Skip to main content

In Vitro Genebanks for Preserving Tropical Biodiversity

  • Chapter
  • First Online:
Conservation of Tropical Plant Species

Abstract

Conservation of plant biodiversity can be accomplished in many ways. Tropical plants often cannot be stored as seeds and must be conserved as growing plants. These plants are at risk from disease and environmental factors such as climate change so it is important to provide secondary backups of any field genebanks. One option is the use of in vitro culture as a medium-term storage form. In vitro genebanks are maintained in several countries and provide a secure backup for field collections of many important crops and their wild relatives. In addition, the availability of in vitro collections provides the materials for long-term storage through cryopreservation and international exchange of germplasm. This chapter describes the factors involved in developing an in vitro stored collection and some of the collections held as in vitro plants in various genebanks around the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (2010) Country report on the state of plant genetic resources for food and agriculture: Indonesia. FAO, Rome

    Google Scholar 

  • Ashmore SE (1997) Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Aynalem HA, Righetti TL, Reed BM (2006) Nondestructive evaluation of in vitro-stored plants: a comparison of visual and image analysis. In Vitro Cell Dev Biol Plant 42(6):562–567

    Article  Google Scholar 

  • Barandalla L, Sanchez I, Ritter E, Ruiz de Galerreta JI (2003) Conservation of potato (Solanum tuberosum L.) cultivars by cryopreservation. Spanish J Agri Res 1:9–13

    Google Scholar 

  • Bausher MG, Niedz RP (1998) A discussion of in vitro contamination control of explants from greenhouse and field grown trees. Proc Fla State Hort Soc 111:260–263

    Google Scholar 

  • Benson EE (1999) Plant conservation biotechnology. Taylor and Francis, London

    Google Scholar 

  • Bertrand-Desbrunais A, Noirot M, Charrier A (1992) Slow growth in vitro conservation of coffee (Coffea spp.) 2: influence of reduced concentrations of sucrose and low temperature. Plant Cell Tiss Organ Cult 31:105–110

    Article  CAS  Google Scholar 

  • Bessembinder JJE, Staritsky G, Zandvoort EA (1993) Long-term in vitro storage of Colocasia esculenta under minimal growth conditions. Plant Cell Tiss Organ Cult 33(2):121–127

    Article  Google Scholar 

  • Blake J (1988) Mites and thrips as bacterial and fungal vectors between plant tissue cultures. Acta Hortic 225:163–166

    Google Scholar 

  • Cassells AC (1991) Problems in tissue culture: culture contamination. In: Debergh PC, Zimmerman RH (eds) Micropropagation technology and application. Kluwer, Dordrecht, pp 31–44

    Google Scholar 

  • Cassells AC (1997) Pathogen and microbial contamination management in micropropagation, vol 12. Kluwer, Dordrecht

    Google Scholar 

  • Dekkers AJ, Rao AN, Goh CJ (1991) In vitro storage of multiple shoot cultures of gingers at ambient temperatures of 24–29°C. Sci Hortic 47:157–167

    Article  Google Scholar 

  • Divakarana M, Nirmal K, Babua K, Peterb V (2006) Conservation of Vanilla species, in vitro. Sci Hortic 110:175–180

    Article  Google Scholar 

  • Dulloo ME, Guarino L, Engelmann F, Maxted N, Newbury JH, Atterc F, Ford-Lloyd BV (1998) Complementary conservation strategies for the genus Coffea: a case study of Mascarene Coffea species. Genet Resour Crop Evol 45:565–579

    Article  Google Scholar 

  • Dumet D, Korie S, Adeyemi A (2011) Cryobanking cassava germplasm at IITA. Acta Hortic 908, ISHS 2011 439–446

    Google Scholar 

  • Dussert S, Chabrillange N, Anthony F, Engelmann F, Recalt C, Hamon S (1997) Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep 16(5):344–348

    CAS  Google Scholar 

  • Engelmann F (1991) In vitro conservation of horticultural species. Acta Hortic 298:327–332

    Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. Conservation and use. CAB International, Rome, pp 119–160

    Google Scholar 

  • Engelmann F (1999) Management of field and in vitro germplasm collections. In: Proceedings of a consultation meeting, CIAT/International Plant Genetic Resources Institute, Cali/Rome, 15–20 Jan 1996

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47(1):5–16

    Article  Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. FAO, Rome. ISBN 978-92-5-106534-1

    Google Scholar 

  • Fay MF (1994) In what situations is in vitro culture appropriate to plant conservation? Biodivers Conserv 3:176–183

    Article  Google Scholar 

  • Gu J (1998) Conservation of plant diversity in China: achievements, prospects and concerns. Biol Conserv 85:321–327

    Article  Google Scholar 

  • Gunson HE, Spencer-Phillips PTN (1994) Latent bacterial infections: epiphytes and endophytes as contaminants of micropropagated plants. In: Nicholas JR (ed) Physiology growth and development of plants in culture. Kluwer, Dordrecht, pp 379–396

    Chapter  Google Scholar 

  • Gupta S, Mandal BB (2003) In vitro methods for PGR conservation: principles and prospects. In: Chaudhury R, Pandey R, Malik SK, Mal B (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI, Rome, pp 71–80

    Google Scholar 

  • Gupta S, Mandal B, Gautam P (2002) In vitro and cryorepository of NBPGR. In: Kumar N, Negi P, Singh N (eds) Plant biotechnology for sustainable hill agriculture. Defence Agricultural Research Laboratory, Pithoragarh, pp 20–25

    Google Scholar 

  • Harding K, Benson EE, Clacher K (1997) Plant conservation biotechnology: an overview. Agro Food Ind Hi Tech 8:24–29

    CAS  Google Scholar 

  • Heine-Dobbernack E, Kiesecker H, Schumacher HM (2008) Cryopreservation of dedifferentiated cell cultures. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer Science and Business Media LLC, New York, pp 141–176

    Chapter  Google Scholar 

  • Hussain Z, Tyagi RK (2006) In vitro corm induction and genetic stability of regenerated plants in taro [Colocasia esculenta (L.) Schott]. Indian J Biotechnol 5:535–542

    CAS  Google Scholar 

  • IPGRI/CIAT (1994) Establishment and operation of a pilot in vitro active genebank. Report of a ­CIAT-IBPGR collaborative project using cassava (Manihot esculenta Crantz) as a model. International Plant Genetic Resources Institute and International Center for Tropical Agriculture, Rome

    Google Scholar 

  • Irish BM, Goenaga RJ, Reed BM (2009) Amending storage vessel and media improves subculture interval of Musa sp. tissue culture plantlets. HortScience 44(4):1103

    Google Scholar 

  • Jarret RL (1997) Effects of chemical growth retardants on growth and development of sweet potato (Ipomoea batatas (L.) Lam.) in vitro. Plant Growth Reg 16:227–231

    Article  CAS  Google Scholar 

  • Jarret RL, Florkowski WJ (1990) In vitro active vs. field genebank maintenance of sweet potato germplasm: major costs and considerations. HortScience 25(2):141–146

    Google Scholar 

  • Jarret RL, Gawel N (1991) Chemical and environmental growth regulation of sweet potato (Ipomoea batatas (L.) Lam.) in vitro. Plant Cell Tiss Organ Cult 25:153–159

    CAS  Google Scholar 

  • Kane ME (1995) Bacterial and fungal indexing of tissue cultures. In Vitro Cell Dev Biol Plant 31:25A

    Article  Google Scholar 

  • Kane ME (2000) Culture indexing for bacterial and fungal contaminants. In: Gray DJ, Trigiano RN (eds) Plant tissue culture concepts and laboratory exercises. CRC Press, Boca Raton, pp 427–431

    Google Scholar 

  • Laimer Da Camara Machado M, Da Camara MA, Hanzer V, Kalthoff B, Weib H, Mattanovich D (1991) A new, efficient method using 8-hydroxyl-quinolinol-sulfate for the initiation and establishment of tissue cultures of apple from adult material. Plant Cell Tiss Organ Cult 27:155–160

    Article  Google Scholar 

  • Langens-Gerrits M, Albers M, De Klerk GJ (1997) Hot-water treatment before tissue culture reduces initial contamination in Lilium and Acer. In: Cassells AC (ed) Pathogen and microbial contamination management in micropropagation, vol 12. Kluwer, Dordrecht, p 219

    Google Scholar 

  • Leifert C, Waites WM (1994) Dealing with microbial contaminants in plant tissue and cell culture: hazard analysis and critical control points. In: Lumsden PJ, Nicholar JR, Davies WJ (eds) Physiology growth and development of plants in culture. Kluwer, Dordrecht, pp 363–378

    Chapter  Google Scholar 

  • Leifert C, Woodward S (1997) Laboratory contamination management; the requirement for microbiological quality assurance. In: Cassells AC (ed) Pathogen and microbial contamination management in micropropagation, vol 12. Kluwer, Dordrecht, pp 237–244

    Google Scholar 

  • Leifert C, Waites B, Keetley JW, Wright SM, Nicholas JR, Waites WM (1994) Effect of medium acidification on filamentous fungi, yeasts and bacterial contaminants in Delphinium tissue cultures. Plant Cell Tiss Organ Cult 36:149–155

    Article  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proceed Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Makeen AM, Normah MN, Dussert S, Clyde MM (2005) Cryopreservation of whole seeds and excised embryonic axes of Citrus suhuiensis cv. limau lang-kat in accordance to their desiccation sensitivity. Cryo Lett 26:259–268

    Google Scholar 

  • Malaurie B, Trouslot M-F, Berthaud J, Bousalem M, Pinel A, Dubern J (1998) In vitro storage and safe international exchange of yam (Dioscorea spp.) germplasm. EJB Electron J Biotechnol 1(3):103–117

    Article  Google Scholar 

  • Mandal BB (1997) Application of in vitro/ cryopreservation techniques in conservation of horticultural crop germplasm. Acta Hortic 447: 483–489

    Article  CAS  Google Scholar 

  • Mandal BB (2003) Management of in vitro garmplasm collections: Practical approaches. In: Mandal BB, Chaudhury R, Engelmann F, Bhag Mal, Tao KL, Dhillon BS (eds) Conservation biotechnology of plant germplasm. NBPGR, New Delhi, India/ IPGRI, Rome, Italy/ FAO, Rome, Italy, pp 131–140.

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco ­tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negash A, Krens F, Schaart J, Visser B (2001) In vitro conservation of enset under slow-growth conditions. Plant Cell Tiss Organ Cult 66:107–111

    Article  CAS  Google Scholar 

  • Niedz RP, Bausher MG (2002) Control of in vitro contamination of explants from greenhouse- and field-grown trees. In Vitro Cell Dev Biol Plant 38:468–471

    Article  Google Scholar 

  • Nigro SA, Makunga NP, Grace OM (2004) Medicinal plants at the ethnobotany–biotechnology interface. S African J Bot 70:89–96

    Google Scholar 

  • Noor N, Kean C, Vun Y, Mohamed-Hussein Z (2011) In vitro conservation of Malaysian biodiversity—achievements, challenges and future directions. In Vitro Cell Dev Biol Plant 47(1):26–36

    Google Scholar 

  • Normah MN, Makeen AM (2008) Cryopreservation of excised embryos and embryonic axes. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer Science and Business Media LLC, New York, pp 211–240

    Chapter  Google Scholar 

  • Normah MN, Vengadasalam M (1992) Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. Cryo Lett 13:199–208

    Google Scholar 

  • Parkinson M, Prendergast M, Sayegh AJ (1996) Sterilisation of explants and cultures with sodium dichloroisocyanurate. Plant Growth Reg 20:61–66

    Article  CAS  Google Scholar 

  • Pence VC (2005) In vitro collecting (IVC). I. The effect of collecting method and antimicrobial agents on contamination in temperate and tropical collections. In Vitro Cell Dev Biol Plant 41(3):324–332

    Article  Google Scholar 

  • Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47(1):176–187

    Article  Google Scholar 

  • Pennisi E (2010) Tending the global garden. Science 329:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2008) Encapsulation of shoot tips of guava (Psidium guajava L.) for short-term storage and germplasm exchange. Sci Hortic 118(1):33–38

    Article  CAS  Google Scholar 

  • Ray A, Bhattacharya S (2008) Storage and plant regeneration from encapsulated shoot tips of Rauvolfia serpentina—an effective way of conservation and mass propagation. S African J Bot 74(4):776–779

    Article  CAS  Google Scholar 

  • Reed BM (1992) Cold storage of strawberries in vitro: a comparison of three storage systems. Fruit Var J 46(2):98–102

    Google Scholar 

  • Reed BM (1993) Improved survival of in vitro-stored Rubus germplasm. J Am Soc Hortic Sci 118:890–895

    Google Scholar 

  • Reed BM (1999) The in vitro genebank of temperate fruit and nut crops at the National Clonal Germplasm Repository-Corvallis. In: Engelmann F (ed) Management of field and in vitro ­germplasm collections. International Plant Genetic Resources Institute, Rome, pp 132–135

    Google Scholar 

  • Reed B (2002) Photoperiod improves long-term survival of in vitro-stored strawberry plantlets. HortScience 37(5):811–814

    Google Scholar 

  • Reed BM, Aynalem HA (2005) Iron formulation affects in vitro cold storage of hops. Acta Hortic 668:257–262

    CAS  Google Scholar 

  • Reed BM, Tanprasert P (1995) Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant Tiss Cult Biotechnol 1:137–142

    Google Scholar 

  • Reed BM, Engelmann F, Dulloo E, Engels J (eds) (2005) Technical guidelines for the management of field and in vitro germplasm collections. IPGRI/FAO/SGRP, Rome

    Google Scholar 

  • Reed B, Sarasan V, Kane M, Bunn E, Pence V (2011) Biodiversity conservation and conservation biotechnology tools. In Vitro Cell Dev Biol Plant 47(1):1–4

    CAS  Google Scholar 

  • Ren QM (1994) Advances in the research of fruit germplasm resources in China. In: Rao VR (ed) Proceedings of East Asia coordinators’ meeting on plant genetic resources, Beijing. IPGRI, Singapore. Regional Office for Asia, the Pacific and Oceania, pp 99–102

    Google Scholar 

  • Roca WM, Tay D (2007) Global strategy for ex-situ conservation of sweet potato genetic resources. CIP, Peru

    Google Scholar 

  • Sarasan V (2011) Importance of in vitro technology to future conservation programmes worldwide. Kew Bull 65(4):549–554

    Article  Google Scholar 

  • Sarasan V, Cripps R, Ramsay MM, Atherton C, McMichen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell Dev Biol Plant 42(3):206–214

    Article  Google Scholar 

  • Sarkar D, Chakrabarti SK, Naik PS (2001) Slow-growth conservation of potato microplants: efficacy of ancymidol for long-term storage in vitro. Euphytica 117:131–142

    Article  Google Scholar 

  • Skirvin RM, McMeans O, Wang WL (1993) Storage water is a source of latent bacterial contamination in vitro. Plant Pathol 1:63–65

    Google Scholar 

  • Skirvin RM, Motoike S, Norton MA, Ozgur M, Al-Juboory K, McMeans O (1999) Workshop of micropropagation establishment of contaminant-free perennial plants in vitro. In Vitro Cell Dev Biol Plant 35:278–280

    Article  Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766

    Article  CAS  Google Scholar 

  • Taylor M (2000) New regional genebank in Fiji was made-to-order for Pacific island nations. Diversity 16:19–21

    Google Scholar 

  • TBGRI (2010) Annual report of the Tropical Botanical Garden and Research Institute. Tropical Botanical Garden and Research Institute, Thiruvananthapuram

    Google Scholar 

  • Towill LE (1988) Genetic considerations for germplasm preservation of clonal materials. HortScience 23:91–95

    Google Scholar 

  • Tyagi RK, Yusuf A, Dua P, Agrawal A (2004) In vitro plant regeneration and genotype conservation of eight wild species of Curcuma. Biol Plant 48(1):129–132

    Article  CAS  Google Scholar 

  • Tyagi RK, Agarwal A, Yusuf A (2006) Conservation of Zingiber germplasm through in vitro ­rhizome formation. Sci Hortic 108:210–219

    Article  CAS  Google Scholar 

  • Uchendu EE, Paliyath G, Brown DCW, Saxena PK (2011) In vitro propagation of the North American ginseng (Panax quinquefolius L.). In Vitro Cell Dev Biol Plant 47:710–718

    Article  CAS  Google Scholar 

  • Van de Houwe I (1999) INIBAP germplasm Transit Centre: managing the in vitro medium term genebank for Musa spp. In: Engelmann F (ed) Management of field and in vitro germplasm collections. International Plant Genetic Resources Institute, Rome, pp 127–131

    Google Scholar 

  • Van den Houwe I, Panis B (2000) In vitro conservation of banana: medium-term storage and ­prospects for cryopreservation. In: Razadan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro, vol 2. Science, Enfield, p 17

    Google Scholar 

  • Viss PR, Brooks EM, Driver JA (1991) A simplified method for the control of bacterial contamination in woody plant tissue culture. In Vitro Cell Dev Biol 27P:42

    Google Scholar 

  • Walters C, Touchell DH, Power P, Wesley-Smith J, Antolin MF (2002) A cryopreservation protocol for embryos of the endangered species Zizania texana. Cryo Lett 23:291–298

    Google Scholar 

  • Wanas WH, Callow JA, Withers LA (1986) Growth limitations for the conservation of pear genotypes. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 285–290

    Google Scholar 

  • Watt MP, Berjak P, Makhathini A, Blakeway F (2003) In vitro field collection techniques for Eucalyptus micropropagation. Plant Cell Tiss Organ Cult 75:233–240

    Article  Google Scholar 

  • Watt MP, Banasiak M, Reddy D, Albertse EH, Synyman SJ (2009) In vitro minimal growth storage of Saccharum spp. hybrid (genotype 88 H0019) at two stages of direct somatic embryogenic regeneration. Plant Cell Tiss Organ Cult 96:263–271

    Article  Google Scholar 

  • Withers LA, Williams JT (1986) In vitro conservation. IBPGR, Rome

    Google Scholar 

  • Zandvoort EA, Hulshof MJH, Staritsky G (1994) In vitro storage of Xanthosoma spp. under minimal growth conditions. Plant Cell Tiss Organ Cult 36:309–316

    Article  Google Scholar 

  • Zee FT, Munekata M (1992) In vitro storage of pineapple (Ananas spp.) germplasm. HortScience 27(1):57–58

    Google Scholar 

  • Zee F, Strauss A, Arakawa C (2008) Propagation and cultivation of ‘Ohelo’. Coop Ext Serv Bull Fruits Nuts 13:1–6

    Google Scholar 

Download references

Acknowledgements

The following are gratefully acknowledged for helping us in retrieval of in vitro genebank information for the chapter. Claire Arakawa, USDA-ARS NCGR-Hilo Hawaii; Ariana Digilio, INTA Castelar, Argentina; Stefano Diulgheroff, AGPM, FAO; Natalie Feltman, Deputy Director: Plant Genetic Resources, Department of Agriculture, Fisheries and Forestry, Republic of South Africa; Luigi Guarino, Crop Diversity Trust; Brian M. Irish, USDA-ARS, Tropical Agriculture Research Station, Mayaguez, PR.; Max Martin, USDA-ARS, US Potato Genebank, Sturgeon Bay, WI.; Luis Mroginski, Instituto de Botánica del Nordeste, Universidad Nacional del Nordeste, Corrientes, Argentina; Prem Narain Mathur, South Asia Coordinator and Senior Scientist, Diversity Assessment and Use, Bioversity International, Office for South Asia, New Delhi, India; Juliano Gomes Pádua, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brasil; Victoria Rivero, Instituto de Recursos Biológicos, INTA Balcarce, Argentina; Ericson Aranzales Rondon, International Center for Tropical Agriculture (CIAT), Cali, Colombia; William Solano, investigador en Recursos Fitogenéticos y Biotecnología del CATIE en Costa Rica; Mary Taylor, Genetic Resources Coordinator/Centre of Pacific Crops and Trees, Suva, Fiji; Fernanda Vidigal, Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, Brazil; our appologies to any other contributors that we may have overlooked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara M. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reed, B.M., Gupta, S., Uchendu, E.E. (2013). In Vitro Genebanks for Preserving Tropical Biodiversity. In: Normah, M., Chin, H., Reed, B. (eds) Conservation of Tropical Plant Species. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3776-5_5

Download citation

Publish with us

Policies and ethics