Skip to main content
Log in

Microbial growth kinetics: a historical perspective

  • Introduction
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Growth is the expression par excellence of the dynamic nature of living organisms. Among the general methods available for the scientific investigation of dynamic phenomena, the most useful ones are those that deal with kinetic aspects.

Kinetic investigations on cultures of micro-organisms are eminently suited for establishing relationships between growth and environmental factors, especially the nature and amount of nutrients. C.B. van Niel (1949)

The study of the growth of bacterial cultures does not constitute a specialised subject of branch of research: it is the basic method of Microbiology. Monod (1949)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abson JW & Todhunter KH (1961) Plant for continuous biological treatment of carbonisation effluents. Soc. Chem. Ind. Monograph (London) 12: 147–164

    Google Scholar 

  • Bauchop T & Elsden SR (1960) The growth of microorganisms in relation to their energy supply. J. Gen. Microbiol. 23: 457–469

    PubMed  Google Scholar 

  • Beran K, Málek I, Streiblová E & Lieblová J (1967) The distribution of the relative age of cells in yeast populations. In: Powell PO, Evans CGT, Strange RE & Tempest DW (Eds) Microbial Physiology and Continuous Culture (pp 57–67). H.M.S.O., London

    Google Scholar 

  • Bryson V (1952) Microbial selection II. The turbidostatic selector — a device for automatic isolation of bacterial variants. Science 116: 48–51

    Google Scholar 

  • Buchner H, Longard K & Riedlin G (1887) Über die Vermehrungsgeschwindigkeit der Bacterien. Zentr. Bakt. Parasitenk. 2: 1–7

    Google Scholar 

  • Buchanan RE (1918) Life phases in a bacterial culture. J. Infec. Diseases 23: 109–125

    Google Scholar 

  • Bungay HR & Bungay ML (1968) Microbial interactions in continuous culture. Adv. Appl. Microbiol. 10: 269–290

    PubMed  Google Scholar 

  • Button DK (1985) Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 49: 270–297

    Google Scholar 

  • Campbell A (1957) Synchronization of cell division. Bact. Rev. 21: 263–272

    PubMed  Google Scholar 

  • Contois DE (1959) Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J. Gen. Microbiol. 21: 40–50

    PubMed  Google Scholar 

  • Dabes JN, Finn RK & Wilke CR (1973) Equations of substrate-limited growth: the case for Blackman kinetics. Biotechnol. Bioeng. 15: 1159–1177

    PubMed  Google Scholar 

  • Dagley S & Hinshelwood CN (1938) Physicochemical aspects of bacterial growth. Part I. Dependence of growth ofBacterium lactis aerogenes on concentration of medium. J. Chem. Soc. 1938: 1930–1936

    Google Scholar 

  • Dean ACR & Hinshelwood C (1966) Growth, Function and Regulation in Bacterial Cells. Clarendon Press, Oxford

    Google Scholar 

  • Dean ACR & Rogers PL (1967) The cell size and macromolecular composition ofAerobacter aerogenes in various systems of continuous culture. Bioc. Biop. 148: 267–279

    Google Scholar 

  • Dobell C (1932) Antony van Leeuwenhoek and his ‘little animals’. Reprinted by Dover Publications, Inc. New York, 1960

    Google Scholar 

  • Dykhuizen DE & Hartl DL (1983) Selection in chemostats. Microbiol. Rev. 47: 150–168

    PubMed  Google Scholar 

  • Droop MR (1973) Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264–272

    Google Scholar 

  • Egli T, Lendenmann U & Snozzi M (1993) Kinetics of microbial growth with mixtures of carbon sources. Antonie van Leeuwenhoek (this issue)

  • Fencl Z (1963) A uniform system of basic symbols for continuous cultivation of microorganisms. Folia Microbiol. 8: 192–194

    Google Scholar 

  • Gause GF (1971) The Struggle for Existence. Dover Publ., New York

    Google Scholar 

  • Goldman JC (1977) Steady state growth of phytoplankton in continuous culture: comparison of internal and external nutrient equations. J. Phycol. 13: 251–258

    Google Scholar 

  • Gorini L & Maas WK (1957) The potential for the formation of a biosynthetic enzyme inEscherichia coli. Biochim. Biophys. Acta (Amst.) 25: 208–209

    PubMed  Google Scholar 

  • Gorini L (1960) Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme. Proc. Nat. Acad. Sci. (Wash.) 46: 682–690

    Google Scholar 

  • Gottschal JC, de Vries S & Kuenen JG (1979) Competition between the facultatively chemotrophicThiobacillus A2, and obligately chemolithotrophicThiobacillus and a heterotrophic spirillum or inorganic and organic substrates. Arch. Microbiol. 121: 241–249

    Google Scholar 

  • Gottschal JC (1993) Growth kinetics and competition — some contemporary comments. Antonie van Leeuwenhoek (this issue)

  • Harder W & Veldkamp H (1971) Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek. 37: 51–63

    PubMed  Google Scholar 

  • Harder W & Dijkhuizen L (1983) Physiological responses to nutrient limitation. Ann. Rev. Microbiol. 37: 1–23

    Google Scholar 

  • Herbert D (1958) Continuous culture of microorganisms; some theoretical aspects. In: Máeek I (Ed) Continuous Cultivation of Microorganisms (pp 45–52). Czech. Acad. Sci., Prague

    Google Scholar 

  • —— (1961a) A theoretical analysis of continuous culture systems. Soc. Chem. Ind. Monograph (London) 12: 21–53

    Google Scholar 

  • —— (1961b) The chemical composition of mircro-organisms as a function of their environment. In: Meynell GG & Gooder H (Eds) Microbial Reaction to Environment, 11th Sympos. Soc. Gen. Microbiol (pp. 391–416). Cambridge Univ. Press, London

    Google Scholar 

  • Herbert D, Elsworth R & Telling RC (1956) The continuous culture of bacteria: a theoretical and experimental study. J. Gen. Microbiol. 14: 601–622

    PubMed  Google Scholar 

  • Hinshelwood CN (1946) The Chemical Kinetics of the Bacterial Cell. Oxford University Press

  • Höfle MG (1983) Long-term changes in chemostat cultures ofCytophaga johnsonae. Appl. Environ. Microbiol. 46: 1045–1053

    Google Scholar 

  • Jannasch HW (1965) Starter populations as determined under steady state conditions. Biotech. Bioeng. 7: 279–28

    Google Scholar 

  • —— (1968) Growth characteristics of heterotrophic bacteria in seawater. J. Bacteriol. 95: 722–723

    PubMed  Google Scholar 

  • —— (1969) Estimations of bacterial growth rates in natural waters. J. Bacteriol. 99: 156–160

    PubMed  Google Scholar 

  • —— (1974) Steady state and the chemostat in ecology. Limnol. & Oceanogr. 19: 716–720

    Google Scholar 

  • Jannasch HW & Mateles RI (1974) Experimental bacterial ecology in continuous culture. Adv. Microb. Physiol. 11: 165–212

    Google Scholar 

  • Kell DB, van Dam K & Westerhoff HV (1989) Control analysis of microbial growth and productivity. In: Baumberg S, Hunter IS & Rhodes PM (Eds) Microbial Products: New Approaches. Soc. Gen. Microbiol. Symp. 44 (pp 61–93). Cambridge University Press

  • Kjeldgaard NO, Maaløe O & Schaechter M (1958) The transition between different physiological stages during balanced growth ofSalmonella typhimurium. J. Gen. Microbiol. 19: 607–616

    PubMed  Google Scholar 

  • Koch AL & Wang CH (1982) How close to the theoretical diffusion limit do bacterial uptake systems function? Arch. Microbiol. 131: 36–42

    PubMed  Google Scholar 

  • Kooijman SALM, Muller EB & Stouthamer AH (1991) Microbial growth dynamics on the basis of individual budgets. Antonie van Leeuwenhoek 60: 159–174

    PubMed  Google Scholar 

  • Kubitschek HE (1970) Introduction to Research with Continuous Culture. Prentice Hall, Englewood Cliffs, NY

    Google Scholar 

  • Lamanna C (Ed) (1963) Endogenous Metabolism with Special Reference to Bacteria. Ann. N.Y. Acad. Sci. 102: 515–793

  • Lamanna C & Malette MF (1959) Basic Bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Lark KG (1960) Studies on the mechanism regulating periodic DNA synthesis in synchronized cultures ofAlcanigenes fecalis. Biochim. Biophys. Acta (Amst.) 45: 121–132

    PubMed  Google Scholar 

  • Magasanik B, Magasanik AK & Neidhardt FC (1959) Regulation of growth and composition of the bacterial cell. In: Sympos. on Regulation of Cell Metabolism (pp 334–349). Ciba Foundation, London

    Google Scholar 

  • Málek I & Fencl Z (Eds) (1966) Theoretical and Methodological Basis of Continuous Culture of Microorganisms. Czech. Acad. Sci., Prague, and Academic Press, London

    Google Scholar 

  • Málek I (1958) Continuous Cultivation of Microorganisms. Czech. Acad. Sci., Prague

    Google Scholar 

  • Mallette MF (1963) Validity of the concept of energy maintenance. In: Lamanna C (Ed) (1963) Endogenous Metabolism with Special Reference to Bacteria (pp 521–535). Ann. N.Y. Acad. Sci. 102

  • Marr AG, Nilson EH & Clark DJ (1963) The maintenance requirements ofEscherichia coli. In: Lamanna C (Ed) (1963) Endogenous Metabolism with Special Reference to Bacteria (pp 536–548). Ann. N.Y. Acad. Sci. 102

  • Monod J (1942) Recherches sur la Croissance des Cultures Bactériennes. Hermann & Cie., Paris

    Google Scholar 

  • —— (1949) The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371–394

    Google Scholar 

  • —— (1950) La technique de culture continue; theorie and applications. Ann. Inst. Pasteur 79: 390–410

    Google Scholar 

  • —— (1959) Biosynthese eines Enzyms. Angew. Chem. 71: 685–708

    Google Scholar 

  • Mulder EG & van Veen WL (1965) Anreicherung von Organismen derSphaerotilus-Leptothrix Gruppe. In: Schlegel HG (Ed) Anreicherungskultur und Mutantenauslese (pp 28–46). Gustav Fischer, Stuttgart

    Google Scholar 

  • Müller M (1895) Über den Einfluss von Fiebertemperaturen auf die Wachstumsgeschwindigkeit und die Virulenz des Typhus-Bacillus. Z. Hyg. Infektionskrankh. 20: 245–280

    Google Scholar 

  • Myers L & Clark LB (1944) Culture conditions and development of the photosynthetic mechanism. II. An apparatus for the continuous culture ofChlorella. J. Gen. Physiol. 28: 103–112

    Google Scholar 

  • Novick A & Szilard L (1950a) Description of the chemostat. Science 112: 715–716

    PubMed  Google Scholar 

  • —— (1950b) Experiments with the chemostat on spontaneous mutations of bacteria. Proc. Nat. Acad. Sci. (Wash.) 36: 708–719

    PubMed  Google Scholar 

  • Novick A (1958) Genetic and physiological studies with the chemostat. In: Málek A (Ed) Continuous Cultivation of Microorganisms. Czech. Acad. Sci., Prague

    Google Scholar 

  • Owens JD & Legan JD (1987). Determination of the Monod substrate saturation constant for microbial growth. FEMS Microbiol. Rev. 46: 419–432

    Google Scholar 

  • Pardee AB (1961) Response of enzyme synthesis and activity of environment. In: Meynell GG & Gooder H (Eds) Microbial Reaction to Environment, 11th Sympos. Soc. Gen. Microbiol (pp. 19–40). Cambridge Univ. Press, London

    Google Scholar 

  • Penfold W & Norris D (1912) The relation of concentration of food supply to generation time of Bacteria. J. Hyg. 12: 527–531

    Google Scholar 

  • Perret CG (1960) A kinetic model of a growing bacterial population. J. Gen. Microbiol. 11: 19–40

    Google Scholar 

  • Pfennig N & Jannasch HW (1962) Biologische Grundfragen bei der homokontinuierlichen Kultur von Mikroorganismen. Ergebnisse der Biologie 25: 93–135

    PubMed  Google Scholar 

  • Pirt SJ (1975) Principles of Microbe and Cell Cultivation. John Wiley & Sons, New York

    Google Scholar 

  • Powell EO (1967) The growth rate of microorganisms as a function of substrate concentration. In: Powell PO, Evans CGT, Strange RE & Tempest DW (Eds) Microbial Physiology and Continuous Culture (pp 34–56). H.M.S.O., London

    Google Scholar 

  • Powell EO, Evams CGT, Strange RE & Tempest DW (1967) Microbial Physiology and Continuous Culture. H.M.S.O., London

    Google Scholar 

  • Řičica J (1966) Technique of continuous laboratory cultivation. In: Málek I & Fencl Z (Eds) (1966) Theoretical and Methodological Basis of Continuous Culture of Microorganisms (pp 155–314). Czech. Acad. Sci., Prague, and Academic Press, London

    Google Scholar 

  • Rosenberger RF & Elsden SR (1960) The yields ofStreptococcus faecalis grown in continuous culture. J. Gen. Microbiol. 22: 726–739

    PubMed  Google Scholar 

  • Rutgers M, Teixeira de Mattos MJ, Postma PW & van Dam K (1987) Establishment of the steady state in glucose-limited chemostat cultures ofKlebsiella pneumoniae. J. Gen. Microbiol. 133: 445–453

    PubMed  Google Scholar 

  • Rutgers M, Balk PA & van Dam K (1989) Effect of concentration of substrates and products on the growth ofKlebsiella pneumoniae in chemostat cultures. Biochim. Biophys. Acta 977: 142–149

    PubMed  Google Scholar 

  • —— (1990) Quantification of multiple-substrate controlled growth: simultaneous ammonium and glucose limitation in chemostat cultures ofKlebsiella pneumoniae. Arch. Microbiol. 153: 478–484

    PubMed  Google Scholar 

  • Rutgers M, van Dam K & Westerhoff HV (1991) Control and thermodynamics of microbial growth. Rational tools for bioengineering. CRC Crit. Rev. Biotechnol. 11: 367–395

    Google Scholar 

  • Schaechter M, Maaløe O & Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth ofSalmonella typhimurium. J. Gen. Microbiol. 19: 592–606

    PubMed  Google Scholar 

  • Schlegel HG & Jannasch HW (1967) Enrichment cultures. Ann. Rev. Microbiol. 21: 49–70

    Google Scholar 

  • Schmidt RR & King KW (1961) Metabolic shifts during synchronous growth ofChlorella pyrenoidosa. Biochem. Biophys. Acta (Amst.) 47: 391–392

    PubMed  Google Scholar 

  • Schulze KL & Lipe RS (1964) Relationship between substrate concentration, growth rate, and respiration rate ofEscherichia coli in continuous culture. Arch. Mikrobiol. 48: 1–20

    Google Scholar 

  • Senn H, Lendenmann U, Snozzi M, Hamer G & Egli T (1993) The growth ofEscherichia coli in glucose-limited cultures: a reexamination of the kinetics. Biochim. Biophys. Acta (submitted)

  • Shehata TE & Marr AG (1971) Effect of nutrient concentration on the growth ofEscherichia coli. J. Bacteriol. 107: 210–216

    PubMed  Google Scholar 

  • Shindala A, Bungay HR, Krieg NR & Culbert K (1965) Mixed culture interactions I. Commensalism ofProteus vulgaris withSaccharomyces cerevisiae in continuous culture. J. Bacteriol. 89: 693–696

    PubMed  Google Scholar 

  • Shuler ML, Aris R & Tsuchiya HM (1972) Hydrodynamic focusing and electronic cell-sizing techniques. Appl. Microbiol. 24: 384–388

    Google Scholar 

  • Stephenson M (1949) Growth and nutrition. In: Bacterial Metabolism, 3rd ed. (pp 159–178). Longmans, Green & Co., London

    Google Scholar 

  • Tempest DW (1970) The continuous cultivation of microorganisms. 1. Theory of the chemastat. In: Norris JR & Ribbons DW (Eds) Methods in Microbiology, Vol 2 (pp 259–276). Academic Press, London

    Google Scholar 

  • Tempest DW, Herbert D & Phipps PJ (1967) Studies on the growth ofAerobacter aerogenes at low dilution rates in a chemostat. In: Powell PO, Evans CGT, Strange RE & Tempest DW (Eds) Microbial Physiology and Continuous Culture (pp 240–254). H.M.S.O., London

    Google Scholar 

  • Tempest DW, Neijssel OM & Zevenboom W (1983) Properties and performance of microorganisms in laboratory culture; their relevance to growth in natural ecosystems. Symp. Soc. Gen. Microbiol. 34: 119–152

    Google Scholar 

  • Tsuchiya HM, Drake JF, Jost JL & Fredrickson AG (1972) Preditor-prey interactions ofDictyostelium discoideum andEscherichia coli in continuous culture. J. Bacteriol. 110: 1147–1153

    PubMed  Google Scholar 

  • Van Niel CB (1949) The kinetics of growth of microorganisms. In: Parpart ED (Ed) The Chemistry and Physiology of Growth (pp 91–102). Princeton Univ. Press

  • Veldkamp H (1976) Continuous Culture in Microbial Physiology and Ecology. Meadowfield Press, Durham, UK

    Google Scholar 

  • Veldkamp H & Jannasch HW (1972) Mixed culture studies with the chemostat. J. Appl. Biotechnol. 22: 105–123

    Google Scholar 

  • Ward HM (1895) On the biology ofBacillus ramosus (Fraenkel), a Schizomycete of the River Thames. Proc. R. Soc. (London) 58: 265–468

    Google Scholar 

  • Westerhoff HV, Lolkema JS, Otto R & Hellingwerf KJ (1982) Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth. The phenomenological and mosaic approach. Biochim. Biophys. Acta. 683: 181–220

    PubMed  Google Scholar 

  • Westerhoff HV, van Heeswijk W, Kahn D & Kell DB (1991) Quantitative approaches to the analysis of the control and regulation of microbial metabolism. Antonie van Leeuwenhoek 60: 193–207

    PubMed  Google Scholar 

  • Williamson DH & Scopes AW (1961) Synchronization of division in cultures ofSaccharomyces cerevisiae. In: Meynell GG & Gooder H (Eds) Microbial Reaction to Environment, Symp. Soc. Gen. Microbiol (pp 217–242). Cambridge Univ. Press, London

    Google Scholar 

  • Wilkinson JF & Munro ALS (1967) The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers inBacillus megaterium. In: Powell PO, Evans CGT, Strange RE & Tempest DW (Eds) Microbial Physiology and Continuous Culture (pp 173–185). H.M.S.O., London

    Google Scholar 

  • Winslow C-EA & Walker HH (1939) The earlier phases of the bacterial culture cycle. Bacteriol. Rev. 3: 147–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jannasch, H.W., Egli, T. Microbial growth kinetics: a historical perspective. Antonie van Leeuwenhoek 63, 213–224 (1993). https://doi.org/10.1007/BF00871219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871219

Key words

Navigation