Skip to main content

Advertisement

Log in

In vitro conservation of Malaysian biodiversity—achievements, challenges and future directions

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Malaysia is fortunate and proud to contain some of the world’s richest biodiversity. In Malaysia, there are an estimated 185,000 species of fauna and 12,500 species of flowering plants, many of which are endemic to tropical forests in this region. Indeed, such diversity is an important and invaluable national asset to safeguard both present and future generations. In vitro conservation offers possible techniques for the preservation of plant germplasm that at present is difficult to maintain or is maintained with limited success. Research at the Universiti Kebangsaan Malaysia (The National University of Malaysia) focuses on the cryopreservation of woody fruit species with seeds that cannot tolerate cryopreservation (recalcitrant or intermediate). Among the plants with recalcitrant seeds are such traditionally important edible tropical fruits as mangosteen, langsat, and rambai (Garcinia mangostana, Lansium domesticum, and Baccaurea motleyana). Citrus aurantifolia, Citrus suhuiensis, Citrus madurensis, Citrus hystrix, and Fortunella polyandra are among the Citrus and Citrus-related species studied. Cryopreservation studies include the Nepenthes species (pitcher plants) of Malaysia. Fundamental research on desiccation and low-temperature tolerance and on the physiology of desiccation are used to understand seed behavior, a prerequisite for the development of successful conservation techniques. At the same time, cryopreservation protocols for several Citrus and forestry species were developed for embryonic axes and adventitious shoots, mainly using rapid dehydration and PVS2 vitrification techniques. There are no successful standard techniques or protocols for species with highly recalcitrant seeds such as Garcinia species. Modification of existing protocols or development of new methods is required, but this can be accomplished only when a detailed understanding of the recalcitrant nature of the seeds or explants is achieved. While we have considerable knowledge concerning the basics of biochemical processes and some molecular data from work on desiccation-tolerant seeds, a great need remains for understanding the cause of the recalcitrance or desiccation sensitivity of these seeds. It may be necessary to use a systems biology approach that exploits the “omics” technologies to generate global molecular data. In combination with bioinformatics for data integration and analyses, this approach would move toward improved modeling of the biological pathways associated with the development of recalcitrant seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Al-Zoubi O. M.; Normah M. N. Recovery medium and size of embryonic axes for cryopreservation of Fortunella polyandra. In: Sinniah U. R.; Ahmad I.; Madom M. S.; Doss C.; Chandrabalan D.; Normah M. N.; Chin H. F. (eds) Proceedings 5th National Seed Symposium, Current trends towards quality planting materials. Universiti Putra Malaysia, Serdang, pp 177–180; 2009.

    Google Scholar 

  • Benson E. E. Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27(3): 141–219; 2008.

    Article  CAS  Google Scholar 

  • Benson E. E.; Jonston J.; Mutusamy J.; Harding K. Physical and engineering perspectives of in vitro plant cryopreservation. In: Gupta S.; Ibaraki Y. (eds) Plant tissue culture engineering. Springer, Netherlands, pp 441–476; 2006.

    Chapter  Google Scholar 

  • Bonato D. A systems biology analysis of protein–protein interactions between yeast superoxide dismutases and DNA repair pathways. Free Radic Biol Med 43: 557–567; 2007.

    Article  Google Scholar 

  • Carpentier S. C.; Witters E.; Laukens K.; Deckers C.; Swennen R.; Panis B. Preparation of protein extracts from recalcitrant plant tissue: an evaluation of different methods for two-dimensional electrophoresis analysis. Proteomics 5: 2497–2507; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Carpentier S. C.; Witters E.; Laukens K.; Van Onckelen H.; Swennen R.; Panis B. Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7: 92–105; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chandrabalan D.; Normah M. N.; Mahani M. C. Two-step preconditioning—a feasible method for cryopreservation of Fortunella polyandra shoot tips using vitrification technique. 1st International Symposium Cryopreservation in Horticultural Species. Leuven, Belgium, p 110; 2009.

    Google Scholar 

  • Chew P. C.; Mardaleni M.; Normah M. N.; Clyde M. M. Activated charcoal is crucial for successful micropropagation of rambutan (Nephelium lappaceum L.). Malays Appl Biol 37(1): 11–20; 2008.

    Google Scholar 

  • Chin H. F. Strategies for conservation of recalcitrant species. In: Normah M. N.; Narimah M. K.; Clyde M. M. (eds) In vitro conservation of plant genetic resources. Percetakan Watan Sdn. Bhd, Kuala Lumpur, pp 203–215; 1996.

    Google Scholar 

  • Chin H. F.; Roberts E. H. Recalcitrant crop seeds. Tropical Press, Kuala Lumpur; 1980.

    Google Scholar 

  • Chmielarz P.; Michalak M.; Palucka M.; Koziol C. Cryopreservation of Quercus robur plumules. 1st International Symposium Cryopreservation in Horticultural Species. Leuven, Belgium, p 46; 2009.

    Google Scholar 

  • Cho E. G.; Hor Y. L.; Kim H. H.; Rao V. R.; Engelmann F. Cryopreservation of Citrus madurensis zygotic embryonic axes by vitrification: importance of pregrowth and preculture conditions. CryoLetters 22: 391–396; 2001.

    PubMed  CAS  Google Scholar 

  • Cho E. G.; Kim H. H.; Baek H.-J.; Gwang J.-G.; Normah M. N. Cryopreservation of Citrus medica seeds. J Korean Soc Hort Sci 44(5): 565–568; 2003.

    CAS  Google Scholar 

  • Cho E. G.; Normah M. N.; Kim H. H.; Rao V. R.; Engelmann F. Cryopreservation of Citrus aurantifolia seeds and embryonic axes using a desiccation protocol. CryoLetters 23: 309–316; 2002.

    PubMed  Google Scholar 

  • Choo W. K. (2010) In vitro culture and conservation through cryopreservation and slow growth of Nephelium lappaceum L. M.Sc. thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.

  • Efendi D.; Litz R. E. (2003) Cryopreservation of avocado. Proceedings V World Avocado Congress, Malaga, Spain, 19–24 October, pp 111–114.

  • Engelmann F. Cryopreservation for long-term conservation of agrobiodiversity: progress and prospects. Universiti Kebangsaan Malaysia, Bangi, INBIOSIS; 2009.

    Google Scholar 

  • Fadda A.; Fierro A. C.; Lemmens K.; Monsieurs P.; Engelen K.; Marchal K. Inferring the transcriptional network of Bacills subtilis. Mol Biosyst 5: 1840–1852; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Fahy G. M.; MacFarlane D. R.; Angell C. A.; Meryman H. T. Vitrification as an approach to cryopreservation. Cryobiology 21: 407–426; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Arnao M. T.; Juarez J.; Ortega C.; Navarro L.; Duran-Vila N. Cryopreservation of ovules and somatic embryos of citrus using the encapsulation–dehydration technique. CryoLetters 24: 85–94; 2003.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Arnao M. T.; Panta A.; Roca W. M.; Escobar R. H.; Engelmann F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tissue Organ Cult 92: 1–13; 2008.

    Article  Google Scholar 

  • Hamilton K. N.; Ashmore S. E.; Pritchard H. W. Thermal analysis and cryopreservation of seeds of Australian wild Citrus species (Rutaceae): Citrus australasica. C. inodora and C. garrawayi. CryoLetters 30: 268–279; 2009.

    CAS  Google Scholar 

  • Hong T. D.; Ellis R. H. Interspecific variations in seed storage behaviour within two genera—Coffea and Citrus. Seed Sci Technol 23: 165–181; 1995.

    Google Scholar 

  • Hor Y. L. (1984) Storage of cocoa (Theobroma cacao) seeds and changes associated with their deterioration. PhD thesis, Universiti Pertanian Malaysia.

  • Hor Y. L.; Kim Y. J.; Ugap A.; Chabrillange N.; Sinniah U. R.; Engelmann F.; Dussert S. Optimal hydration status for cryopreservation of intermediate oily seeds: Citrus as a case study. Ann Bot 95: 1153–1161; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard K. E.; Robertson F. C.; Dalchau N.; Webb A. A. R. Systems analyses of circadian networks. Mol Biosyst 5: 502–1511; 2009.

    Article  Google Scholar 

  • Kartha K. K.; Leung N. L.; Mroginski L. A. In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Zeitschrift für Pflanzenphysiologie 107: 133–140; 1982.

    Google Scholar 

  • Krishnapillay B. (1989) Towards the development of a protocol for cryopreservation of embryos of a recalcitrant seed (Artocarpus heterophylus Lam.). PhD thesis, Universiti Pertanian Malaysia.

  • Lambardi M.; Aylin Ozudogru E.; Benelli C. Cryopreservation of embryogenic cultures. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Dordrecht, pp 177–210; 2008.

    Chapter  Google Scholar 

  • Lambardi M.; Benelli C.; De Carlo A. Advances in the cryopreservation of fruit plant germplasm at the CNR-IVALSA Institute of Florence. Acta Hort 839: 237–243; 2009.

    Google Scholar 

  • Lloyd G. B.; McCown B. H. Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Proc Int Plant Propagators Soc 30: 421–437; 1980.

    Google Scholar 

  • Loke S. Y. (1993) Seed characteristics of several Garcinia species. BSc thesis, Faculty of Life Sciences, Universiti Kebangsaan Malaysia.

  • Makeen A. M. (2006) Physiological aspects of seed dehydration and cryopreservation of selected Citrus taxa. PhD thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.

  • Makeen A. M.; Normah M. N.; Dussert S.; Clyde M. M. Cryopreservation of whole seeds and excised embryonic axes of Citrus suhuiensis cv. limau langkat in accordance to their desiccation sensitivity. CryoLetters 26(4): 259–268; 2005. doi:259.

    PubMed  Google Scholar 

  • Makeen A. M.; Normah M. N.; Dussert S.; Clyde M. M. Moisture characteristics in relation to total lipid content of the seed of five Citrus taxa using an equilibrium dehydration protocol. Seed Sci Tech 34(2): 453–464; 2006.

    Google Scholar 

  • Mardaleni M. (2005) In vitro culture and cryopreservation of Nephelium lappaceum and Nephelium ramboutan-ake. MSc thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.

  • Marzalina M. (1995) Storage of mahogany (Swietenia macrophylla) seeds. PhD thesis, Faculty of Life Sciences, Universiti Kebangsaan Malaysia.

  • Marzalina M.; Krishnapillay B. Recalcitrant seed biotechnology applications to rain forest conservation. In: Benson E. E. (ed) Plant conservation and biotechnology. Taylor & Francis, London, pp 265–276; 1999.

    Google Scholar 

  • Marzalina M.; Normah M. N. Cryopreservation techniques for the long-term storage of mahogany (Swietenia macrophylla) seeds. J Tropical Forest Sci 14(4): 525–535; 2002.

    Google Scholar 

  • Meryman H. T.; Williams R. J. Basic principles of freezing injury to plant cells: natural tolerance and approaches to cryopreservation. In: Kartha K. K. (ed) Cryopreservation of plant cells and organs. CRC, Boca Raton, pp 13–47; 1985.

    Google Scholar 

  • Mohd Khairul Ezam R. (2007) In vitro culture and cryopreservation of Citrus hystrix. MSc thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.

  • Muhammad Siddiq Z. A. (2007) In vitro culture and cryopreservation of shoot tips of Nepenthes gracilis. BSc thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15(3): 473–497; 1962.

    Article  CAS  Google Scholar 

  • Nadarajan J.; Mansor M.; Krishnapillay B.; Staines H. J.; Benson E. E.; Harding K. Applications of differential scanning calorimetry in developing cryopreservation strategies for Parkia speciosa, a tropical tree producing recalcitrant seeds. CryoLetters 29: 95–110; 2008.

    PubMed  CAS  Google Scholar 

  • Nadarajan J.; Staines H. J.; Benson E. E.; Marzalina M.; Krishnapillay B.; Harding K. Optimization of cryopreservation for Sterculia cordata zygotic embryos using vitrification techniques. J Tropical Forest Sci 19: 79–85; 2007.

    Google Scholar 

  • Nor-Azza A. B. (1997) Organogenesis and callus induction of mangosteen (Garcinia mangostana L.). MSc thesis, Faculty of Life Sciences, Universiti Kebangsaan Malaysia.

  • Normah M. N. (1987) Effects of temperature on rubber (Hevea brasiliensis Muell.-Arg.) seed storage. PhD thesis, Universiti Pertanian Malaysia.

  • Normah M. N.; Chin H. F.; Hor Y. L. Desiccation and cryopreservation of embryonic axes of Hevea brasiliensis Muell.-Arg. Pertanika 9(3): 299–303; 1986.

    Google Scholar 

  • Normah M. N.; Clyde M. M.; Cho E. G.; Rao V. R. Ex situ conservation of tropical fruit species. Acta Hort 575: 221–230; 2002.

    Google Scholar 

  • Normah M. N.; Clyde M. M.; Rao V. R.; Jeevamoney J. (2009) Radiosensitivity and in vitro studies of Citrus suhuiensis. In: Jain SM, Spencer MM (eds) Induced mutation in tropical fruit trees. IAEA-TECDOC-1615, IAEA Vienna, Austria, pp 17–32.

  • Normah M. N.; Jamilah M. S.; Siti Serimala M. N. Viability studies on seeds and embryonic axes of Lansium domesticum Corr. Malays. Appl Biol 25(2): 39–43; 1996.

    Google Scholar 

  • Normah M. N.; Laili Nordaini O. (1994) Cryoexposure behaviour in several Citrus species. In: Koh CL (ed) Proceedings of the First National Congress on Genetics, Kuala Lumpur, 7–8 November, pp 209–211.

  • Normah M. N.; Mainah G. (1996) Cryopreservation of rambai using encapsulation–dehydration and vitrification of embryonic axes. Proceedings of 4th Symposium of Applied Biology, Kuala Lumpur, 28–29 May, pp 88–90.

  • Normah M. N.; Makeen A. M. Cryopreservation of excised embryos and embryonic axes. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Dordrecht, pp 211–240; 2008.

    Chapter  Google Scholar 

  • Normah M. N.; Marzalina M. Achievements and prospects of in vitro conservation for tree germplasm. In: Normah M. N.; Narimah M. K.; Clyde M. M. (eds) In vitro conservation of plant genetic resources. Plant Biotechnology Laboratory, UKM, Bangi, pp 253–261; 1996.

    Google Scholar 

  • Normah M. N.; Nor-Azza A. B.; Aliudin R. Factors affecting in vitro shoot proliferation and ex vitro establishment of mangosteen (Garcinia mangostana L.). Plant Cell Tissue Organ Cult 43(3): 291–294; 1995.

    Google Scholar 

  • Normah M. N.; Ramiya S. D.; Gintangga M. Desiccation sensitivity of recalcitrant seeds—a study on tropical fruit species. Seed Sci Res 7: 179–183; 1997.

    Article  CAS  Google Scholar 

  • Normah M. N.; Siti Dewi Serimala S. D. Cryopreservation of seeds and embryonic axes of several Citrus species. In: Ellis R. H.; Black M.; Murdoch A. J.; Hong T. D. (eds) Basic and applied aspects of seed biology. Kluwer, Dordrecht, pp 817–823; 1997.

    Google Scholar 

  • Normah M. N.; Tan B. S. (2000) Cryoexposure of in vitro shoot tips of mangosteen—effects of sucrose and desiccation. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, Italy, 20–23 October, pp 431–433.

  • Normah M. N.; Vengadasalam M. Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. CryoLetters 13: 199–208; 1992.

    Google Scholar 

  • Padilla G.; Moon P.; Perea I.; Litz R. E. Cryopreservation of embrygenic cultures of ‘brewster’ litchi (Litchi chinensis Sonn.) and its effect on hyperhydric embryogenic cultures. CryoLetters 30: 55–63; 2009.

    PubMed  CAS  Google Scholar 

  • Pammenter N. W.; Berjak P. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanism. Seed Sci Res 9: 13–37; 1999.

    Google Scholar 

  • Panis B. (2009) Cryopreservation of Musa germplasm, 2nd edition, technical guidelines no. 9. In: Engelmann F.; Benson E. (eds) Biodiversity International, Montpellier, France, 48 pp.

  • Panis B.; Lambardi M. Status of cryopreservation technologies in plants (crops and forest trees). Proceedings of the International Workshop on the Role of Biotechnology for the Characterisation and Conservation of Crop, Forestry, Animal and Fishery Genetic Resources. FAO, Rome, Italy, pp 43–54; 2005.

    Google Scholar 

  • Panis B.; Piette B.; Swennen R. Droplet vitrification of apical meristem: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168: 45–55; 2005.

    Article  CAS  Google Scholar 

  • Rahim A. (1997) In vitro culture of mangosteen (Garcinia mangostana L.). MSc thesis, Faculty of Life Sciences, Universiti Kebangsaan Malaysia.

  • Roca W. M.; Debouck D.; Escobar R. H.; Mafla G.; Fregene M. (2000) Cryopreservation and cassava germplasm conservation at CIAT. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, Italy, 20–23 October, pp 273–279.

  • Sakai A.; Kobayashi S.; Oiyama I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30–33; 1990.

    Article  Google Scholar 

  • Steponkus P. L.; Langis R.; Fujikawa S. Cryopreservation of plant tissues by vitrification. In: Steponkus P. L. (ed) Advances in low temperature biology, vol. 1. JAI, Hampton, pp 1–61; 1992.

    Google Scholar 

  • Uchendu E. E.; Leonard S. W.; Traber M. G.; Reed B. M. Vitamin C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29: 25–35; 2009.

    Article  PubMed  Google Scholar 

  • Withers L. A.; Engelmann F. In vitro conservation of plant genetic resources. In: Altman A. (ed) Biotechnology in agriculture. Marcel Dekker, New York, pp 57–88; 1997.

    Chapter  Google Scholar 

  • Wu Y.; Huang X.; Xiao J.; Li X.; Zhou M.; Engelmann F. Cryopreservation of mango (Mangifera indica L.) embryogenic cultures. CryoLetters 24: 303–314; 2003.

    PubMed  Google Scholar 

  • Yap L. V. (2004) Micropropagation and cryopreservation of Lansium domesticum and Garcinia cowa. PhD thesis, Faculty of Science & Technology, Universiti Kebangsaan Malaysia.

  • Yap L. V.; Liew K. E.; Chua S. P. (2009) Effects of sucrose preculture on the survival of zygotic embryos of recalcitrant minor fruits after air desiccation—a preliminary study towards cryopreservation of the species. In: Moneef Z, Lina JD, Fatimah CA, Yap LV, Yashotha S, Hasdianty A (eds) Proceedings of the 17th IAS conference, Shah Alam, Malaysia, 14–17 December, pp 165–167.

  • Zian Nur Juliana Z. A.; Choo W. K.; Normah M. N. (2006) Cryopreservation of shoot tips of Nepenthes gracilis. In: Clyde MM (ed) Proceedings 8th National Biology Symposium, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia, 5–6 December, pp 7–12.

Download references

Acknowledgments

The authors express their thanks to the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, and International Plant Genetic Resources Institute (IPGRI), now known as Bioversity International, for various grants to support these conservation efforts. We thank Dr. Marzalina Mansor and Ms Nashatul Zaimah from the Forest Research Institute of Malaysia (FRIM) for contributing the information in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normah M. Noor.

Additional information

Editor: P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noor, N.M., Kean, C.W., Vun, Y.L. et al. In vitro conservation of Malaysian biodiversity—achievements, challenges and future directions. In Vitro Cell.Dev.Biol.-Plant 47, 26–36 (2011). https://doi.org/10.1007/s11627-010-9306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-010-9306-7

Keywords

Navigation