Skip to main content

The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 14))

Abstract

It has been estimated that globally some 500 × 1012 kg of carbon dioxide are assimilated into biomass by autotrophic organisms annually. More than 99% of this assimilated carbon is remineralized, keeping the global biogeochemical carbon cycle roughly in balance (Hedges, 1992). In both terrestrial and aquatic ecosystems the majority of this primary biomass is not consumed directly by herbivorous animals, but decays to detritus and serves as a nutritional basis for the growth of consumers (for an extensive discussion, see Fenchel and Jørgensen, 1977). There is now substantial evidence suggesting that a large part of the energy and nutrients contained in this primary biomass is processed via the microbial detritus food chain, and this mineralizing ability makes heterotrophic microorganisms an important link in the global carbon cycle (Fenchel and Jørgensen, 1977; Paul and Voroney, 1980; Wetzel, 1984; Cole et al., 1988; Mann, 1988). In addition, their ability to mineralize man-made xenobiotic organic chemicals has become increasingly important. This is illustrated by the fact that in industrialized countries the flux of synthetically produced organic material, much of which is ending up in the environment, has increased within the past two centuries to some 40 g C m−2 year−1. This figure is equivalent to approximately 15% of the net primary biomass production in these regions (Egli, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, G., 1980, Effects on algal growth rates by multiple nutrient limitation, Arch. Hydrobiol. 89:43–53.

    CAS  Google Scholar 

  • Aker, K. C., and Robinson, C. W., 1987, Growth of Candida utilis on single-and multicomponent-sugar substrates and on waste banana pulp liquors for single-cell protein production, MIRCEN J. 3:255–274.

    Article  Google Scholar 

  • Al-Awadhi, N., 1989, Characterization and Physiology of Some Thermotolerant and Thermophilic Solvent-Utilizing Bacteria, Swiss Federal Institute of Technology, Zürich, Switzerland, Ph.D. thesis No. 8118.

    Google Scholar 

  • Al-Awadhi, N., Egli, T., Hamer, G., and Mason, C. A., 1990, The process utility of thermotolerant methylotrophic bacteria: I. An evaluation in chemostat culture, Biotechnol. Bioeng. 36:816–820.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, N. H., Nyström, T, and Kjelleberg, S., 1990a, Exoprotease activity in two marine bacteria during starvation, Appl. Environ. Microbiol. 56:218–223.

    PubMed  CAS  Google Scholar 

  • Albertson, N. H., Nyström, T, and Kjelleberg, S., 1990b, Starvation-induced modulations in binding protein-dependent glucose transport in the marine Vibrio sp. S14, FEMS Microbiol. Lett. 70:205–210.

    CAS  Google Scholar 

  • Albertson, N. H., Nyström, T, and Kjelleberg, S., 1990c, Macromolecular synthesis during recovery of the marine Vibrio sp. S14 from starvation, J. Gen. Microbiol. 136:2201–2207.

    CAS  Google Scholar 

  • Alexander, M., 1994, Biodegradation and Bioremediation, Academic Press, San Diego, Calif.

    Google Scholar 

  • Ammerman, J. W., Fuhrman, J. A., Hagström, Å., and Azam, F., 1984, Bacterioplankton growth in seawater: I. Growth kinetics and cellular characteristics in seawater cultures, Mar. Ecol. Prog. Ser. 18:31–39.

    Article  Google Scholar 

  • Amy, P. S., and Morita, R. Y., 1983, Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria, Appl. Environ. Microbiol. 45:1109–1115.

    PubMed  CAS  Google Scholar 

  • Amy, P. S., Pauling, C., and Morita, R. Y., 1983, Recovery from nutrient starvation by a marine Vibrio sp., Appl. Environ. Microbiol. 45:1685–1690.

    PubMed  CAS  Google Scholar 

  • Anderson, J. J., and Oxender, D. L., 1978, Genetic separation of high-and low-affinity transport systems for branched-chain amino acids in Escherichia coli, J. Bacteriol. 136:168–174.

    PubMed  CAS  Google Scholar 

  • Azam, F., and Cho, B. C., 1987, Bacterial utilization of organic matter in the sea, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 261–281.

    Google Scholar 

  • Babel, W., Brinkmann, U., and Müller, R. H., 1993, The auxiliary substrate concept—an approach for overcoming limits of microbial performance, Acta Biotechnol. 13:211–242.

    Article  CAS  Google Scholar 

  • Bader, F. G., 1978, Analysis of double-substrate limited growth, Biotechnol Bioeng. 20:183–202.

    Article  PubMed  CAS  Google Scholar 

  • Bader, F. G., 1982, Kinetics of double-substrate limited growth, in: Microbial Population Dynamics (M. J. Bazin, ed.), CRC Press, Boca Raton, Fla., pp. 1–32.

    Google Scholar 

  • Baidya, T. K. N., Webb, F. C., and Lilly, M. D., 1967, The utilization of mixed sugars in continuous fermentation. I, Biotechnol. Bioeng. 9:195–204.

    Article  CAS  Google Scholar 

  • Bally, M., 1994, Physiology and Ecology of Nitrilotriacetate Degrading Bacteria in Pure Culture, Activated Sludge and Surface Waters, Swiss Federal Institute of Technology Zürich, Switzerland, Ph.D. thesis No. 10821.

    Google Scholar 

  • Bally, M., and Egli, T., 1995, Dynamics of substrate consumption and enzyme synthesis in Chelatobacter heintzii sp. ATCC 29600 during growth in carbon-limited chemostat culture with different mixtures of glucose and nitrilotriacetate (NTA), submitted.

    Google Scholar 

  • Bally, M., Wilberg, E., Kühni, M., and Egli, T., 1994, Growth and enzyme synthesis in the nitrilotriacetic acid (NTA) degrading Chelatobacter heintzii ATCC 29600, Microbiology 140:1927–1936.

    Article  PubMed  CAS  Google Scholar 

  • Baltzis, B. C., and Fredrickson, A. G., 1988, Limitation of growth rate by two complementary nutrients: Some elementary but neglected considerations, Biotechnol. Bioeng. 31:75–86.

    Article  PubMed  CAS  Google Scholar 

  • Bazin, M. J. (ed.), 1982, Microbial Population Dynamics. CRC Series in Mathematical Models in Microbiology, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Beauchamp, E. G., Trevors, J. T., and Paul, P. W., 1989, Carbon sources for bacterial denitrification, Adv. Soil Sci. 10:113–142.

    Article  CAS  Google Scholar 

  • Beckwith, J., 1987, The lactose Operon, in: Escherichia coli and Salmonella typhimurium, Vol. 2 (F. C. Neidhardt, J. L. Ingraham, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 1444–1452.

    Google Scholar 

  • Bell, W. H., 1980, Bacterial utilization of algal extracellular products. 1. The kinetic approach, Limnol. Oceanogr. 25:1007–1020.

    Article  Google Scholar 

  • Bitzi, U., Egli, T., and Hamer, G., 1991, The biodegradation of mixtures of organic solvents by mixed and monocultures of bacteria, Biotechnol. Bioeng. 37:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  • Bley, T., and Babel, W., 1992, Calculating affinity constants of substrate mixtures in a chemostat, Acta Biotechnol. 12:13–15.

    Article  Google Scholar 

  • Boethling, R. S., and Alexander, M., 1979a, Effect of concentration of organic chemicals on their biodegradation by natural microbial communities, Appl. Environ. Microbiol. 37:1211–1216.

    PubMed  CAS  Google Scholar 

  • Boethling, R. S., and Alexander, M., 1979b, Microbial degradation of organic compounds at trace levels, Environ. Sci. Technol. 13:989–991.

    Article  CAS  Google Scholar 

  • Bonting, C. F. C., van Veen, H. W., Taverne, A., Kortstee, G. J. J., and Zehnder, A. J. B., 1992, Regulation of polyphosphate metabolism in Acinetobacter strain 210A grown in carbon-and phosphate-limited continuous culture, Arch. Microbiol. 158:139–144.

    Article  CAS  Google Scholar 

  • Brinkmann, U., and Babel, W., 1992, Simultaneous utilization of heterotrophic substrates by Hansenula polymorpha results in enhanced growth, Appl. Microbiol. Biotechnol. 37:98–103.

    Article  CAS  Google Scholar 

  • Brock, T. D., 1987, The study of microorganisms in situ: Progress and problems, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 3–17.

    Google Scholar 

  • Brooke, A. G., and Attwood, M. M., 1983, Regulation of enzyme synthesis during the growth of Hyphomicrobium X on mixtures of methylamine and ethanol, J. Gen. Microbiol. 129:2399–2404.

    CAS  Google Scholar 

  • Bryan, B. A., 1981, Physiology and biochemistry of denitrification, in: Denitrification, Nitrification and Atmospheric Nitrous Oxide (C. C. Delwiche, ed.), Wiley, New York, pp. 67–84.

    Google Scholar 

  • Bull, A. T., 1985, Mixed culture and mixed substrate systems, in: Comprehensive Biotechnology (M. Moo-Young, ed.), Vol. 1, The Principles of Biotechnology: Scientific Fundamentals (A. T. Bull and H. Dalton, eds.), Pergamon Press, Oxford, England, pp. 281–299.

    Google Scholar 

  • Button, D. K., 1985, Kinetics of nutrient-limited transport and microbiol growth, Microbial. Rev. 49:270–297.

    CAS  Google Scholar 

  • Button, D. K., 1991, Biochemical basis for whole-cell uptake kinetics: Specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant, Appl. Environ. Microbiol. 57:2033–2038.

    PubMed  CAS  Google Scholar 

  • Button, D. K., 1993, Nutrient-limited microbial growth kinetics: Overview and recent advances, Antonie van Leeuwenhoek 63:225–235.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. Y., and Christensen, E. R., 1985, A unified theory for microbial growth under multiple nutrient limitation, Water Res. 19:791–798.

    Article  CAS  Google Scholar 

  • Chróst, R. J., 1991, Environmental control of the synthesis and activity of aquatic microbial ecto-enzymes, in: Microbial Enzymes in the Aquatic Environments (R. J. Chróst, ed.), Springer-Verlag, New York, pp. 29–59.

    Chapter  Google Scholar 

  • Cogan, T. M., 1987, Co-metabolism of citrate and glucose by Leuconostoc spp.: Effects on growth, substrate and products, J. Appl. Bacteriol. 63:551–558.

    Article  CAS  Google Scholar 

  • Cole, J. J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: A cross-system overview, Mar. Ecol. Prog. Ser. 43:1–10.

    Article  Google Scholar 

  • Cook, G. M., Janssen, P. H., and Morgan, H. W., 1993, Simultaneous uptake and utilisation of glucose and xylose by Clostridium thermohydrosulfuricum, FEMS Microbiol. Lett. 109:55–62.

    Article  CAS  Google Scholar 

  • Cooney, C., Wang, D. C. I., and Mateles, R. I., 1976, Growth of Enterobacter aerogenes in a chemostat with double nutrient limitations, Appl. Environ. Microbiol. 31:91–98.

    PubMed  CAS  Google Scholar 

  • Coveney, M. F., and Wetzel, R. G., 1992, Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures, Appl. Environ. Microbiol. 58:150–156.

    PubMed  CAS  Google Scholar 

  • Cronan, Jr., J. E., Gennis, R. B., and Maloy, S. R., 1987, Cytoplasmic membrane, in: Escherichia coli and Salmonella typhimurium, Vol. 1 (F. C. Neidhardt, J. L. Ingraham, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 31–55.

    Google Scholar 

  • Currie, D. J., 1990, Large scale variability and interactions among phytoplankton, bacterioplankton and phosphorus, Limnol. Oceanogr. 35:1437–1455.

    Article  Google Scholar 

  • Daesch, G., and Mortenson, 1968, Sucrose catabolism in Clostridium pasteuranium and its relation to N2 fixation, J. Bacteriol. 96:346–351.

    PubMed  CAS  Google Scholar 

  • Daughton, C. G., Cook, A. M., and Alexander, M., 1979, Phosphate and soil binding: Factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites, Appl. Environ. Microbiol. 37:175–184.

    Google Scholar 

  • Davidson, E. A., Matson, R. A., Vitousek, P. M., Riley, R., Dunkin, K., Garcïa-Mendez, G., and Maass, J. M., 1993, Processes regulating soil emission of NO and N2O in a seasonally dry tropical forest, Ecology 74:130–139.

    Article  CAS  Google Scholar 

  • Dawes, E. A., 1985, Starvation, survival and energy reserves, in: Bacteria in their Natural Environments (M. Fletcher and G. D. Floodgate, eds.), Academic Press, London, pp. 43–79.

    Google Scholar 

  • Dean, A. C. R., 1972, Influence of environment on the control of enzyme synthesis, J. Appl. Chem. Biotechnol. 22:245–259.

    Article  CAS  Google Scholar 

  • Death, A., Notley, L., and Ferenci, T., 1993, Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress, J. Bacteriol. 175:1475–1483.

    PubMed  CAS  Google Scholar 

  • de Boer, L., Euverink, G. J., van der Vlag, J., and Dijkhuizen, L., 1990, Regulation of methanol metabolism in the facultative methylotroph Nocardia sp. 239 during growth on mixed substrate in batch and continuous culture, Arch. Microbiol. 153:33–343.

    Article  Google Scholar 

  • Decker, K., Peist, R., Reidl, J., Kossmann, M., Brand, B., and Boos, W., 1993, Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose 1-phosphate independently of enzymes of the maltose system, J. Bacteriol. 175:5655–5665.

    PubMed  CAS  Google Scholar 

  • Degnan, B. A., and Macfarlane, G. T., 1993, Transport and metabolism of glucose and arabinose in Bifidobacterium breve, Arch. Microbiol. 160:144–151.

    Article  PubMed  CAS  Google Scholar 

  • de Hollander, J. A., and Stouthamer, A. H., 1979, Multicarbon-substrate growth of Rhizobium trifola, FEMS Microbiol. Lett. 6:57–59.

    Article  Google Scholar 

  • de Jong-Gubbels, P., Vanrollehem, P., Heijnen, S., van Dijken, J. P., and Pronk, J. T., 1995, Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae, Yeast 11:407–418.

    Article  PubMed  Google Scholar 

  • de Koning, W., Gleeson, M. A. G., Harder, W., and Dijkhuizen, L., 1987, Regulation of methanol metabolism in the yeast Hansenula polymorpha. Isolation and characterization of mutants blocked in methanol assimilatory enzymes, Arch. Microbiol. 147:375–382.

    Article  Google Scholar 

  • de Koning, W., Weusthuis, R. A., Harder, W., and Dijkhuizen, L., 1990, Metabolic regulation in the yeast Hansenula polymorpha. Growth of dihydroxyacetone kinase/glycerol kinase-negative mutants on mixtures of methanol and xylose in continuous cultures, Yeast 6:107–115.

    Article  Google Scholar 

  • de Vries, G. E., Harms, N., Maurer, K., Papendrecht, A., and Stouthamer, A. H., 1988, Physiological regulation of Paracoccus denitrificans methanol dehydrogenase synthesis and activity, J. Bacteriol. 170:3731–3737.

    PubMed  Google Scholar 

  • Dijkhuizen, L., and Harder, W., 1979, Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture, Arch. Microbiol. 123:47–53.

    Article  CAS  Google Scholar 

  • Douglas, D. J., Novitsky, J. A., and Fournier, R. O., 1987, Microautoradiography-based enumeration of bacteria with estimates of thymidine-specific growth and production rates, Mar. Ecol. Prog. Ser. 36:91–99.

    Article  CAS  Google Scholar 

  • Dow, C. S., Whittenbury, R., and Carr, N. G., 1983, The “shut down” or “growth precursor” cell—an adaptation for survival in a potentially hostile environment, in: Microbes in Their Natural Environments (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge, England, pp. 187–247.

    Google Scholar 

  • Duchars, M. G., and Attwood, M. M., 1989, The influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and regulation of enzyme activity in Hyphomicrobium X, J. Gen. Microbiol. 135:787–793.

    CAS  Google Scholar 

  • Ducklow, H. W., and Carlson, C. A., 1992, Oceanic bacterial production, Adv. Microb. Ecol. 12:113–181.

    Article  Google Scholar 

  • Dykhuizen, D., and Davies, M., 1980, An experimental model: Bacterial specialists and generalists competing in chemostats, Ecology 61:1213–1227.

    Article  Google Scholar 

  • Eggeling, L., and Sahm, H., 1978, Derepression and partial insensitivity to carbon catabolite repression of the methanol-dissimilating enzymes in Hansenula polymorpha, Eur. J. Appl. Microbiol. Biotechnol. 5:197–202.

    Article  CAS  Google Scholar 

  • Eggeling, L., and Sahm, H., 1981, Enhanced utilization-rate of methanol during growth on mixed substrate: A continuous culture study with Hansenula polymorpha, Arch. Microbiol. 130:362–365.

    Article  CAS  Google Scholar 

  • Egli, T., 1982, Regulation of protein synthesis in methylotrophic yeasts: Repression of methanol dissimilating enzymes by nitrogen limitation, Arch. Microbiol. 131:95–101.

    Article  CAS  Google Scholar 

  • Egli, T., 1991, On multiple-nutrient-limited growth of microorganisms, with special reference to carbon and nitrogen substrates, Antonie van Leeuwenhoek 60:225–234.

    Article  PubMed  CAS  Google Scholar 

  • Egli, T., 1992, General strategies in the biodegradation of pollutants, in: Metal Ions in Biological Systems. Degradation of Environmental Pollutants by Microorganisms and Their Metalloenzymes, Vol. 28 (H. Sigel and A. Sigel, eds.), Marcel Dekker, New York, pp. 1–39.

    Google Scholar 

  • Egli, T., 1994, Biochemistry and physiology of the degradation of nitrilotriacetic acid and other metal complexing agents, in: Biochemistry of Microbial Degradation (C. Ratledge, ed.), Kluwer Academic Publishers, Dordrecht, pp. 179–195.

    Chapter  Google Scholar 

  • Egli, T., and Harder, W., 1984, Growth on methylotrophs on mixed substrates, in: Microbial Growth on C1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 330–337.

    Google Scholar 

  • Egli, T., and Mason, C. A., 1991, Mixed substrates and mixed cultures, in: Biology of Methylotrophs (I. Goldberg and J. S. Rokem, Eds.), Butterworth-Heinemann, Boston, pp. 173–201.

    Google Scholar 

  • Egli, T., and Quayle, J. R., 1984, Influence of the carbon:nitrogen ratio on the utilization of mixed carbon substrates by the methylotrophic yeast Hansenula polymorpha, in: Proc. 100th Ann. Meeting Soc. Gen. Microbiol. (abstract booklet), Warwick, p. M13.

    Google Scholar 

  • Egli, T., and Quayle, J. R., 1986, Influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources, J. Gen. Microbiol. 132:1779–1788.

    CAS  Google Scholar 

  • Egli, T., van Dijken, J. P., Veenhuis, M., Harder, W., and Fiechter, A., 1980, Methanol metabolism in yeasts: Regulation of the synthesis of catabolic enzymes, Arch. Microbiol. 124:115–121.

    Article  CAS  Google Scholar 

  • Egli, T., Käppeli, O., and Fiechter, A., 1982a, Regulatory flexibility of methylotrophic yeasts in chemostat cultures: Simultaneous assimilation of glucose and methanol at a fixed dilution rate, Arch. Microbiol. 131:1–7.

    Article  CAS  Google Scholar 

  • Egli, T., Käppeli, O., and Fiechter, A., 1982b, Mixed substrate growth of methylotrophic yeasts in chemostat culture: Influence of dilution rate on the utilisation of a mixture of glucose and methanol, Arch. Microbiol. 131:8–13.

    Article  CAS  Google Scholar 

  • Egli, T., Lindley, N. D., and Quayle, J. R., 1983, Regulation of enzyme synthesis and variation of residual methanol concentration during carbon-limited growth of Kloeckera sp. 2201 on mixtures of methanol and glucose, J. Gen. Microbiol. 129:1269–1281.

    CAS  Google Scholar 

  • Egli, T., Bosshard, C., and Hamer, G., 1986, Simultaneous utilization of methanol-glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern, Biotechnol. Bioeng. 28:1735–1741.

    Article  PubMed  CAS  Google Scholar 

  • Egli, T., Weilenmann, H.-U., El-Banna, T., and Auling, G., 1988, Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil, Syst. Appl. Microbiol. 10:297–305.

    Article  Google Scholar 

  • Egli, T., Lendenmann, U., and Snozzi, M., 1993, Kinetics of microbial growth with mixtures of carbon sources, Antonie van Leeuwenhoek 63:289–298.

    Article  PubMed  CAS  Google Scholar 

  • Fenchel, T. M., and Jørgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, Adv. Microb. Ecol. 1:1–58.

    CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, Appl. Environ. Microbiol. 39:1085–1095.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results, Mar. Biol. 66:109–120.

    Article  Google Scholar 

  • Fuhrman, J. A., and Ferguson, R. L., 1986, Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: Agreement between chemical and microbiological measurements, Mar. Ecol. Prog. Ser. 33:237–242.

    Article  CAS  Google Scholar 

  • Furlong, C. E., 1987, Osmotic-shock-sensitive tranport systems, in: Escherichia coli and Salmonella typhimurium, Vol. 1 (F. C. Neidhardt, J. L. Ingranarci, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 768–796.

    Google Scholar 

  • Gerhart, D. W., and Likens, G. E., 1975, Enrichment experiments for determining nutrient limitation: Four methods compared, Limnol. Oceanogr. 20:649–653.

    Article  Google Scholar 

  • Geurts, T. G. E., de Kok, H. E., and Roels, J. A., 1980, A quantitative description of the growth of Saccharomyes cerevisiae CBS426 on a mixed substrate of glucose and ethanol, Biotechnol. Bioeng. 22:2031–2043.

    Article  CAS  Google Scholar 

  • Goldman, J. C., 1980, Physiological processes, nutrient availability and the concept of relative growth rate in marine phytoplankton ecology, in: Primary Productivity in the Sea (P. G. Falkowski, ed.), Plenum Press, New York, pp. 179–194.

    Google Scholar 

  • Goldman, J. C., Caron, D. A., and Dennett, M. R., 1987, Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio, Limnol. Oceanogr. 32:1239–1252.

    Article  CAS  Google Scholar 

  • Gommers, P. J. F., van Schie, B. J., van Dijken, J. P., and Kuenen, J. G., 1988, Biochemical limits to microbial growth yields: an analysis of mixed substrate utilization, Biotechnol. Bioeng. 32:86–94.

    Article  PubMed  CAS  Google Scholar 

  • Gondo, S., Kaushik, K., and Venkatasubramanian, K., 1978, Two carbon-substrate continuous culture: Multiple steady states and their stability, Biotechnol. Bioeng. 20:1479–1485.

    Article  CAS  Google Scholar 

  • Gorini, L., 1960, Antagonism between substrate and repression in controlling the formation of a biosynthetic enzyme, Proc. Nat. Acad. Sci. USA 46:682–690.

    Article  PubMed  CAS  Google Scholar 

  • Gottschal, J. C., 1986, Mixed substrate utilization by mixed cultures, in: Bacteria in Nature (J. S. Poindexter and E. R. Leadbetter, eds.), Plenum Press, New York, pp. 261–292.

    Google Scholar 

  • Gottschal, J. C., 1993, Growth kinetics and competition—some contemporary comments, Antonie van Leeuwenhoek 63:299–313.

    Article  PubMed  CAS  Google Scholar 

  • Gottschal, J. C., and Kuenen, J. G., 1980a, Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat, Arch. Microbiol. 126:33–42.

    Article  CAS  Google Scholar 

  • Gottschal, J. C., and Kuenen, J. G., 1980b. Selective enrichment of facultatively chemolithotrophic thiobacilli and related organisms in continuous culture, FEMS Microbiol. Lett. 7:241–247.

    Article  CAS  Google Scholar 

  • Gottschal, J. C., de Vries, S. and Kuenen, J. G., 1979, Competition between the facultatively chemolithotrophic Thiobacillus A2, and obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates, Arch. Microbiol. 121:241–249.

    Article  CAS  Google Scholar 

  • Gottschal, J. C., Pol, A., and Kuenen, J. G., 1981a, Metabolic flexibility of Thiobacillus A2 during substrate transitions in the chemostat, Arch. Microbiol. 129:23–28.

    Article  CAS  Google Scholar 

  • Gottschal, J. C., Nanninga, H. J., and Kuenen, J. G., 1981b, Growth of Thiobacillus A2 under alternating growth conditions in the chemostat, J. Gen. Microbiol. 126:85–96.

    CAS  Google Scholar 

  • Gräzer-Lampart, S. D., Egli, T., and Hamer, G., 1986, Growth of Hyphomicrobium ZV620 in the chemostat: Regulation of NH4 +-assimilating enzymes and cellular composition, J. Gen. Microbiol. 132:3337–3347.

    Google Scholar 

  • Haas, C. N., 1994, Unified kinetic treatment for growth on dual nutrients, Biotechnol. Bioeng. 44:154–164.

    Article  PubMed  CAS  Google Scholar 

  • Häggström, M. H., and Cooney, C. L., 1984, α-Glucosidase synthesis in batch and continuous culture of Saccharomyces cerevisiae, Appl. Biochem. Biotechnol. 9:475–481.

    Article  Google Scholar 

  • Harder, W., and Dijkhuizen, L., 1976, Mixed substrate utilization, in: Continuous Culture 6. Applications and New Fields (A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, and I. Melling, eds.), Ellis Horwood, Chichester, England, pp. 297–314.

    Google Scholar 

  • Harder, W., and Dijkhuizen, L., 1982, Strategies of mixed substrate utilization in microorganisms, Phil. Trans. R. Soc. Lond. B. 297:459–480.

    Article  CAS  Google Scholar 

  • Harder, W., and Dijkhuizen, L., 1983, Physiological responses to nutrient limitation, Annu. Rev. Microbiol. 37:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Harder, W., Dijkhuizen, L., and Veldkamp, H., 1984, Environmental regulation of microbial metabolism, in: The Microbe 1984 (D. P. Kelly and N. G. Carr, eds.), Cambridge University Press, Cambridge, England, pp. 51–95.

    Google Scholar 

  • Harrison, D. E. F., 1972, Physiological effects of dissolved oxygen tension and redox potential on growing populations of microorganisms, J. Appl. Chem. Biotechnol. 22:417–440.

    Article  CAS  Google Scholar 

  • Harte, M. J., and Webb, F. C., 1967, Utilization of mixed sugars in continuous fermentation. II, Biotechnol. Bioeng. 9:205–221.

    Article  CAS  Google Scholar 

  • Harvey, R. J., 1970, Metabolic regulation in glucose-limited chemostat cultures of Escherichia coli, J. Bacteriol. 104:698–706.

    PubMed  CAS  Google Scholar 

  • Hedges, J. I., 1992, Global biogeochemical carbon cycles: Progress and problems, Mar. Chem. 39:67–93.

    Article  CAS  Google Scholar 

  • Hegewald, E., and Knorre, W. A., 1978, Kinetics of growth and substrate consumption of Escherichia coli ML30 on two carbon sources, Z. Allg. Mikrobiol. 18:415–426.

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis, R., 1993, The role of rpoS in early stationary-phase gene regulation in Escherichia coli K12, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 171–200.

    Google Scholar 

  • Herbert, D., 1961a, A theoretical analysis of continuous culture systems, Soc. Chem. Ind. Monogr. (London) 12:21–53.

    Google Scholar 

  • Herbert, D., 1961b, The chemical composition of micro-organisms as a function of their growth environment, in: Microbial Reaction to the Environment (C. G. Meynell and H. Gooder, eds.), Cambridge University Press, Cambridge, England, pp. 391–416.

    Google Scholar 

  • Herbert, D., 1976, Stoichiometric aspects of microbial growth, in: Continuous Culture 6: Applications and New Fields (A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, and J. Melling, eds.), Ellis Horwood, Chichester, England, pp. 1–30.

    Google Scholar 

  • Hillmer, P., and Gest, H., 1977, H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: Production and utilization of H2 by resting cells, J. Bacteriol. 129:732–739.

    PubMed  CAS  Google Scholar 

  • Hobbie, J. E., and Ford, T. E., 1993, A perspective on the ecology of aquatic microbes, in: Aquatic Microbiology. An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 1–14.

    Google Scholar 

  • Höfle, M. G., 1983, Long-term changes in chemostat cultures of Cytophaga johnsonae, Appl. Environ. Microbiol. 46:1045–1053.

    PubMed  Google Scholar 

  • Hollibaugh, J. T., and Azam, F. 1983, Microbial degradation of dissolved proteins in seawater, Limnol. Oceanogr. 28:1104–1116.

    Article  CAS  Google Scholar 

  • Hoover, T. R., and Ludden, P. W., 1984, Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source, J. Bacteriol. 159:400–403.

    PubMed  CAS  Google Scholar 

  • Hoppe, H.-G., 1976, Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography, Mar. Biol. 36:291–302.

    Article  Google Scholar 

  • Hoppe, H.-G., 1991, Microbial extracellular enzyme activity: A new key parameter in aquatic ecology, in: Microbial Enzymes in the Aquatic Environments (R. J. Chróst, ed.), Springer-Verlag, New York, pp. 60–83.

    Chapter  Google Scholar 

  • Hoppe, H.-G., Kim S.-J., and Gocke, K., 1988, Microbial decomposition in aquatic environments: Combined process of extracellular enzyme activity and substrate uptake, Appl. Environ. Microbiol. 54:784–790.

    PubMed  CAS  Google Scholar 

  • Horowitz, A., Krichevsky, M. I., and Atlas, R. M., 1983, Characteristics and diversity of subarctic marine oligotrophic stenoheterotrophic and euryheterotrophic bacterial populations, Can. J. Microbiol. 29:527–535.

    Article  Google Scholar 

  • Howard, P. H., 1989, Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol. I, Large Production and Priority Pollutants, Lewis Publishers, Chelsea, Mich.

    Google Scholar 

  • Hueting, S., and Tempest, D. W., 1979, Influence of the glucose input concentration on the kinetics of metabolite production by Klebsiella aerogenes NCTC418: Growing in chemostat culture in potassium-or ammonia-limited environments, Arch. Microbiol. 123:189–199.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, D. H., and Robinson, C. W., 1988, Kinetics of the simultaneous batch degradation of p-cresol and phenol by Pseudomonas putida, Appl. Microbiol. Biotechnol. 29:599–604.

    Article  CAS  Google Scholar 

  • Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Molec. Biol. 3:318–356.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, G. A., 1987, Physical and chemical properties of aquatic environments, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 213–233.

    Google Scholar 

  • Jannasch, H. W., 1967, Growth of marine bacteria at limiting concentrations of organic carbon in seawater, Limnol. Oceanogr. 12:264–271.

    Article  CAS  Google Scholar 

  • Jannasch, H. W., 1968, Growth characteristics of heterotrophic bacteria in seawater, J. Bacteriol. 95:722–723.

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., and Egli, T., 1993, Microbial growth kinetics: A historical perspective, Antonie van Leeuwenhoek 63:213–224.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, L. A., and Newbold, J. D., 1993, Biogeochemistry of dissolved organic carbon entering streams, in: Aquatic Microbiology. An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 139–165.

    Google Scholar 

  • Kaprelyants, A. S., Gottschal, J. C., and Kell, D. B., 1993, Dormancy in non-sporulating bacteria, FEMS Microbiol. Lett. 104:271–286.

    Article  CAS  Google Scholar 

  • Karl, D. M., 1986, Determination of in situ microbial biomass, viability, metabolism and growth, in: Bacteria in Nature, Vol. 2 (J. S. Poindexter and E. R. Leadbetter, eds.), Plenum Press, New York, pp. 85–176.

    Google Scholar 

  • Karl, D. M., and Bailiff, M. D., 1989, The measurement and distribution of dissolved nucleic acids in aquatic environments, Limnol. Oceanogr. 34:543–558.

    Article  CAS  Google Scholar 

  • Kastner, J. R., and Roberts, R. S., 1990, Simultaneous fermentation of D-xylose and glucose by Candida shehatae, Biotechnol. Lett. 12:57–60.

    Article  CAS  Google Scholar 

  • Kay, A. A., and Gronlund, A. F., 1969, Influence of carbon or nitrogen starvation on amino acid transport in Pseudomonas aeruginosa, J. Bacteriol. 100:276–282.

    PubMed  CAS  Google Scholar 

  • Keil, R. G., Montluçon, D. B., Prahl, F. G., and Hedges, J. I., 1994, Sorptive preservation of labile organic matter in marine sediments, Nature 370:549–552.

    Article  Google Scholar 

  • Kell, D. B., and Westerhoff, H. V., 1986, Metabolic control theory: Its role in microbiology and biotechnology, FEMS Microbiol. Rev. 39:305–320.

    Article  CAS  Google Scholar 

  • Kirchman, D. L., 1990, Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific, Mar. Ecol. Prog. Ser. 62:47–54.

    Article  CAS  Google Scholar 

  • Kirchman, D. L., 1993, Particulate detritus and bacteria in marine environments, in: Aquatic Microbiology, An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 1–14.

    Google Scholar 

  • Kjelleberg, S. (ed.), 1993, Starvation in Bacteria, Plenum Press, New York.

    Google Scholar 

  • Kjelleberg, S., Hermansson, M., Mårdén, P., and Jones, G. W., 1987, The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment, Annu. Rev. Microbiol. 41:25–49.

    Article  PubMed  CAS  Google Scholar 

  • Kjelleberg, S., Albertson, N., Flärdh, K., Holmquist, L., Jouper-Jaan, Å., Marouga, R., Östling, J., Svenblad, B., and Weichart, D., 1993, How do non-differentiating bacteria adapt to starvation? Antonie van Leeuwenhoek 63:333–341.

    Article  PubMed  CAS  Google Scholar 

  • Kluyver, A. J., 1956, Life’s flexibility: Microbial adaptation, in: The Microbe’s Contribution to Biology (A. J. Kluyver and C. B van Niel, eds.), Harvard University Press, Cambridge, Mass., p. 93.

    Google Scholar 

  • Koch, A. L., 1976, How bacteria face depression, recession and derepression, Persp. Biol. Med. 20:44–63.

    CAS  Google Scholar 

  • Koch, A. L., 1982, Multistep kinetics: Choice of models for the growth of bacteria, J. Theor. Biol. 98:401–417.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., and Wang, C. H., 1982, How close to the theoretical diffusion limit do bacterial uptake systems function, Arch. Microbiol. 131:36–42.

    Article  PubMed  CAS  Google Scholar 

  • Koike, I., Hara, S., Terauchi, K., and Kogure, K., 1990, Role of sub-micrometer particles in the ocean, Nature 345:242–244.

    Article  Google Scholar 

  • Kompala, D. S., Ramakrishna, D., and Tsao, G. T., 1984, Cybernetic modeling of microbial growth on multiple substrates, Biotechnol. Bioeng. 26:1272–1281.

    Article  PubMed  CAS  Google Scholar 

  • Konopka, A., Knight, D., and Turco, R. F., 1989, Characterization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources, Appl. Environ. Microbiol. 55:385–389.

    PubMed  CAS  Google Scholar 

  • Kurlandzka, A., Rosenzweig, R. F., and Adams, J., 1991, Identification of adaptive changes in an evolving population of Escherichia coli: The role of changes with regulatory and highly pleiotrophic effects, Mol. Biol. Evol. 8:261–281.

    PubMed  CAS  Google Scholar 

  • Kysliková, E., and Volfová, O., 1990, Simultaneous utilization of methanol and mannose in a chemostat culture of Candida boidinii 2, Folia Microbiol. (Praha) 35:484.

    Google Scholar 

  • Lancelot, C., and Billen, G., 1985, Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems, Adv. Aquat. Microbiol. 3:263–321.

    Google Scholar 

  • Lancelot, C., Billen, G., and Mathot, S., 1989, Ecophysiology of phyto-and bacterioplankton growth in the Southern Ocean, in: Plankton Ecology, Vol. 1 (S. Caschetto, ed.), Science Policy Office, Brussels, pp. 4–92.

    Google Scholar 

  • LaPat-Polasko, L. T., McCarty, T. L., and Zehnder, A. J. B., 1984, Secondary substrate utilization of methylene chloride by an isolated strain of Pseudomonas sp., Appl. Environ. Microbiol. 47:825–830.

    PubMed  CAS  Google Scholar 

  • Law, A. T., and Button, D. K., 1977, Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium, J. Bacteriol. 129:115–123.

    PubMed  CAS  Google Scholar 

  • Lawford, H. G., Pik, J. R., Lawford, G. R., Williams T., and Kligerman, A., 1980, Physiology of Candida albicans in zinc-limited chemostats, Can. J. Microbiol. 26:64–70.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. L., Ataai, M. M., and Shuler, M. L., 1984, Double-substrate-limited growth of Escherichia coli, Biotechnol. Bioeng. 26:1398–1401.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., and Wakeham, S. G., 1992, Organic matter in the water column: Future research challenges, Mar. Chem. 39:95–118.

    Article  CAS  Google Scholar 

  • Lendenmann, U., 1994, Growth Kinetics of Escherichia coli with Mixtures of Sugars, No. 10658, Swiss Federal Institute of Technology Zürich, Switzerland, Ph.D. thesis.

    Google Scholar 

  • Lendenmann, U., and Egli, T., 1995, Is Escherichia coli growing in glucose-limited chemostat culture able to utilise other sugars without lag? Microbiology 141:71–78.

    Article  PubMed  CAS  Google Scholar 

  • Lendenmann, U., Snozzi, M., and Egli, T., 1992, Simultaneous utilization of diauxic sugar mixtures by Escherichia coli, in: 6th Intern. Symp. Microb. Ecol. Abstracts (abstract booklet), p. 254, Barcelona, Spain.

    Google Scholar 

  • Lengeler, J. W., 1993, Carbohydrate transport in bacteria under environmental conditions, a black box? Antonie van Leeuwenhoek 63:275–288.

    Article  PubMed  CAS  Google Scholar 

  • León, J. A., and Tumpson, D. B., 1975, Competition between two species for two complementary or substitutable resources, J. Theor. Biol. 50:185–201.

    Article  PubMed  Google Scholar 

  • Levering, P. R., and Dijkhuizen, L., 1985, Regulation of methylotrophic and heterotrophic metabolism in Arthrobacter P1. Growth with mixtures of methylamine and acetate in batch and continous cultures, Arch. Microbiol. 142:113–120.

    Article  CAS  Google Scholar 

  • Lewin, B., 1994, Genes V, Oxford University Press, Oxford, England.

    Google Scholar 

  • Lin, E. C. C., 1987, Dissimilatory pathways for sugars, polyols, and carboxylates, in: Escherichia coli and Salmonella typhimurium, Vol. 1 (F. C. Neidhardt, J. L. Ingraham, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 244–284.

    Google Scholar 

  • Linton, J. D., and Stephenson, R. J., 1978, A preliminary study on growth-yields in relation to the carbon and energy-content of various organic growth substrates, FEMS Microbiol. Lett. 3:95–98.

    Article  CAS  Google Scholar 

  • Linton, J. D., Griffiths, K., and Gregory, M., 1981, The effect of mixtures of glutamate and formate on the yield and respiration of a chemostat culture of Beneckea natriegens, Arch. Microbiol. 129:119–122.

    Article  CAS  Google Scholar 

  • Loubière, P., Salou, P., Leroy, M. J., Lindley, N. D., and Parreilleux, A., 1992a, Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures, J. Bacteriol. 174:5302–5308.

    PubMed  Google Scholar 

  • Loubière, P., Gros, E., Paquet, V., and Lindley, N. D., 1992b, Kinetics and physiological implications of the growth behavior of Eubacterium limosum on glucose/methanol mixtures, J. Gen. Microbiol. 138:979–985.

    Google Scholar 

  • Lowe, W. E., Theodorou, M. K., and Trinci, A. P. J., 1987, Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development, Appl. Environ. Microbiol. 53:1210–1215.

    PubMed  CAS  Google Scholar 

  • Lütgens, M., and Gottschalk, G., 1980, Why a co-substrate is required for growth of Escherichia coli on citrate, J. Gen. Microbiol. 119:63–70.

    PubMed  Google Scholar 

  • Magasanik, B., 1976, Classical and postclassical modes of regulation of the synthesis of degradative bacterial enzymes, Prog. Nucl. Acids Res. Molec. Biol. 17:99–115.

    Article  CAS  Google Scholar 

  • Mankad, T., and Bungay, H. R., 1988, Models for microbial growth with more than one limiting nutrient, J. Biotechnol. 7:161–166.

    Article  CAS  Google Scholar 

  • Mann, K. H., 1988, Production and use of detritus in various freshwater, estuarine, and costal marine ecosystems, Limnol. Oceanogr. 33:910–930.

    Article  CAS  Google Scholar 

  • Mårdén, P., Nyström, T., and Kjelleberg, S., 1987, Uptake of leucine by a marine gram-negative heterotrophic bacterium exposed to starvation conditions, FEMS Microbiol. Ecol. 45:233–241.

    Article  Google Scholar 

  • Marounek, M., and Kopecný, J., 1994, Utilization of glucose and xylose in ruminai strains of Butyrivibrio fibrisolvens, Appl. Environ. Microbiol. 60:738–739.

    PubMed  CAS  Google Scholar 

  • Martin, P., and MacLeod, R. A., 1984, Observations on the distinction between oligotrophic and eutrophic marine bacteria, Appl. Environ. Microbiol. 47:1017–1022.

    PubMed  CAS  Google Scholar 

  • Martinez, J., and Azam, F., 1993, Perplasmic aminopeptidase and alkaline phosphatase activities in a marine bacterium: Implications for substrate processing in the sea, Mar Ecol. Prog. Ser. 92:89–97.

    Article  CAS  Google Scholar 

  • Mason, C. A., and Egli, T., 1993, Dynamics of microbial growth in the decelerating and stationary phase of batch culture, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 81–102.

    Google Scholar 

  • Mateles, R. I., Chian, S. K., and Silver, R., 1967, Continuous culture on mixed substrates, in: Microbial Physiology and Continuous Culture (E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), H. M. S. O., London, pp. 232–239.

    Google Scholar 

  • Matin, A., 1979, Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, in: Strategies of Microbial Life in Extreme Environments (Berlin: Dahlem Konferenzen, M. Shilo, ed.), Verlag Chemie, Weinheim, pp. 323–339.

    Google Scholar 

  • Matin, A., 1991, The molecular basis of carbon-starvation-induced general resistance in Escherichia coli, Molec. Microbiol. 5:3–10.

    Article  CAS  Google Scholar 

  • Megee, R. D., Drake, J. F., Fredrickson, A. G., and Tsuchiya, H. M., 1972, Studies in inter-microbial symbiosis, Saccharomyces cerevisiae and Lactobacillus casei, Can. J. Microbiol. 18:1733–1742.

    Article  PubMed  Google Scholar 

  • Meijers, A. P., and van der Leer, R. Chr., 1976, The occurrence of organic micropollutants in the River Rhine and the River Maas in 1974, Water Res. 10:597–604.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L. A., 1978, Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters, Appl. Environ. Microbiol. 36:506–512.

    PubMed  CAS  Google Scholar 

  • Mills, A. L., and Bell, P. E., 1986, Determination of individual organisms and their activities in situ, in: Microbial Autecology (R. L. Tate III, ed.), Wiley, New York, pp. 27–60.

    Google Scholar 

  • Minkevich, I. G., Krynitskaya, A. Y., and Eroshin, V. K., 1988, A double substrate limitation zone of continuous microbial growth, in: Continuous Culture (P. Kyslik, E. A. Dawes, V. Krumphanzl, and M. Novak, eds.), Academic Press, London, pp. 171–189.

    Google Scholar 

  • Molin, G., 1985, Mixed carbon source utilization of meat-spoiling Pseudomonas fragi 72 in relation to oxygen limitation and carbon dioxide inhibition, Appl. Environ. Mirobiol. 49:1442–1447.

    CAS  Google Scholar 

  • Monod, J., 1942, Recherches sur la Croissance des Cultures Bactériennes, Hermann and Cie, Paris.

    Google Scholar 

  • Monod, J., 1950, La technique de culture continue; Théorie et application, Ann. Inst. Pasteur 79:390–410.

    CAS  Google Scholar 

  • Moriarty, D. J. W., 1986, Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis, Adv. Microb. Ecol. 9:245–292.

    CAS  Google Scholar 

  • Moriarty, D. J. W., and Bell, R. T., 1993, Bacterial growth and starvation in aquatic environments, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 25–33.

    Google Scholar 

  • Morita, R. Y., 1985, Starvation and miniaturisation of heterotrophs, with special emphasis on maintenance of the starved viable state, in: Bacteria in Their Natural Environments (M. Fletcher and G. D. Floodgate, eds.), Academic Press, London, pp. 111–130.

    Google Scholar 

  • Morita, R. Y., 1988, Bioavailability of energy and its relationship to growth and starvation survival in nature, J. Can. Microbiol. 43:436–441.

    Article  Google Scholar 

  • Morita, R. Y., 1993, Bioavailability of energy and the starvation state, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 1–23.

    Google Scholar 

  • Morita, R. Y., and Moyer, C. L., 1989, Bioavailability of energy and the starvation state, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Scientific Societies Press, Tokyo, pp. 75–79.

    Google Scholar 

  • Morris, D. R., and Lewis, Jr., W. M., 1992, Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado, Limnol. Oceanogr. 37:1179–1192.

    Article  CAS  Google Scholar 

  • Müller, R. H., and Babel, W., 1986, Glucose as an energy donor in acetate growing Acinetobacter calcoaceticus, Arch. Microbiol. 144:62–66.

    Article  Google Scholar 

  • Munson, T. O., and Burris, R. H., 1969, Nitrogen fixation by Rhodospirillum rubrum grown in nitrogen-limited chemostat culture, J. Bacteriol. 97:1093–1098.

    PubMed  CAS  Google Scholar 

  • Münster, U., 1991, Extracellular enzyme activity in eutrophic and polyhumic lakes, in: Microbial Enzymes in the Aquatic Environments (R. J. Chróst, ed.), Springer-Verlag, New York, pp. 95–121.

    Google Scholar 

  • Münster, U., 1993, Concentrations and fluxes of organic carbon substrates in the aquatic environment, Antonie van Leeuwenhoek 63:243–264.

    Article  PubMed  Google Scholar 

  • Münster, U., and Chróst, R. J., 1990, Origin, composition, and microbial utilization of dissolved organic matter, in: Aquatic Microbial Ecology, Biochemical and Molecular Approaches (J. Overbeck and R. J. Chróst, eds.), Springer, New York, pp. 8–46.

    Google Scholar 

  • Namkung, E., and Rittman, B. E., 1987a, Modeling bisubstrate removal by biofilms, Biotechnol. Bioeng. 29:269–278.

    Article  PubMed  CAS  Google Scholar 

  • Namkung, E., and Rittman, B. E., 1987b, Evaluation of bisubstrate secondary utilization kinetics by biofilms, Biotechnol. Bioeng. 29:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Nedwell, D. B., and Gray, T. R. G., 1987, Soils and sediments as matrices for microbial growth, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 21–54.

    Google Scholar 

  • Neidhardt, F. C., Ingraham, J. L., and Schaechter, M., 1990, Physiology of the Bacterial Cell, A Molecular Approach, Sinauer, Sunderland, Mass.

    Google Scholar 

  • Ng, F. M.-W., and Dawes, E. A., 1973, Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate, Biochem. J. 132:129–140.

    PubMed  CAS  Google Scholar 

  • Nissen, H., Nissen, P., and Azam, F., 1984, Multiphasic uptake of D-glucose by an oligotrophic marine bacterium, Mar. Ecol. Prog. Ser. 16:155–160.

    Article  CAS  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1978, Possible strategy for the survival of marine bacteria under starvation conditions, Marine Biol. 48:289–295.

    Article  Google Scholar 

  • Nyström, T., 1993, Global systems approach to the physiology of the starved cell, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 129–150.

    Google Scholar 

  • Östling, J., Holmquist, L., Flärdh, K., Svenblad, B., Jouper-Jaan, Å., and Kjelleberg, S., 1993, Starvation and recovery of Vibrio, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 103–127.

    Google Scholar 

  • Owens, J. D., and Legan, J. D., 1987, Determination of the Monod substrate saturation constant for microbial growth, FEMS Microbiol. Rev. 46:419–432.

    Article  CAS  Google Scholar 

  • Paerl, H. W., 1982, Factors limiting productivity of freshwater ecosystems, Adv. Microb. Ecol. 6:75–110.

    Article  CAS  Google Scholar 

  • Paerl, H. W., 1993, Interaction of nitrogen and carbon cycles in the marine environment, in: Aquatic Microbiology. An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 343–381.

    Google Scholar 

  • Pakulski, J. D., and Benner, R., 1992, An improved method for hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater, Mar. Chem. 40:143–160.

    Article  CAS  Google Scholar 

  • Panikov, N., 1979, Steady-state growth kinetics of Chlorella vulgaris under double substrate (urea and phosphate) limitation, J. Chem. Tech. Biotechnol. 29:442–450.

    CAS  Google Scholar 

  • Paul, E. A., and Clark, F. E., 1989, Soil Microbiology and Biochemistry, Academic Press, New York.

    Google Scholar 

  • Paul, E. A., and Voroney, R. P., 1980, Nutrient and energy flows through soil microbial biomass, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), Academic Press, London, pp. 215–237.

    Google Scholar 

  • Paul, J. H., 1993, The advances and limitations of methodology, in: Aquatic Microbiology. An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 15–46.

    Google Scholar 

  • Pedersen, S., Bloch, P. L., Reeh, S., and Neidhardt, F. C., 1978, Patterns of protein synthesis in Escherichia coli: A catalog of the amount of 140 individual proteins at different growth rates, Cell 14:179–190.

    Article  PubMed  CAS  Google Scholar 

  • Pengerud, B., Skjoldal, E., and Thingstad, F., 1987, The reciprocal interaction between degradation of glucose and ecosystem structure. Studies in mixed chemostat cultures of marine bacteria, algae, and bacteriovorous nanoflagellates, Mar. Ecol. Prog. Ser. 35:111–117.

    Article  CAS  Google Scholar 

  • Pfennig, N., and Jannasch, H., 1962, Biologische Grundfragen bei der homokontinuierlichen Kultur von Mikroorganismen, Ergebnisse der Biologie 25:93–135.

    Article  PubMed  CAS  Google Scholar 

  • Pineault, G., Pruden, B. B., and Loutfi, H., 1977, The effects of mixing, temperature, and nutrient concentration on the fermentation of a mixed sugar solution simulating the hexose content of waste sulfite liquor, Can. J. Chem. Eng. 55:333–340.

    Article  CAS  Google Scholar 

  • Pirt, 1975, Principles of Microbe and Cell Cultivation, Blackwell, London.

    Google Scholar 

  • Pöhland, D., Ringpfeil, M., and Behrens, U., 1966, Die Assimilation von Glucose, Xylose und Essigsäure durch Candida utilis, Z. Allg. Mikrobiol. 6:387–395.

    Article  PubMed  Google Scholar 

  • Poindexter, J. S., 1987, Bacterial responses to nutrient limitation, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 283–317.

    Google Scholar 

  • Postma, P. W., 1986, Catabolite repression and related processes, in: Regulation of Gene Expression-25 Years On (I. R. Booth and C. F. Higgins, eds.), Cambridge University Press, Cambridge, England, pp. 21–49.

    Google Scholar 

  • Powell, E. O., 1967, The growth rate of micro-örganisms as a function of substrate concentration, in: Microbial Physiology and Continuous Culture (P. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), H. M. S. O., London, pp. 34–56.

    Google Scholar 

  • Pronk, J. T., van der Linden-Beuman, A., Verduyn, C., Scheffers, A. W., and van Dijken, J. P., 1994, Propionate metabolism in Saccharomyces cerevisiae: Implications for the metabolon hypothesis, Microbiology 140:717–722.

    Article  PubMed  CAS  Google Scholar 

  • Rahmanian, M., and Oxender, D. L., 1972, Depressed leucine transport activity in Escherichia coli, J. Supramolec. Struct. 1:55–59.

    Article  CAS  Google Scholar 

  • Reber, H. H., and Kaiser, R., 1981, Regulation of the utilization of glucose and aromatic substrates in four strains of Pseudomonas putida, Arch. Microbiol. 130:243–247.

    Article  CAS  Google Scholar 

  • Rhee, G.-Y., 1978, Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake, Limnol. Oceanogr. 23:10–25.

    Article  CAS  Google Scholar 

  • Rittenberg, S. C., 1969, The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria, Adv. Microb. Physiol. 3:151–196.

    Google Scholar 

  • Robertson, L. A., and Kuenen, J. G., 1984, Aerobic denitrification, a controversy revived, Arch. Microbiol. 139:351–354.

    Article  CAS  Google Scholar 

  • Robertson, L. A., and Kuenen, J. G., 1990, Mixed terminal electron acceptors (oxygen and nitrate), in: Mixed and Multiple Substrates and Feedstocks (G. Hamer, T. Egli, and M. Snozzi, eds.), Hartung-Gorre, Konstanz, pp. 97–106.

    Google Scholar 

  • Rogers, A. H., and Reynolds, E. C., 1990, The utilization of casein and amino acids by Streptococcus sanguis P4A7 in continuous culture, J. Gen. Microbiol. 136:2535–2550.

    Google Scholar 

  • Rogers, H. J., 1961, The dissimilation of high molecular weight organic substrates, in: The Bacteria, Vol. 2 (I. C. Gunsalus and R. Y. Stanier, eds.), Academic Press, New York, pp. 261–318.

    Google Scholar 

  • Rubin, H. E., Subba-Rao, R. V., and Alexander, M., 1982, Rates of mineralization of trace concentrations of aromatic compounds in lake water and sewage samples, Appl. Environ. Microbiol. 43:1133–1138.

    PubMed  CAS  Google Scholar 

  • Russel, J. B., and Baldwin, R. L., 1978, Substrate preferences in rumen, bacterial evidence of catabolite regulatory mechanisms, Appl. Environ. Microbiol. 36:319–329.

    Google Scholar 

  • Rutgers, M., Teixeira de Mattos, M. J., Postma, P. W., and van Dam, K., 1987, Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumoniae, J. Gen. Microbiol. 133:445–453.

    PubMed  CAS  Google Scholar 

  • Rutgers, M., Balk, T. A., and van Dam, K., 1990, Quantification of multiple-substrate controlled growth: Simultaneous ammonium and glucose limitation in chemostat cultures of Klebsiella pneumoniae, Arch. Microbiol. 153:478–484.

    Article  PubMed  CAS  Google Scholar 

  • Rutgers, M., van Dam, K., and Westerhoff, H. V., 1991, Control and thermodynamics of microbial growth: Rational tools for bioengineering, CRC Crit. Rev. Biotechnol. 11:367–395.

    Article  CAS  Google Scholar 

  • Sahm, H., and Wagner, F., 1973, Mikrobielle Verwertung von Methanol. Eigenschaften der Formal-dehyddehydrogenase und Formiatdehydrogenase aus Candida boidinii, Arch. Mikrobiol. 90:263–268.

    Article  PubMed  CAS  Google Scholar 

  • Saier, Jr., M. H., 1989, Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by bacterial phosphoenolpyruvate: sugar phosphotransferase system, Microbiol. Rev. 53:109–120.

    PubMed  CAS  Google Scholar 

  • Sakai, Y., Sawai, T., and Tani, Y., 1987, Isolation and characterization of a catabolite repression-insensitive mutant of a methanol yeast Candida boidinii A5 producing alcohol oxidase in glucose-containing medium, Appl. Environ. Microbiol. 53:1812–1818.

    PubMed  CAS  Google Scholar 

  • Salou, P., Leroy, M. J., Goma, G., and Pareilleux, A., 1991, Influence of pH and malate-glucose ratio on the growth kinetics of Leuconostoc oenos, Appl. Microbiol. Biotechnol. 36:87–91.

    Article  CAS  Google Scholar 

  • Salou, P., Loubière, P. and Pareilleux, A., 1994, Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose, Appl. Environ. Microbiol. 60:1459–1466.

    PubMed  CAS  Google Scholar 

  • Schmidt, S. K., and Alexander, M., 1985, Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations, Appl. Environ. Microbiol. 49:822–827.

    PubMed  CAS  Google Scholar 

  • Schmidt, S. K., Alexander, M., and Schuler, M. L., 1985, Predicting threshold concentrations of organic substrates for bacterial growth, J. Theor. Biol. 114:1–8.

    Article  CAS  Google Scholar 

  • Schmitt, P., and Divies, C., 1991, Co-metabolism of citrate and lactose by Leuconostoc mesenteroides subsp. cremoris, J. Ferment. Bioeng. 71:72–74.

    Article  CAS  Google Scholar 

  • Schowanek, D., and Verstraete, W., 1990, Phosphonate utilization by bacteria in the presence of alternative phosphorus sources, Biodegradation 1:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Schut, F., de Vries, E. J., Gottschal, J. C. Robertson, B. R., Harder, W., Prins, R. A., and Button, D., 1993, Isolation of typical marine bacteria by dilution culture: Growth, maintenance, and characteristics of isolates under laboratory conditions, Appl. Environ. Microbiol. 59:2150–2160.

    PubMed  CAS  Google Scholar 

  • Schut, F., Jansen, M., Pedro Gomes, T. M., Gottschal, J. C., Harder, W., and Prins, R. A., 1995, Substrate uptake and utilization by a marine ultramicrobacterium, Microbiology 141:351–361.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer, B., and Simon, M., 1995, Growth limitation of planktonic bacteria in a large mesotrophic lake, Microb. Ecol. 30:89–104.

    Article  Google Scholar 

  • Senn, H., 1989, Kinetik und Regulation des Zuckerabbaus von Escherichia coli ML 30 bei tiefen Zuckerkonzentrationen, Swiss Federal Institute of Technology, Zürich, Switzerland, Ph.D. thesis No. 8831.

    Google Scholar 

  • Senn, H., Lendenmann, U., Snozzi, M., Hamer, G., and Egli, T., 1994, The growth of Escherichia coli in glucose-limited chemostat culture: A re-examination of the kinetics, Biochim. Biophys. Acta 1201:424–436.

    Article  PubMed  Google Scholar 

  • Sepers, A. B. J., 1984, The uptake capacity for organic compounds of two heterotrophic bacterial strains at carbon-limited growth, Z. Allg. Mikrobiol. 24:261–267.

    Article  CAS  Google Scholar 

  • Shehata, T. E., and Marr, A. G., 1971, Effect of nutrient concentration on the growth of Escherichia coli, J. Bacteriol. 107:210–216.

    PubMed  CAS  Google Scholar 

  • Siegele, D., Almirón, M., and Kolter, R., 1993, Approaches to the study of survival and death in stationary-phase Escherichia coli, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 151–169.

    Google Scholar 

  • Silver, R. S., and Mateles, R. I., 1969, Control of mixed-substrate utilization in continuous culture of Escherichia coli, J. Bacteriol. 97:535–543.

    PubMed  CAS  Google Scholar 

  • Simkins, S., and Alexander, M., 1984, Models for mineralization kinetics with the variables of substrate concentration and population density, Appl. Environ. Microbiol. 47:1299–1306.

    PubMed  CAS  Google Scholar 

  • Sinclair, C. G., and Ryder, D. N., 1975, Models for the continuous culture of microorganisms under both oxygen and carbon limiting conditions, Biotechnol. Bioeng. 17:375–398.

    Article  CAS  Google Scholar 

  • Slaff, G. F., and Humphrey, A. E., 1986, The growth of Clostridium thermohydrosulfuricum on multiple substrates, Chem. Eng. Commun. 45:33–51.

    Article  CAS  Google Scholar 

  • Smith, A. L., and Kelly, D. P., 1979, Competition in the chemostat between an obligately and a facultatively chemolithotrophic Thiobacillus, J. Gen. Microbiol. 115:377–384.

    Google Scholar 

  • Smith, V. H., 1993, Implication of resource-ratio theory for microbial ecology, Adv. Microb. Ecol. 13:1–37.

    Article  CAS  Google Scholar 

  • Sonenshein, A. L., 1989, Metabolic regulation of sporulation and other stationary-phase phenomena, in: Regulation of Prokaryotic Development (I. Smith, A. Slepecky, and P. Setlow, eds.), American Society for Microbiology, Washington, D.C., pp. 109–130.

    Google Scholar 

  • Standing, C. N., Fredrickson, A. G., and Tsuchiya, H. M., 1972, Batch and continuous culture transients for two substrate systems, Appl. Microbiol. 23:354–359.

    PubMed  CAS  Google Scholar 

  • Stephenson, M., 1949, Growth and nutrition, in: Bacterial Metabolism, 3rd ed., Longmans, Green and Co., London, pp. 159–178.

    Google Scholar 

  • Stevenson, L. H., 1978, A case for bacterial dormancy in aquatic systems, Microb. Ecol. 4:127–133.

    Article  Google Scholar 

  • Stolz, P., Böcker, G., Vogel, R. F., and Hammes, W. P., 1993, Utilisation of maltose and glucose by lactobacilli isolated from sourdough, FEMS Microbiol. Lett. 109:237–242.

    Article  CAS  Google Scholar 

  • Subba-Rao, R. V., Rubin, H. E., and Alexander, M., 1982, Kinetics and extent of mineralization of organic chemicals at trace levels in freshwater and sewage, Appl. Environ. Microbiol. 43:1139–1150.

    PubMed  CAS  Google Scholar 

  • Sykes, R. M., 1973, Identification of the limiting nutrient and specific growth rate, J. Water Poll. Control Fed. 45:888–895.

    Google Scholar 

  • Tabor, P. S., and Neihof, R. A., 1982, Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters, Appl. Environ. Microbiol. 44:945–953.

    PubMed  CAS  Google Scholar 

  • Tate III, R. L., 1986, Environmental microbial autecology: Practicality and future, in: Microbial Autecology (R. L. Tate III, ed.), Wiley, New York, pp. 249–259.

    Google Scholar 

  • Tauchert, K., Jahn, A., and Oelse, J., 1990, Control of diauxic growth of Azotobacter vinelandii, J. Bacteriol. 172:6447–6451.

    PubMed  CAS  Google Scholar 

  • Tempest, D. W., 1970a, The continuous cultivation of microorganisms. 1. Theory of the chemostat, Meth. Microbiol. 2:259–276.

    Article  CAS  Google Scholar 

  • Tempest, D. W., 1970b, The place of continuous culture in microbiological research, Adv. Microb. Physiol. 4:223–250.

    Article  Google Scholar 

  • Tempest, D. W., and Neijssel, O. M., 1978, Eco-pysiological aspects of microbial growth in aerobic nutrient-limited environments, Adv. Microb. Ecol. 2:105–153.

    Article  Google Scholar 

  • Tempest, D. W., Neijssel, O. M., and Zevenboom, W., 1983, Properties and performance of microorganisms in laboratory culture: Their relevance to growth in natural ecosystems, in: Microbes in Their Natural Environment (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge, England, pp. 119–152.

    Google Scholar 

  • Thingstad, T. F., 1987, Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of “maintenance” metabolism, Mar. Ecol. Prog. Ser. 35:99–109.

    Article  CAS  Google Scholar 

  • Thingstad, T. F., and Pengerud, B., 1985, Fate and effect of allochthonous organic material in aquatic microbial ecosystems. An analysis based on chemostat theory, Mar. Ecol. Prog. Ser. 21:47–62.

    Article  Google Scholar 

  • Thurston, B., Dawson, K. A., and Strobel, H. J., 1984, Pentose utilization by the ruminai bacterium Ruminococcus albus, Appl. Environ. Microbiol. 60:1087–1092.

    Google Scholar 

  • Tilman, D., 1980, Resources: A graphical-mechanistic approach to competition and predation, Am. Nat. 116:362–393.

    Article  Google Scholar 

  • Tilman, D., 1982, Resource Competition and Community Structure, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Torella, F., and Morita, R. Y., 1981, Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol. 41:518–527.

    Google Scholar 

  • Torriani-Gorini, A., 1987, The birth and growth of the Pho regulon, in: Phosphate Metabolism and Cellular Regulation in Microorganisms (A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil, eds.), American Society for Microbiology, Washington, D.C., pp. 12–19.

    Google Scholar 

  • Tranvik, L. J., 1990, Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters, Appl. Environ. Microbiol. 56:1672–1677.

    PubMed  CAS  Google Scholar 

  • Tranvik, L. J., and Höfle, M., 1987, Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters, Appl. Environ. Microbiol. 53:482–488.

    PubMed  CAS  Google Scholar 

  • Tyree, R. W., Clausen, E. C., and Gaddy, J. L., 1990, The fermentative characteristics of Lactobacillus xylosus on glucose and xylose, Biotechnol Lett. 12:51–56.

    Article  CAS  Google Scholar 

  • Uetz, T., and Egli, T., 1993, Characterization of an inducible, membrane-bound iminodiacetate dehydrogenase from Chelatobacter heintzii ATCC 29600, Biodegradation 3:423–434.

    Article  CAS  Google Scholar 

  • Uetz, T., Schneider, R., Snozzi, M., and Egli, T., 1992, Purification and characterization of a two component monooxygenase that hydroxylates nitrilotriacetate from “Chelatobacter” strain ATCC 29600, J. Bacteriol. 174:1179–1188.

    PubMed  CAS  Google Scholar 

  • Upton, A. C., and Nedwell, D. B., 1989, Nutritional flexibility of oligotrophic and copiotrophic antarctic bacteria with respect to organic substrates, FEMS Microbiol. Ecol. 62:1–6.

    Article  CAS  Google Scholar 

  • van Dam, K., and Jansen, N., 1991, Quantification of control of microbial metabolism by substrates and enzymes, Antonie van Leeuwenhoek 60:209–223.

    Article  PubMed  Google Scholar 

  • van der Kooij, D., 1990, Assimilable organic carbon (AOC) in drinking water, in: Drinking Water Microbiology: Progress and Recent Developments (G. A. McFeters, ed.), Springer-Verlag, New York, pp. 57–87.

    Chapter  Google Scholar 

  • van der Kooij, D., and Hijnen, W. A. M., 1983, Nutritional versatility of a starch-utilizing Flavobacterium at low substrate concentrations, Appl. Environ. Microbiol. 45:804–810.

    PubMed  Google Scholar 

  • van der Kooij, D., and Hijnen, W. A. M., 1988, Nutritional versatility and growth kinetics of an Aeromonas hydrophila strain isolated from drinking water, Appl. Environ. Microbiol. 54:2842–2851.

    PubMed  Google Scholar 

  • van der Kooij, D., Visser, A., and Hijnen, W. A. M., 1980, Growth of Aeromonas hydrophila at low concentrations of substrates added to tap water, Appl. Environ. Microbiol. 39:1198–1204.

    PubMed  Google Scholar 

  • van der Kooij, D., Oranje, J. P., and Hijnen, W. A. M., 1982, Growth of Pseudomonas aeruginosa in tap water in relation to utilization of substrates at concentrations of a few micrograms per liter, Appl. Environ. Microbiol. 44:1086–1095.

    PubMed  Google Scholar 

  • van Es, F. B., and Meyer-Reil, L.-A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, Adv. Microb. Ecol. 6:111–170.

    Article  Google Scholar 

  • van Verseveld, H. W., and Stouthamer, A. H., 1980, Two-(carbon) substrate-limited growth of Paracoccus denitrificans on mannitol and formate, FEMS Microbiol. Lett. 7:207–211.

    Article  Google Scholar 

  • van Verseveld, H. W., Boon, J. P., and Stouthamer, A. H., 1979, Growth yields and the efficiency of oxidative phosphorylation of Paracoccus denitrificans during two-(carbon) substrate-limited growth, Arch. Microbiol. 121:213–223.

    Article  Google Scholar 

  • van Zyl, C., Prior, B. A., Kilian, S. G., and Kock, J. L. F., 1989, D-Xylose utilization by Saccharomyces cerevisiae, J. Gen. Microbiol. 135:2791–2798.

    PubMed  Google Scholar 

  • Veldkamp, H., and Jannasch, H. W., 1972, Mixed culture studies with the chemostat, J. Appl. Chem. Biotechnol. 22:105–123.

    Article  CAS  Google Scholar 

  • Vives-Rego, J., Billen, G., Fontigny, A., and Somville, M., 1985, Free and attached proteolytic activity in water environments, Mar. Ecol. Prog. Ser. 21:245–249.

    Article  Google Scholar 

  • Volfová, O., Korínek, V., and Kyslíková, E., 1988, Alcohol oxidase in Candida boidinii on methanol-xylose mixtures, Biotechnol. Lett. 10:643–648.

    Article  Google Scholar 

  • Wang, L., Miller, T. D., and Priscu, J. C., 1992, Bacterioplankton nutrient deficiency in a eutrophic lake, Arch. Hydrobiol. 125:423–439.

    Google Scholar 

  • Wanner, B., 1987a, Phosphate regulation of gene expression, in: Escherichia coli and Salmonella typhimurium, Vol. 2 (F. C. Neidhardt, J. L. Ingraham, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 1326–1333.

    Google Scholar 

  • Wanner, B., 1987b, Bacterial alkaline phosphatase gene regulation and the phosphate response in Escherichia coli, in: Phosphate Metabolism and Cellular Regulation in Microorganisms (A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil, eds.), American Society for Microbiology, Washington, D.C., pp. 12–19.

    Google Scholar 

  • Wanner, U., and Egli, T., 1990, Dynamics of microbial growth and cell composition in batch culture, FEMS Microbiol. Rev. 75:19–44.

    Article  CAS  Google Scholar 

  • Waterham, H. R., Keizer-Gunnink, I., Goodman, J. M., Harder, W., and Veenhuis, M., 1992, Development of multipurpose peroxysomes in Candida biodinii growing in oleic acid-methanol limited continuous cultures, J. Bacteriol. 174:4057–4063.

    PubMed  CAS  Google Scholar 

  • Weide, H., 1983, Mikrobielle Verwertung von Mischsubstraten, Z. Allg. Mikrobiol. 23:37–40.

    Article  PubMed  CAS  Google Scholar 

  • Wetzel, R. G., 1984, Detrital dissolved and particulate organic carbon functions in aquatic ecosystems, Bull. Mar. Sci. 35:503–509.

    Google Scholar 

  • Weusthuis, R. A., Adams, H., Scheffers, W. A., and van Dijken, J. P., 1993, Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: A continuous culture study, Appl. Environ. Microbiol. 59:3102–3109.

    PubMed  CAS  Google Scholar 

  • Weusthuis, R. A., Luttik, M. A. H., Scheffers, W. A., van Dijken, J. P., and Pronk, J. T., 1994, Is the Kluyver effect caused by product inhibition? Microbiology 140:1723–1729.

    Article  PubMed  CAS  Google Scholar 

  • White, D. C., 1986, Quantitative physiochemical characterization of bacterial habitats, in: Bacteria in Nature, Vol. 2 (J. S. Poindexter and Leadbetter, E. R., eds.), Plenum Press, New York, pp. 177–203.

    Google Scholar 

  • Wilberg, E., El-Banna, T., Auling, G., and Egli, T., 1993, Serological studies on nitrilotriacetic acid (NTA)-utilising bacteria: Distribution of Chelatobacter heintzii and Chelatococcus asaccharovorans in sewage treatments plants and aquatic ecosystems, System. Appl. Microbiol. 16:147–152.

    Article  Google Scholar 

  • Williams, P. J. le B., 1990, The importance of losses during microbial growth: Commentary on the physiology, measurement and ecology of the release of dissolved organic material, Mar. Microb. Food Webs 4:175–206.

    Google Scholar 

  • Williams, P. M., 1986, Chemistry of the dissolved and particulate phases in the water column, in: Plankton Dynamics of the Southern California Bight. Lecture Notes on Coastal and Estuarine Studies, Vol. 15 (R. W. Eppley, ed.), Springer-Verlag, Berlin, pp. 53–83.

    Google Scholar 

  • Williams, S. T., 1985, Oligotrophy in soil: Fact or fiction? in: Bacteria in the Natural Environment (M. Fletcher and G. D. Floodgate, eds.), Academic Press, London, pp. 81–110.

    Google Scholar 

  • Wong, T. Y., Pei, H., Bancroft, K., and Childers, G. W., 1995, Diauxic growth of Azotobacter vinelandii on galactose and glucose: Regulation of glucose transport by another hexose, Appl. Environ. Microbiol. 61:430–433.

    PubMed  CAS  Google Scholar 

  • Wood, A. P., and Kelly, D. P., 1977, Heterotrophic growth of Thiobacillus A2 on sugars and organic acids, Arch. Microbiol. 113:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. M., 1975, Leucine transport in Escherichia coli. The resolution of mulitple transport systems and their coupling to metabolic energy, J. Biol. Chem. 250:4477–4485.

    PubMed  CAS  Google Scholar 

  • Yoon, H., and Blanch, H. W., 1977, Competition for double growth-limiting nutrients in continuous culture, J. Appl. Chem. Biotechnol. 27:260–268.

    Article  CAS  Google Scholar 

  • Yoon, H., Klinzing, G., and Blanch, H., 1977, Competition for mixed substrates by microbial populations, Biotechnol. Bioeng. 19:1193–1210.

    Article  PubMed  CAS  Google Scholar 

  • ZoBell, C. E., and Grant, C. W., 1942, Bacterial activity in dilute nutrient solutions, Science 96:189.

    Article  PubMed  CAS  Google Scholar 

  • ZoBell, C. E., and Grant, C. W., 1943, Bacterial utilization of low concentrations of organic matter, J. Bacteriol. 45:555–564.

    PubMed  CAS  Google Scholar 

  • Zweifel, U. L., Norman, B., and Hagström, A., 1993, Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients, Mar. Ecol. Prog. Ser. 101:23–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Plenum Press, New York

About this chapter

Cite this chapter

Egli, T. (1995). The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7724-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7724-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7726-9

  • Online ISBN: 978-1-4684-7724-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics