Google Scholar 

  • Bekheet SA (2006) A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L.). Arab. Aust J Biotechnol 9:415–426

    Google Scholar 

  • Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 165–195

    Chapter  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Base Compl Alternative Med 2015:246012. https://doi.org/10.1155/2015/246012

    Article  Google Scholar 

  • Bhat P, Bhat A (2016) Silver nanoparticles for the enhancement of accumulation of capsaicin in suspension culture of Capsicum sp. J Exp Sci 7(2):1–6

    CAS  Google Scholar 

  • Biswas BC, Kumar L (2010) High-density planting: success stories of banana farmers. Fertil Mark News 41(6):3–10

    Google Scholar 

  • Borlaug N (1981) Breeding methods employed and contributions of Norin 10 derivatives to the development of the high yielding broadly adapted Mexican wheat varieties. The International Maize and Wheat Improvement Center (CIMMYT), El Batan., Mexico bouturage in vitro. Comptes Rendus Acad. Sc. Paris, Série D, pp 467–470

    Google Scholar 

  • Boxus P (1974) The production of strawberry plants by in vitro micro-propagation. J Hort Sci 49:209–210

    Article  CAS  Google Scholar 

  • Bressan W (2002) Factors affecting in vitro plant development and root colonization of sweet potato by Glomus etunicatum Becker y Gerd. Braz J Microbiol 33(1):31–34

    Article  Google Scholar 

  • Bunders J, Haverkort B, Hiemstra W (1997) Biotechnology. Building on farmers knowledge. Macmillan Education, Basingstoke, p 256 U.K.

    Google Scholar 

  • Cha TS, Chen CF, Yee W, Aziz A, Loh SH (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434

    Article  CAS  PubMed  Google Scholar 

  • Chamani E, Ghalehtaki SK, Mohebodini M, Ghanbari A (2015) The effect of zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss. Iran J Genet Plant Breed 4:11–19

    Google Scholar 

  • Chawla HS, Wenzel G (1987) In vitro selection for fusaric acid resistant barley plants. Plant Breed 99:159–163

    Article  Google Scholar 

  • Chen ZY, Liang K, Qiu RX, Luo LP (2011) Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. Ultrasound Med 30:1247–1258

    Article  Google Scholar 

  • Chen G, Ren L, Zhang J, Reed BM, Zhang D, Shen X (2015) Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Criobiology 70(1):38–47

    Article  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka C, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman HMZ, Marquis CP, Scott JA, Chin SS, Amal R (2005) Bactericidal effects of titanium dioxide-based photocatalysts. Chem Eng J 113(1):55–63

    Article  CAS  Google Scholar 

  • Cruz- Cruz CA, González-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2:73–95

    Article  Google Scholar 

  • Datta SK, Potrykus I (1989) Artificial seeds in barley: encapsulation of microspore-derived embryos. Theor Appl Gen 77(6):820–824

    Article  CAS  Google Scholar 

  • DeGregori TR (1985) A theory of technology: continuity and change in human development. The Iowa State University Press, Ames

    Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • Deshayes A, Herrera-Estrella L, Caboche M (1985) Liposome-mediated transformation of tobacco mesophyll protoplasts by an Escherichia coli plasmid. EMBO J 4:2731–2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13(3):425–453

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148(2–3):99–104

    Article  CAS  PubMed  Google Scholar 

  • Dussert S, Chabrillange N, Vásquez N, Engelmann F, Anthony F, Guyot A, Hamon S (2000) Beneficial effect of post-thawing osmoconditioning on the recovery of cryopreserved coffee (C. arabica L.) seeds. CryoLetters 21:47–52

    CAS  PubMed  Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm-a review. Euphytica 57:227–243

    Article  Google Scholar 

  • Engelmann F, Dulloo ME (2007) Introduction. In: Engelmann F, Dulloo ME, Astorga C, Dussert S, Anthony F (eds) Conserving coffee genetic resources. Bioversity International, Roma, pp 1–11

    Google Scholar 

  • Enriquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsónov DL, Pérez M, Selman-Housein G (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotechnol Aplic 14:169–174

    Google Scholar 

  • EPA (2009) Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical snscreen. United States Environmental Protection Agency, http://www.safenano.org/SingleNews.aspx?NewsId=788. Accessed 15 May 2018

  • Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18(89):743–748

    Article  CAS  Google Scholar 

  • Estopá M (2005) El cultivo in vitro en la reproducción vegetativa en plantas de vivero. Hortic Int 1:50–57

    Google Scholar 

  • Etienne H, Anthony F, Dussert S, Fernandez D, Lashermes P, Bertrand B (2002) Biotechnological applications for the improvement of coffee (Coffea arabica L.). In Vitro Cell Dev Biol Plant 38:129–138

    Article  Google Scholar 

  • Ewais EA, Desouky SA, Elshazly EH (2015) Evaluation of callus responses of solanum nigrum l. exposed to biologically synthesized silver nanoparticles. Nanosci Nanotechnol 5:45–56

    CAS  Google Scholar 

  • Fakhrfeshani M, Bagheri A, Sharifi A (2012) Disinfecting effects of nano silver fluids in gerbera (Gerbera jamesonii) capitulum tissue culture. J Biol Environ Sci 6:121–127

    Google Scholar 

  • FAO (2017) Food and Agriculture Organization of the United Nations database on Biotechnologies in Developing Countries (BioDeC). www.fao.org/biotech/inventory_admin/dep/default.asp

  • Fazal H, Abbasi BH, Ahmad N, Ali M (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol 180:1076–1092

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Kundu S, Ali N, Chandra Sahu N (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:98

    Article  CAS  Google Scholar 

  • García E, Menéndez A (1987) Somatic embryogenesis from leaf explants of coffee plants “Catimor”. Café Cacao Thé 31:15–22

    Google Scholar 

  • García L, Pérez J, Rodríguez M, Pérez B, Martínez Y, Sarría Z (2004) Conservación in vitro de plantas de caña de azúcar. Biotecnol Veg 4(2):101–105

    Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the gene-jockeying tool. Microbiol Mol Biol Rev 67(1):16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genady EA, Qaid EA, Fahmy AH (2016) Copper sulfates nanoparticles in vitro applications on Verbena bipinnatifida Nutt. stimulating growth and total phenolic content increment. Int J Pharm Res Allied Sci 5:196–202

    Google Scholar 

  • Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759

    Article  CAS  Google Scholar 

  • Giorgetti L, Castiglione MM, Bernabini M, Geri C (2011) Nanoparticles effects on growth and differentiation in cell culture of carrot (Daucus carota L.). Agrochimica 55:45–53

    Google Scholar 

  • Giraldo J, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Gómez R (1996) Selección in vitro a la enfermedad carbón (Ustilago scitaminea Syd) de la caña de azúcar (Saccharum sp híbrido). PhD Thesis (Agricultural Sciences). Universidad Central de Las Villas, Cuba

    Google Scholar 

  • González ME (2003) Micropropagación de cafeto (Coffea canephora P. var. Robusta) mediante embriogénesis somática con el empleo de metabolitos bacterianos. Tesis de Doctor en Ciencias Agrícolas. INCA. La Habana. Cuba, 97p

    Google Scholar 

  • González ME, Castilla Y, Hernández MM, Hernández A (2007) Factibilidad del cultivo in vitro en la conservación de recursos fitogenéticos de cafeto. Revista Agrotecnia de Cuba 31:4–7

    Google Scholar 

  • González ME, Hernández M, Hernández A (2009) Effect of callus age on induction of coffee cell suspension cultures. Revista Agronomía Mesoamericana 21(2):1–8

    Google Scholar 

  • González ME, Castilla Y, Hernández A (2011) Obtención de suspensiones celulares y embriones somáticos de cafeto (Coffea canephora P.), con el empleo de metabolitos bacterianos. Rev Colomb Biotecnol 13(1):123–131

    Google Scholar 

  • González M, González M, Nápoles E, Baldoquín A (2012) Efectividad de algunos biofertilizantes en el cultivo del garbanzo (Cicer arietinum L.) en un suelo Fersialítico Pardo Rojizo Mullido. Innovación Tecnológica 18(2):23–27

    Google Scholar 

  • González O, Núñez M, Hernández MM, Silva JJ, Espinosa A (2003) Efecto de dos análogos de brasinoesteroides en la inducción y regeneración de callos de Ipomoea batatas. Biotecnología Vegetal 3(2):173–175

    Google Scholar 

  • González-Arnao T, Gámez-Pastrana R, Martínez-Ocampo Y, Valdés-Rodríguez S, Oscar-Mascorro J, Osorio-Sáenz A, Pastelín-Solana M, Guevara-Valencia M, Cruz-Cruz CA (2013) Estado actual de la crioconservación vegetal en México. In: González-Arnao MT, Engelmann F (eds) Crioconservación de Plantas en América Latina y el Caribe. Instituto Interamericano de Cooperación para la Agrícultura (IICA), pp 161–173

    Google Scholar 

  • Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25:4650–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing AG, Cham, pp 247–266

    Google Scholar 

  • Gouran A, Jirani M, Mozafari AA, Saba MK, Ghaderi N, Zaheri S (2014) Effect of silver nanoparticles on grapevine leaf explants sterilization at in vitro conditions. In: 2nd national conference on nanotechnology from theory to application, Isfahan, Iran, 20 February, pp. 1–6

    Google Scholar 

  • Guzmán M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8:37–45

    Article  PubMed  CAS  Google Scholar 

  • Gwynne RN (1999) Globalisation, commodity chains and fruit exporting regions in Chile. Tijdschr Econ Soc Geogr 90(2):211–225

    Article  Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten pflanzenzellen. SITZ-Ber Mat-Nat Kl Kais Akad Wiss (Wien) 111(1):69–92

    Google Scholar 

  • Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 93:9975–9979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon S, Anthony F, Barre PH, Berthaud J, Boursot M, Chabrillange N, Ky CL, Combes MC, Couturon E, Cros J, Dussert S, Engelmann F, Lashermes P, Le Pierres D, Louarn J, Noirot M, Recalt C, Trouslot P, Charrier A (1998) Coffee genetic resources and biotechnologies: their putative uses for breeding. Cahiers Agricultures 7:480–487

    Google Scholar 

  • Hasegawa PM, Murashige T, Takatori FH (1973) Propagation of asparagus through shoot apex culture. II. Light and temperature requirements, transplant ability of plants, and cyto-histological characteristics. J Am Soc Hortic Sci 98:143–148

    Google Scholar 

  • He S, Han Y, Wang Y, Zhai H, Liu Q (2009) In vitro selection and identification of sweet potato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74

    Article  CAS  Google Scholar 

  • Héctor E (1996) La resistencia in vitro al carbón (Ustilago scitaminea Syd.) y su aplicación en el mejoramiento genético de la caña de azúcar (Saccharum spp.). PhD Thesis (Agricultural Sciences). Universidad Agraria de La Habana, Cuba

    Google Scholar 

  • Héctor E, Pérez S, Moreira R, Millet B (2016) Perspectivas sociales e impacto futuro de las biotecnologías vegetales. Alternativas 17(2):44–51

    Article  Google Scholar 

  • Heinz DJ, Mee GWP (1969) Plant differentiation from callus tissue of Saccharum species. Crop Sci 9:346–348

    Article  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Hendre RR, Iyer RS, Kotwal M, Khuspe SS, Mascarenhas AF (1983) Rapid multiplication of sugarcane by tissue culture. Sugarcane 1:5–8

    Google Scholar 

  • Hill GP (1968) Shoot formation in tissue cultures of Chrysanthemum “bronze pride”. Physiol Plant 21:386–389

    Article  CAS  Google Scholar 

  • Hu G, Dong Y, Zhang Z, Fan X, Reng F, Li Z (2017) Efficacy of virus elimination from apple by thermotherapy coupled with in vivo shoot-tip grafting and in vitro meristem culture. J Phytopathol 165:701–706

    Article  CAS  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  PubMed  Google Scholar 

  • Hwan KD, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7:36492–36505

    Article  Google Scholar 

  • Heinz DJ, Mee GWP, Nickell LG (1969) Chromosome numbers of some Saccharum species hybrids and their cell suspension cultures. Am J Bot 56:450–456

    Article  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 305–317

    Chapter  Google Scholar 

  • Jain D, Kumar-Daima H, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 4:557–563

    Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops: 2012, Brief No. 44. ISAAA, Ithaca

    Google Scholar 

  • Javed R, Usman M, Yücesan B, Zia M, Gürel E (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99

    Article  CAS  PubMed  Google Scholar 

  • Jayaprakash N, Judith Vijaya J, John Kennedy L, Priadharsini K, Palani P (2015) Antibacterial activity of silver nanoparticles synthesized from serine. Mater Sci Eng C 49:316–322

    Article  CAS  Google Scholar 

  • Jiménez E, Pérez N, de Feria M, Barbón R, Capote A, Chávez M, Quiala E, Pérez JC (1999) Improved production of potato microtubers using a temporary immersion system. Plant Cell Tissue Organ Cult 59(1):19–23

    Article  Google Scholar 

  • Jo Y-K, Kim BH (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Jones OP (1976) Effect of phloridzin and phloroglucinol on apple shoots. Nature 262:392–393

    Article  CAS  Google Scholar 

  • Juma C, Konde V (2002) Industrial applications for biotechnology: opportunities for developing countries. Environment 44:23–35

    Google Scholar 

  • Kalsaitkar P, Tanna J, Kumbhare A, Akre S, Warade C, Gandhare N (2014) Silver nanoparticles induced effect on in-vitro callus production in Bacopa monnieri. Asian J Biol Life Sci 3:167–172

    CAS  Google Scholar 

  • Kao KN, Miller RA, Gamborg OL, Harvey BL (1970) Variations in chromosome number and structure in plant cells grown in suspension cultures. Can J Genet Cytol 12:297–301

    Article  Google Scholar 

  • Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. R Soc Chem 7:36492–36505

    CAS  Google Scholar 

  • Kirti PB, Hadi S, Kumar PA, Chopra VL (1991) Production of sodium-chloride-tolerant Brassica juncea plants by in vitro selection at the somatic embryo level. Theor Appl Gen 83(2):233–237

    Article  CAS  Google Scholar 

  • Kitto SL (1997) Commercial micropropagation. Hortic Sci 32(6):1012–1014

    Google Scholar 

  • Kitto S, Janick J (1985) Production of synthetic seeds by encapsulating asexual embryos of carrot. J Am Soc Hortic Sci 110:277–282

    Google Scholar 

  • Klancnik K, Drobne D, Valant J, DolencKoce J (2011) Use of a modified Allium test with nanoTiO2. Ecotoxicol Environ Saf 74:85–92

    Article  CAS  PubMed  Google Scholar 

  • Koeda S, Takisawa R, Nabeshima T, Tanaka Y, Kitajima A (2015) Production of Tomato Yellow Leaf Curl Virus-free parthenocarpic tomato plants by leaf primordia-free shoot apical meristem culture combined with in vitro grafting. Hortic J 84(4):327–333

    Article  CAS  Google Scholar 

  • Kokina I, Gerbreders V, Sledevskis E, Bulanovs A (2013) Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J Biotechnol 165:127–132

    Article  CAS  PubMed  Google Scholar 

  • Krikorian AD, Berquam DL (2003) Plant cell and tissue cultures: the role of Haberlandt. In: Laimer M, Rücker W (eds) Plant tissue culture. Springer, Vienna, pp 25–53

    Chapter  Google Scholar 

  • Krikorian AD, Cronauer SS (1984) Aseptic culture techniques for banana and plantain improvement. Econ Bot 38:322–331

    Article  Google Scholar 

  • Kumar PP, Loh CS (2012) Plant tissue culture for biotechnology. In: Altman A (Ed). Plant biotechnology and agriculture. Elsevier Science & Technology, Jerusalen, Israel. pp 131–138

    Google Scholar 

  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics J 2(4):141–112

    CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Larkin P, Scowcroft W (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Gen 60:197–214

    Article  CAS  Google Scholar 

  • Lee TSG (1984) Micropropagaçao de cana-de-açucar através de cultura de meristema apical. Saccharum APC 7:36–39

    Google Scholar 

  • Leggatt IV, Waites WM, Leifert C, Nicholas J (1994) Characterisation of microorganisms isolated from plants during micropropagation. In: Bacterial and bacteria-like contaminants of plant tissue cultures. Ishs Acta Horticulturae 225. http://www.actahort.org/books/225/index.htm

  • Leunufna S, Keller ERL (2003) Investigating a new cryopreservation protocol for yam (Discorea spp.). Plant Cell Rep 21:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Lezcano Y, Escalona M, Daquinta M (2010) Multiplicación in vitro de Paeonias sp. variedad ‘SeSu’ en sistemas de inmersión temporal. Biot Veg 10(3):169–117

    Google Scholar 

  • Li D, Liu ZJ, Yuan Y, Liu YW, Niu FL (2015) Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells. Process Biochem 50:357–366

    Article  CAS  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Fugetsu B, Su Y, Watari F (2009) Studies on toxicity of multiwalled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 30:578–583

    Article  CAS  Google Scholar 

  • Liu J, Xuan-Ming L, Su-Yao X, Chuen-Yi T, Dong-Ying T, Li-Jian Z (2005) Bioconjugated nanoparticle for DNA protection from ultrasound damage. Anal Sci 21:193–197

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Feng-Hua W, Lin-Lin W, Su-Yao X, Chun-Yi T, Dong- Yig T, Xuan-Ming L, Chuen-Yi T, Dong-Ying T, Xuan-Ming L (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent S Univ Technol 15:768–773

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Loh C, Ingram D (1982) Production of haploid plants from anther cultures and secondary embryoids of winter oilseed rape, Brassica napus ssp. oleifera. New Phytol 91:507–516

    Article  Google Scholar 

  • Lorenzo JC, González BL, Escalona M, Teisson C, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult 54(3):197–200

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778

    Article  CAS  Google Scholar 

  • Mahato TH, Prasad GK, Singh B, Srivastava AR, Ganesan K, Acharya J, Vijayaraghavan R (2009) Reactions of sulphur mustard and sarin on V1.02O2.98 nanotubes. J Hazard Mater 166(2–3):1545–1549

    Article  CAS  PubMed  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2000) Effect of nanoscale titanium dioxide particles on the germination and growth of canola Brassica napus. J Ornam Hortic Plants 3:25–32

    Google Scholar 

  • Mahna N, Vahed SZ, Khani S, Nanomed J (2013) Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. J Nanomed Nanotechnol 4:161

    Article  CAS  Google Scholar 

  • Mandeh M, Omidi M, Rahaie M (2012) In vitro influences of TiO2 nanoparticles on Barley (Hordeum vulgare L.) tissue culture. Biol Trace Elem Res 150:376–380

    Article  PubMed  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Martínez ME, González MT, Borroto C, Puentes C, Engelmann F (1998) Cryopreservation of sugarcane embryogenic callus using a simplified freezing process. CryoLetters 19:171–176

    Google Scholar 

  • Martínez ME, Lorenzo JC, Ojeda E, Quiñones J, Mora N, Sánchez M, Iglesias A, Martínez J, Castillo R (2006) Methodology for the cryopreservation of calli with embryogenic structures for the culture of sugarcane. Biotecnol Apl 23(4):360–375

    Google Scholar 

  • Martínez S, Gómez R, Rodríguez G, Veitía N, Saucedo O, Gil V (2016) Morph agronomic characterization of grain sorghum variety CIAP 132R-05 plants regenerated via somatic embryogenesis under field conditions. Centro Agrícola 43(3):73–79

    Google Scholar 

  • Mata C, Jonás R (2006) Obtención de lechosa (Carica papaya L) resistente a Papaya ringspot virus. Editorial: Anuario CDCH 2006. http://saber.ucv.ve/jspui/handle/123456789/11103

  • Matthews BF, Cress DE (1981) Liposome-mediated delivery of DNA to carrot protoplasts. Planta 153(1):90–94

    Article  CAS  PubMed  Google Scholar 

  • McCoy E, O’Connor SE (2008) Natural products from plant cell cultures. In: Petersen F, Amstutz R (eds) Natural compounds as drugs, Progress in drug research, vol I. Birkhäuser, Basel, pp 329–370

    Chapter  Google Scholar 

  • McKersie B, Bowley S, Senaratna T, Brown D, Bewley J (1988) Application of artificial seed technology in the production of hybrid alfalfa (Medicago sativa L.). In Vitro Cell Dev Biol 24:71

    Article  Google Scholar 

  • Men SZ, Ming XT, Liu RW, Wei CH, Li Y (2003) Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tissue Organ Cult 75:63–71

    Article  CAS  Google Scholar 

  • Menard A, Damjana D, Jeme C (2011) Ecotoxicity of nanosized TiO2. Rev In Vivo Data Environ Pollut 159:677–684

    CAS  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Miranda A, Janssen G, Hodges L, Peralta EG, Ream W (1992) Agrobacterium tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174:2288–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed HK, Al-oubaidi, Kasid NM (2015) Increasing phenolic and flavonoids compounds of Cicer arietinum L. from embryo explant using titanium dioxide nanoparticle in vitro. World J Pharm Res 4:1791–1799

    Google Scholar 

  • Mordocco AM, Brumbley JA, Lakshmanan P (2009) Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol Plant 45:450–457

    Article  CAS  Google Scholar 

  • Morel GM (1960) Producing virus-free cymbidiums. Am Orchid Soc Bull 29:495–497

    Google Scholar 

  • Msogoya T, Kayagha H, Mutigitu J, Kulebelwa M, Mamiro M (2012) Identification and management of microbial contaminants of banana in vitro cultures. J Appl Biol 55:3987–3994

    Google Scholar 

  • Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 25:135–166

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murashige T, Serpa M, Jones JB (1974) Clonal multiplication of gerbera through tissue culture. Hortic Sci 9:175–180

    CAS  Google Scholar 

  • Nagata T, Okada K, Takebe R, Matsui CH (1981) Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse-phase evaporation vesicles (Liposomes). Mol Gen Genet 184:161–165

    CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Namuddu A, Kiggundu A, Mukasa SB, Kurnet K, Karamura E, Tushemereirwe W (2013) Agrobacterium mediated transformation of banana (Musa sp.) cv. Sukali Ndiizi (ABB) with a modified Carica papaya cystatin (CpCYS) gene. Afr J Biotechnol 12(15):1811–1819

    Article  CAS  Google Scholar 

  • Niizeki M, Grant WF (1971) Callus, plantlet formation, and polyploidy from cultured anthers of Lotus and Nicotiana. Can J Bot 49:2041–2051

    Article  Google Scholar 

  • Noor NM, Kean CW, Vun YL, Mohammed-Hussein ZA (2011) In vitro conservation of Malaysian biodiversity-achievements, challenges and future directions. In Vitro Cell Dev Biol Plant 47:26–36

    Article  Google Scholar 

  • Omamor IB, Asemota AO, Eke CR, Eziashi EI (2007) Fungal contaminants of the oil palm tissue culture in Nigerian Institute for oil palm Research (NIFOR). Afr J Agric Res 2(10):534–537

    Google Scholar 

  • Othmani A, Bayoudh C, Sellemi A, Drira N (2017) Temporary immersion system for date palm micropropagation. In: Al-Khayri JM, Mohan Jain S, Johnson DV (eds) Date palm biotechnology protocols, vol I. Springer Science + Business Media, New York, pp 239–249

    Chapter  Google Scholar 

  • Ödutanyo OI, Oso RT, Akinyemi BO, Amusa NA (2004) Microbial contaminants of cultured Hibiscus cannabinus and Telfairia occidentalis tissues. Afr J Biotechol 3(9):472–476

    Google Scholar 

  • Páez J, González R (2002) Conservación In Vitro de Dos Variedades de Papa (Solanum tuberosum L.) bajo Condiciones de Crecimiento Mínimo. Rev Latinoam de la Papa 13:125–132

    Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Pérez JN, Orellana P, Suárez M, Valdés C (1998) Propagación masiva en biofábricas. In: Pérez JN (ed) Propagación y mejora genética de plantas por biotecnología. Instituto de Biotecnología de las Plantas, Santa Clara, pp 241–258

    Google Scholar 

  • Pierik RLM (1991) Commercial aspects of micropropagation. In: Prokash J, Pierik RLM (eds) Horticulture-new technologies and application. Kluwer Academic Publishers, The Netherlands, pp 141–153

    Chapter  Google Scholar 

  • Pierik RLM, Steegmans HHM, Van der Meys JAJ (1974) Plantlet formation in callus tissues of Anthurium andraeanum Lind. Scient Hort 2(2):193–198

    Article  Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminum oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11

    Article  CAS  Google Scholar 

  • Prabha D, Kumar YN (2014) Seed treatment with salicylic acid enhance drought tolerance in Capsicum. World J Agric Res 2(2):42–46

    Article  Google Scholar 

  • Prasad GK, Mahato TH, Singh B, Ganesan K, Srivastava AR, Kaushik MP, Vijayraghavan R (2008) Decontamination of sulfur mustard and sarin on titania nanotubes. AICHE J 54(11):2957–2963

    Article  CAS  Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 253–269

    Chapter  Google Scholar 

  • Quak F (1977) Meristem culture and virus-free plants. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer-Verlag, Berlin, pp 598–615

    Google Scholar 

  • Raei M, Angaji SA, Omidi M, Khodayari M (2014) Effect of abiotic elicitors on tissue culture of Aloe vera. Int J Biosci 5(1):74–78

    Article  CAS  Google Scholar 

  • Rahman S, Biswas N, Mehedi Hassan M, Golam Ahmed M, Mamun ANK, Rafiqul Islam M, Moniruzzaman M, Enamul Haque M (2013) Micropropagation of banana (Musa sp.) cv. Agnishwar by in vitro shoot tip culture. Int Res J Biotechnol 4(4):83–88

    Google Scholar 

  • Rai MK (2001) Current advances in mycorrhization in micropropagation. In Vitro Cell Dev Biol Plant 37:158–167

    Article  Google Scholar 

  • Redenbaugh K, Paasch B, Nichol J, Kossler M, Viss P, Walker K (1986) Somatic seeds encapsulation of asexual embryos. Biotechnology 4:797–801

    Google Scholar 

  • Reed BM, Gupta S, Uchendu EE (2013) In vitro gene banks for preserving tropical biodiversity. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, New York, pp 77–106

    Chapter  Google Scholar 

  • Regueira M, Rial E, Blanco B, Bogo B, Aldrey A, Correa B, Varas E, Sánchez C, Vidal N (2018) Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees 32(1):61–71

    Article  CAS  Google Scholar 

  • Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605. https://doi.org/10.1088/0957-4484/19/14/145605

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ríos H, Wright J (2000) Primeros intentos para estimular los flujos de semillas en Cuba. LEISA: Rev Agroecol 15(3–4):39–41

    Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Rostami AA, Shahsavar A (2009) Nano-silver particles eliminate the in vitro contaminations of Olive ‘Mission’ explants. Asian J Plant Sci 8:505–509

    Article  Google Scholar 

  • Rovelli P, Mettulio R, Anthony F, Anzueto F, Lashermes P, Graziosi G (2000) Microsatellites in Coffea arabica. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee biotechnology and quality. Kluwer Academic Publishers, Dordrecht, pp 123–133

    Chapter  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam J (2017) Nanoparticles based on essential metals and their phytotoxicity. NanoBiotechnology 15:33

    Article  CAS  Google Scholar 

  • Sadiq MI, Chandrasekaran N, Mukherjee A (2010) Studies on effect of TiO2 nanoparticles on growth and membrane permeability of Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Curr Nanosci 6(4):381–387

    Article  CAS  Google Scholar 

  • Safavi K (2012) Evaluation of using nanomaterial in tissue culture media and biological activity. In: 2nd international conference on ecological, environmental and biological sciences (EEBS’2012), Bali, Indonesia

    Google Scholar 

  • Safavi K (2014) Effect of titanium dioxide nanoparticles in plant tissue culture media for enhance resistance to bacterial activity. Bull Environ Pharmacol Life Sci 3:163–166

    Google Scholar 

  • Safavi K, Esfahanizadeh M, Mortazaeinezahad, Dastjerd H (2011a) The study of nano silver (NS) antimicrobial activity and evaluation of using NS in tissue culture media. International conference on life science and technology IPCBEE 3. IACSIT Press, Singapore

    Google Scholar 

  • Safavi K, Mortazaeinezahad F, Esfahanizadeh M, Asgari MJ (2011b) In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad Sci Eng Technol 55:372–373

    Google Scholar 

  • Sarmast MK, Salehi H (2016) Silver nanoparticles: an influential element in plant nanobiotechnology. Mol Biotechnol 58:441–449

    Article  CAS  PubMed  Google Scholar 

  • Sarmast MK, Salehi H, Khosh-Khui M (2011) Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung 2011(62):477–484

    Article  CAS  Google Scholar 

  • Sauvaire D, Galzy R (1978) Multiplication végétative de canne à sucre (Saccharum sp.) par Saccharum. APC 7:36–39

    Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61–68

    Google Scholar 

  • Sawahel WA (2002) The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation. Cell Mol Biol Lett 7:19–29

    CAS  PubMed  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15:22–24

    Google Scholar 

  • Senaratna T, McKersie BD, Bowley SR (1990) Artificial seeds of alfalfa (Medicago sativa L.). Induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev Biol 26(1):85–90

    Article  Google Scholar 

  • Serageldin I (1999) Biotechnology and food security in the 21st century. Science 285:387–389

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam K, Abhilash OU, Khan BM, Prasad B (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20(15):2416–2423

    Article  CAS  Google Scholar 

  • Sharma H, Vashistha BD (2015) Plant tissue culture: a biological tool for solving the problem of propagation of medicinally important woody plants-a review. Int J Adv Res 3(2):402–411

    CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Shen RS, Hsu ST (2018) Virus elimination through meristem culture and rapid clonal propagation using a temporary immersion system. In: Lee YI, Yeung ET (eds) Orchid propagation: from laboratories to greenhouses-methods and protocols, Springer protocols handbooks. Humana Press, New York, pp 267–282

    Chapter  Google Scholar 

  • Shiraishi K, Koseki H, Tsurumoto T, Baba K, Naito M, Nakayama K et al (2009) Antibacterial metal implant with a TiO2-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf Interface Anal 41:17–22

    Article  CAS  Google Scholar 

  • Shirazi RS, Ewert KK, Leal C, Majzoub RN, Bouxsein NF, Safinya CR (2011) Synthesis and characterization of degradable multivalent cationic lipids with disulfide-bond spacers for gene delivery. Biochim Biophys Acta 1808:2156–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shokri S, Babaei A, Ahmadian M, Hessami S, Arab MM (2014) The effects of different concentrations of nano-silver on elimination of bacterial contaminations and phenolic exudation of Rosae (Rosa hybrida L.) in vitro culture. Intl J Farm Alli Sci 3:50–54

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909

  • Simonsen J, Hildebrandt AC (1971) In vitro growth and differentiation of Gladiolus plants from callus cultures. Can J Bot 49(10):1817–1819

    Article  Google Scholar 

  • Sivanesan I, Park SW (2015) Optimizing factors affecting adventitious shoot regeneration, in vitro flowering and fruiting of Withania somnifera (L.) Dunal. Ind Crop Prod 76:323–328

    Article  CAS  Google Scholar 

  • Smith JE (1988) Biotechnology, 5th edn. Cambridge University Press, Weinheim

    Google Scholar 

  • Solgi M, Kafi M, Taghavi TS, Naderi R (2009) Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers, postharvest. Biol Technol 53:155–158

    Article  CAS  Google Scholar 

  • Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult 129:195–207

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Steward FC, Mapes MO (1963) The totipotency of cultured carrot cells. Evidence in interpretations from successive cycles of growth from phloem cells. J Indian Bot Soc 42A:237–247

    Google Scholar 

  • Street HE (1974) Plant cell cultures: present and projected applications for studies in genetics. In: Ledoux L (ed) Genetic manipulations with plant material. Plenum Press, New York, pp 231–244

    Google Scholar 

  • Syu Y, Hung JH, Chen JC, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  PubMed  Google Scholar 

  • Szopa A, Ekiert H (2012) In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese Magnolia Vine)-a potential biotechnological rich source of therapeutically important phenolic acids. Appl Biochem Biotechnol 166(8):1941–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghizadeh M, Solgi M (2014) The application of essential oils and silver nanoparticles for sterilization of sermuda grass explants in in vitro culture. J Hortic Sci Technol 1:131–140

    CAS  Google Scholar 

  • Talankova-Sereda TE, Liapina KV, Shkopinskij EA, Ustinov AI, Kovalyova AV, Dulnev PG, Kucenko NI (2016) The influence of Cu and Co nanoparticles on growth characteristics and biochemical structure of Mentha longifolia in vitro. Nanosci Nanoeng 4:31–39

    CAS  Google Scholar 

  • Teixeira JA (2013) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floric Ornam Biotech 7(1):1–52

    Google Scholar 

  • Thakur M, Sharma D, Sharma S (2002) In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f. sp. dianthi. Plant Cell Rep 20(9):825–828

    Article  CAS  Google Scholar 

  • Thiem B, Kikowska M, Krawczyk A, Więckowska A, Sliwinska E (2013) Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell Tissue Organ Cult 114(2):197–206

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Torres KC (ed) (1989) Tissue culture techniques for horticultural crop. Van no strand. Reinhold, New York, p 285

    Google Scholar 

  • Tsai TM, Chang HH, Chang KC, Liua YL, Tseng CC (2010) A comparative study of the bactericidal effect of photo catalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive bacteria. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.2476

    Article  CAS  Google Scholar 

  • UN (United Nations Department of Economic and Social Affairs, Population Division) (2013) World population prospects

    Google Scholar 

  • Vasquez N, Salazar K, Anthony F, Chabrillange N, Engelmann F, Dussert S (2005) Variability in response of seeds to liquid nitrogen exposure in wild coffee (Coffea arabica L.). Seed Sci Technol 33:293–301

    Article  Google Scholar 

  • Vayssieres L, Keis K, Hagfeldt A, Lindquist S-E (2001) Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater 13:4395–4398

    Article  CAS  Google Scholar 

  • Vdovitchenko YM, Kuzovkina IN (2011) Artificial seeds as a way to produce ecologically clean herbal remedies and to preserve endangered plant species. Mosc Univ Biol Sci Bull 66(2):48–50

    Article  Google Scholar 

  • Viana MM, Soares VF, Mohallem NDS (2010) Synthesis and characterization of TiO2 nanoparticles. Ceram Int 36:2047–2053

    Article  CAS  Google Scholar 

  • Vieira AL, Camilo CM (2011) Agrobacterium tumefaciens- mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 48:806–8011

    Article  CAS  PubMed  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12(6):e1001877

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuković R, Bauer N, Ćurković-Perica M (2013) Genetic elicitation by inducible expression of ß-cryptogenic stimulates secretion of phenolics from Coleus blumei hairy roots. Plant Sci 199–200:18–28

    Article  PubMed  CAS  Google Scholar 

  • Wang BWY, Feng WY, Wang C, Jia M, Wang C, Shi W, Zhang F, Zhao L, Chai F (2006) Acute toxicity of nano-and micro scale zinc powder on healthy adult mice. Toxicol Lett 161:115–123

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Lombi E, Zjao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  PubMed  Google Scholar 

  • Wendt T, Holm PB, Starker CG, Christian M, Voytas DF et al (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Withers LA (1985) Cryopreservation of cultured plant cells and protoplasts. In: Kartha KK (ed) Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton, pp 243–264

    Google Scholar 

  • World Bank (1997) World development report 1997: the state in a changing world. Oxford University Press, New York. © World Bank. https://openknowledge.worldbank.org/handle/10986/5980 License: CC BY 3.0 IGO

    Book  Google Scholar 

  • Yamakawa K (1985) Application of artificial seed and its potential. Agric Chem Today 29:68

    Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nano-particles. Toxicol Leu 158:122–132

    Article  CAS  Google Scholar 

  • Yildirim AB, Turker AU (2014) Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and in vitro-grown plant materials by liquid chromatography-electrospray tandem mass spectrometry (LC–ESI-MS/MS). Scient Hort 169:169–178

    Article  CAS  Google Scholar 

  • Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarafshar M, Akbarinia M, Askari H, Mohsen SH, Rahaie M, Struve D, Striker GG (2014) Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana). Biotechnol Agron Soc Environ 18(3):3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez, S.P. et al. (2019). Nanotechnology and Plant Tissue Culture. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-12496-0_12

Download citation

Publish with us

Policies and ethics