Skip to main content
Log in

Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Metal nanoparticles can potentially be used as tools for engineering biological redox reactions. Present study underlines the effect of silver metal nanoparticles (at 0, 25, 50, 100, 200 and 400 ppm) on the growth and antioxidant status of 7-day-old Brassica juncea seedlings. Fresh weight, root and shoot length, and vigor index of seedlings is positively affected by silver nanoparticle treatment. It induced a 326 % increase in root length and 133 % increase in vigor index of the treated seedlings. Improved photosynthetic quantum efficiency and higher chlorophyll contents were recorded in leaves of treated seedlings, as compared to the control seedlings. Levels of malondialdehyde and hydrogen peroxide decreased in the treated seedlings. Nanoparticle treatment induced the activities of specific antioxidant enzymes, resulting in reduced reactive oxygen species levels. Decrease in proline content confirmed the improvement in antioxidant status of the treated seedlings. The observed stimulatory affects of silver nanoparticles are found to be dose dependent, with 50 ppm treatment being optimum for eliciting growth response. Present findings, for the first time indicate that silver nanoparticles promote the growth of B. juncea seedlings by modulating their antioxidant status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Polle, A. (2001). Plant Physiology, 126, 445–462.

    Article  CAS  Google Scholar 

  2. Wang, L. J., Guo, Z. M., Li, T. J., & Li, M. (1999). Progress in the Chemistry, 11, 119–128.

    CAS  Google Scholar 

  3. Rajasekharreddy, P., Rani, P. U., & Sreedhar, B. (2010). Journal of Nanoparticle Research, 12, 1711–1721.

    Article  CAS  Google Scholar 

  4. Lu, C. M., Zhang, C. Y., Wen, J. Q., & Wu, G. R. (2002). Soybean Science, 21, 68–171.

    Google Scholar 

  5. Tang, Y. K., & Cao, Y. P. (2003). Soil Fertility, 2, 16–22.

    Google Scholar 

  6. Zheng, L., Su, M., Wu, X., Liu, C., Qu, C., Chen, L., Huang, H., Liu, X., & Hong, F. (2008). Biological Trace Element Research, 121, 69–79.

    Article  CAS  Google Scholar 

  7. Mukherjee, M., & Mahapatra, A. (2009). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350, 1–7.

    Article  CAS  Google Scholar 

  8. Mallick, K., Witcomb, M., & Scurrella, M. (2006). Materials Chemistry and Physics, 97, 283–287.

    Article  CAS  Google Scholar 

  9. Sileikaite, A., Prosycevas, I., Pulso, J., Juraitis, A., & Guobiene, A. (2006). Materials Science, 12, 287–291.

    Google Scholar 

  10. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  11. Hiscox, A. D., & Israelstam, G. S. (1979). Canadian Journal of Botany, 57, 1332–1334.

    Article  CAS  Google Scholar 

  12. Heath, R. L., & Packer, L. (1968). Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  13. Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). Plant, Cell & Environment, 24, 1337–1344.

    Article  CAS  Google Scholar 

  14. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  15. Joshi, P. K., Saxena, S. C., & Arora, S. (2011). Acta Physiologiae Plantarum, 33, 811–822.

    Article  CAS  Google Scholar 

  16. Harris, A. T., & Bali, R. (2008). Journal of Nanoparticle Research, 10, 691–695.

    Article  CAS  Google Scholar 

  17. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Environmental Science & Technology, 43, 9473–9479.

    Article  CAS  Google Scholar 

  18. Rajashekar, N., & Murthy, T. C. S. (2010). Archives of Phytopathology and Plant Protection, 43, 296–301.

    Article  CAS  Google Scholar 

  19. Lin, D., & Xing, B. (2007). Toxicology and Applied Pharmacology, 150, 243–250.

    CAS  Google Scholar 

  20. Guoa, D. P., Guoa, Y. P., Zhaoa, J. P., Penga, H. L. Y., Wanga, Q. M., Chenb, J. S., & Raoc, G. Z. (2005). Plant Science, 168, 57–63.

    Article  Google Scholar 

  21. Takeda, T., Yokota, A., & Shigoka, S. (1995). Plant & Cell Physiology, 36, 1089–1095.

    CAS  Google Scholar 

  22. Monreal, J. A., Jimenez, E. T., Remesal, E., Morillo-Velarde, R., Garcia-Maurino, S., & Echevarria, C. (2007). Environmental and Experimental Botany, 60, 257–267.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology, Govt. of India, for financial support. We thank, the Head, Department of Genetics, Indian Agricultural Research Institute, New Delhi for providing seed material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, P., Bhatt, D., Zaidi, M.G.H. et al. Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea . Appl Biochem Biotechnol 167, 2225–2233 (2012). https://doi.org/10.1007/s12010-012-9759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9759-8

Keywords

Navigation