Skip to main content
Log in

Concentrations and fluxes of organic carbon substrates in the aquatic environment

  • A Glimpse Towards Nature
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Data concerning concentrations and fluxes of dissolved organic compounds (DOC) from marine and lacustrine environments are reviewed and discussed. Dissolved free amino acids and carbohydrates comprised the main fraction in the labile organic carbon pool. Dissolved free amino acids in marine waters varied between 3–1400 nM and those of freshwaters between 2.6–4124 nM. Dissolved free carbohydrates varied between 0.4–5000 nM in marine systems and between 14–1111 nM in freshwaters. The turnover times of both substrate pools varied in marine waters between 1.4 hours and 948 days and in freshwaters between 2 hours and 51 days. Measurements of stable12/13C-ratio and14C-isotope dating in ocean deep water samples revealed DOC turnover times between 2000–6000 years. Studies on carbon flows within the aquatic food webs revealed that about 50% of photosynthetically fixed carbon was channelled via DOC to the bacterioplankton. Excreted organic carbon varied between 1–70% of photosynthetically fixed carbon in marine waters and between 1–99% in freshwaters. The labile organic carbon pool represented only 10–30% of the DOC. The majority (70–90%) of the DOC was recalcitrant to microbial assimilation. Only 10–20% of the DOC could be easily chemically identified. Most of the large bulk material represented dissolved humic matter and neither the chemical structure nor the ecological function of the DOC is as yet clearly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

Adenosine Tri-Phosphate

AMS:

Accelerated Mass Spectrometry

BSA:

Bovine Serum Albumin

βGlAse:

βGlucosidAse activity

DAA:

Dissolved Amino Acids

DCAA:

Dissolved Combined Amino Acids

DFAA:

Dissolved Free Amino Acids

DTAA:

Dissolved Total Amino Acids

DCHO:

Dissolved Carbohydrates

DCCHO:

Dissolved Combined Carbohydrates

DFCHO:

Dissolved Free Carbohydrates

DTCHO:

Dissolved Total Carbohydrates

DLCFaAc:

Dissolved Long Chain Fatty Acids

DSCFaAc:

Dissolved Short Chain Fatty Acids

DOC:

Dissolved Organic Carbon

DOM:

Dissolved Organic Matter

DHM:

Dissolved Humic Matter

DTPhOH:

Dissolved Total Phenolic compounds

DCPhOH:

Dissolved Combined Phenolic compounds

DFPhOH:

Dissolved Free Phenolic conpounds

EOC:

Excreted Organic Carbon

HS:

Humic Substances

HPLC:

High Performance Liquid Chromatography

HTCO:

High-Temperature Catalytic Oxidation

(Kt+Sn):

Transport Constant + Natural Substrate from Michaelis Menten Kinetics

LOCP:

Labile Organic Carbon Pool

OM:

Organic Matter

MEE:

Microbial Extracellular Enzymes

PER:

Percent of Extracellular Release

PhDOC:

Photosynthetically derived Dissolved Organic Carbon

POC:

Particulate Organic Carbon

ROCP:

Recalcitrant Organic Carbon Pool

Tt :

Turnover time

UDOC:

Utilizable Dissolved Organic Carbon

Vmax :

Maximum Uptake Velocity

WCO:

Wet Chemical Oxidation

References

  • Aaronson S (1971) The synthesis of extracellular micromolecules and membranes by a population of the phytoflagellateOchromonas danica. Oceanogr. 16: 1–9

    Google Scholar 

  • —— (1978) Excretion of organic matter by phytoplanktonin vitro. Limnol. Oceanogr. 23: 838

    Google Scholar 

  • —— (1981) Chemical communication at the microbial level, Vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Aiken GR, McKnight DM, Wershaw RL & MacCarthy R (1985) Humic substances in soil, sediment and water. Geochemistry, isolation, and characterization. Wiley & Sons, NY

    Google Scholar 

  • Al-Hasan RH, Coughlan SJ, Aditipant A & Fogg GE (1975) Seasonal variations in phytoplankton and glycollate concentrations in the Menai Straits, Anglesey. J. Mar. Biol. Assoc. 55: 557–565

    Google Scholar 

  • Allen HL (1976) Dissolved organic matter in lakewater: characteristics of molecular weight size-fractions and ecological implications. Oikos 27: 64–70

    Google Scholar 

  • —— (1977) Experimental studies of dissolved organic matter in a soft-water lake. In: Cairns J (Ed) Acquatic Microbial Communities (pp 440–476) Garland Publishing Inc., New York

    Google Scholar 

  • Amano M, Hara S & Taga N (1982) Utilization of dissolved amino acids in seawater by marine bacteria. Mar. Biol. 68: 31–36

    Google Scholar 

  • Anderson GC & Zeutschel RD (1970) Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the northeast Pacific Ocean. Limnol. Oceanogr. 16: 402–407

    Google Scholar 

  • Andersson A, Lee C, Azam F & Hagström A (1985) Release of amino acids and nutrients by heterotrophic marine microflagellates. Mar. Ecol. Prog. Ser. 23: 99–106

    Google Scholar 

  • Arvola L (1986) Spring phytoplankton of 54 small lakes in Southern Finland. Hydrobiologia 137: 125–134

    Google Scholar 

  • Azam F (1986) Nutrient cycling and food web dynamics in southern California bight: the microbial food web. In: Eppley RW (Ed) Plankton Dynamics of the Southern California Bight. Lecture Notes on Coastal and Estuarine Studies, Vol 15 (pp 274–288) Springer Verlag, Berlin

    Google Scholar 

  • Azam F & Ammerman JW (1984) Mechanisms of organic matter utilization by marine bacterioplankton. In: Holm-Hansen O, Bolis L & Gilles R (Eds) Lecture Notes on Coastal and Estuarine Studies, Vol 8 (pp 45–54) Springer Verlag, Berlin

    Google Scholar 

  • Azam F & Cho BC (1987) Bacterial utilization of organic matter in the sea. In: Fletcher M, Gray TRG & Jones JG (Eds) Ecology of Microbial Communities (pp 261–281) Cambridge University Press

  • Azam F & Hodson RE (1981) Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Mar. Ecol. Prog. Ser. 6: 213–222

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA & Thingstad F (1983) The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263

    Google Scholar 

  • Baumann P, Baumann L & Mandel M (1971) Taxonomy of marine bacteria: the genusBeneckea. J. Bacteriol. 107: 268–294

    PubMed  Google Scholar 

  • Baumann L, Baumann P, Mandel M & Allen RD (1972) Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110: 402–429

    PubMed  Google Scholar 

  • Bauer JE, Williams PM & Druffel ERM (1992)14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357: 667–670

    Google Scholar 

  • Bell RT & Kuparinen J (1984) Assessing phytoplankton and bacterioplankton production during early spring in lake Erken, Sweden. Appl. Environ. Microbiol. 48: 1221–1230

    Google Scholar 

  • Bell WH (1980) Microbial ecology of algal extracellular products. The specificity of algal-bacterial interactions. Biol. Bull. 159: 456–487

    Google Scholar 

  • —— (1983) Bacterial utilization and algal extracellular products. 3. Specificy of algal-bacteria interactions. Limnol. Oceanogr. 28: 1131–1143

    Google Scholar 

  • Bengtsson G (1988) The impact of dissolved amino acids on protein and cellulose degradation in stream waters. Hydrobiologia 164: 97–102

    Google Scholar 

  • Benner R, Moran MA & Hodson RE (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes. Limnol. Oceanogr. 13: 89–100

    Google Scholar 

  • Bentzen E & Taylor WD (1991) Estimating organic P utilization by freshwater plankton using [32P]ATP. J. Plankt. Res. 13: 1223–1231

    Google Scholar 

  • Bergh O, B∅rsheim KY, Bradtbak G & Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340: 467–468

    Article  PubMed  Google Scholar 

  • Bergström I, Heinänen A & Salonen K (1986) Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. Environ. Microbiol. 51: 664–667

    Google Scholar 

  • Berman T & Gerber C (1980) Differential filtration studies of carbon flux from living algae to microheterotrophs, microplankton size distribution and respiration in Lake Kinneret. Microb. Ecol. 6: 1869–198

    Google Scholar 

  • Berland BR, Bonin DJ & Maestrini SY (1970) Study of bacteria associated with marine algae in culture. III. Organic substrates supporting growth. Mar. Biol. 5: 68–76

    Google Scholar 

  • Billén G (1984) Heterotrophic utilization and regeneration of nitrogen. In: Hobbie JE & Williams LeB PJ (Eds) Hetrotrophic Activity in the Sea (pp 313–355) NATO SAD, Plenum Press

  • —— (1991) Protein degradation in aquatic environments. In: Chróst RJ (Ed) Microbial Enzymes in Aquatic Environments (pp 123–143) Brock/Springer Series in Contemporary Bioscience, Springer Verlag, Berlin

    Google Scholar 

  • Billén G, Servais P & Becquevort S (1990) Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control. Hydrobiologia 207: 37–42

    Google Scholar 

  • Birge EA & Juday C (1934) Particulate and dissolved organic matter in inland lakes. Ecol. Oceanogr. 4: 440–474

    Google Scholar 

  • Bjørnsen PK (1988) Phytoplankton release of organic matter: Why healthy cells do it? Limnol. Oceanogr. 33: 151–159

    Google Scholar 

  • Bjørnsen PK & Riemann B (1988) Towards a quantitative stage in the study of microbial processes in pelagic carbon flows. Arch. Hydrobiol. Ergebn. Limnol. 31: 185–193

    Google Scholar 

  • Bohn HL (1976) Estimates of organic carbon in world soils. Soil Sci. Soc. Am. J. 40: 468–470

    Google Scholar 

  • Bradtbak G, Heldal M, Thingstad TF, Riemann B & Haslund OH (1992) Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar. Ecol. Prog. Ser. 83: 273–280

    Google Scholar 

  • Brandt K (1899) Über den Stoffwechsel im Meere. Wiss. Meeresunters. Abt. Kiel 4: 213–221

    Google Scholar 

  • Brehm J (1967) Untersuchungen über den Aminosäure-Haushalt holsteinischer Gewässer, insbesondere des Plußsees. Arch. Hydrobiol. Suppl. 32: 313–435

    Google Scholar 

  • Brock TD & Clyne J (1984) Significance of algal excretory products for growth of epilimnetic bacteria. Appl. Environ. Microbiol. 47: 731–734

    Google Scholar 

  • Burney CM, Davis PG, Johnson KM & Sieburth JMcN (1981a) Dependence of dissolved carbohydrate concentrations upon the populations of nanoplankton and bacterioplankton in the western Sargasso Sea. Mar. Biol. 65: 175–187

    Google Scholar 

  • Burney CM, Johnson KM & Sieburth JMcN (1981b) Diel flux of dissolved carbohydrate in a salt marsh and simulated estuarine ecosystem. Mar. Biol. 63: 175–187

    Google Scholar 

  • Burney CM, Davis PG, Johnson KM & Sieburth JMcN (1982) Diel relationships of microbial trophic groups andin situ dissolved carbohydrate dynamics in the Carribean Sea. Mar. Biol. 67: 311–322

    Google Scholar 

  • Burney CM (1986a) Bacterial utilization of totalin situ dissolved carbohydrate in offshore waters. Limnol. Oceanogr. 31: 427–431

    Google Scholar 

  • —— (1986b) Diel dissolved carbohydrate accumulation in coastal water of South Florida, Bermuda and Oahu. Estuarine, Coastal and Shelf Sci. 23: 197–203

    Google Scholar 

  • Burnison BK & Morita RY (1974) Heterotrophic potential for amino acid uptake in a naturally eutrophic lake. Appl. Microbiol. 27: 488–495

    PubMed  Google Scholar 

  • Button DK (1985) Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 49: 270–297

    PubMed  Google Scholar 

  • —— (1986) Affinity of organisms for substrate. Limnol. Oceanogr. 31: 453–456

    Google Scholar 

  • Carlucci AF, Craven DB & Henrichs SM (1984) Diel production and microheterotrophic utilization of dissolved free amino acids in waters off Southern California. Appl. Environ. Microbiol. 48: 165–170

    Google Scholar 

  • Carlucci AF, Craven DB, Wolgast (1991) Microbial populations in surface films and subsurface waters: amino acid metabolism and growth. Mar. Biol. 108: 329–339

    Google Scholar 

  • Chin-Leo G & Kirchman DL (1988) Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Appl. Environ. Microbiol. 54: 1934–1939

    Google Scholar 

  • Cho BC & Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature 332: 441–443

    Google Scholar 

  • Choi CI (1972) Primary production and release of dissolved organic carbon from phytoplankton in the western north Atlantic Ocean. Deep Sea Res. 19: 731–735

    Google Scholar 

  • Christman RF & Gjessing ET (1983) Aquatic and terrestrial humic materials (p 538). Ann Arbor Sci. Publ., Ann Arbor, Mi

    Google Scholar 

  • Chróst RJ (1984) Use of [14C]-dissolved organic carbon (RDOC) released by algae as a realistic tracer for heterotrophic activity measurements for aquatic bacteria. Arch. Hydrobiol. Ergebn. Limnol. 19: 207–214

    Google Scholar 

  • —— (1989) Characterization and significance of β-glucosidase activity in lake water. Limnol. Oceanogr. 34: 660–672

    Google Scholar 

  • —— (1990a) Application of the isotope dilution principle to the determination of substrate incorporation by aquatic bacteria. Arch. Hydrobiol. Ergebn. Limnol. 34: 111–117

    Google Scholar 

  • —— (1990b) Ectoenzymes in aquatic environments: origin, activity and ecological significance. In: Overbeck J & Chróst RJ (Eds) Advanced Biochemical and Molecular Approaches to Aquatic Microbial Ecology (pp 47–78) Brock/Springer Series in Contemporary Bioscience, Springer Verlag, Berlin

    Google Scholar 

  • —— (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst RJ (Ed) Microbial Enzymes in Aquatic Environments (pp 29–59) Brock/Springer Series in Contemporary Bioscience, Springer Verlag, Berlin

    Google Scholar 

  • Chróst RJ & Faust MA (1983) Organic carbon release by phytoplankton: its composition and utilization by bacterioplankton. J Plankt. Res. 5: 477–493

    Google Scholar 

  • Chróst RJ, Münster U, Rai H, Albrecht D, Witzel KP & (1989) Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of an eutrophic lake. J. Plankt. Res. 11: 223–242

    Google Scholar 

  • Coffin RB (1989) Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnol. Oceanogr. 34: 531–542

    Google Scholar 

  • Cole JJ, Likens GE & Strayer DL (1982) Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080–1090

    Google Scholar 

  • Coveney MF (1982) Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos 38: 8–20

    Google Scholar 

  • Cowie GL & Hedges JI (1992) Sources and reactivities of amino acids in a coastal marine environment. Limnol. Oceanogr. 37: 703–724

    Google Scholar 

  • Crawford CC, Hobbie JE & Webb KL (1974) The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563

    Google Scholar 

  • Cuhel RL, Ortner PB & Lean RS (1984) Night synthesis of protein by algae. Limnol. Oceanogr. 29: 731–744

    Google Scholar 

  • Cunningham HW & Wetzel RG (1989) Kinetic analysis of protein degradation by freshwater wetland sediment community. Appl. Environ. Microbiol. 55: 1963–1967

    Google Scholar 

  • Dawson R & Gocke K (1978) Heterotrophic activity in comparison to the free amino acid concentrations in the Baltic Sea samples. Oceanol. Acta 1: 45–54

    Google Scholar 

  • Dixon RK (1992) Global carbon cycle and climatic change. ACS Symp. Ser. 483: 375–378

    Google Scholar 

  • Ducklow HW (1991) The passage of carbon through microbial foodwebs: results from flow network models. Mar. Microb. Food Webs 5: 129–144

    Google Scholar 

  • Ducklow HW, Purdie DA, Williams LeB PJ & Davis JM (1986) Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 332: 865–867

    Google Scholar 

  • Druffel ERM & Williams PM (1990) Identification of a deep marine source of particulate organic carbon using bomb14C. Nature 347: 172–174

    Google Scholar 

  • Egli Th & Mason CA (1991) Mixed substrates and mixed cultures. In: Goldberg I & Rokem JS (Eds) Biology of Methylotrophs (pp 173–201) Butterworth-Heinemann, Boston

    Google Scholar 

  • Eppley RW & Sharp JH (1975) Photosynthetic measurements in the Central North Pacific: the dark loss of carbon in 24-h incubation. Limnol. and Oceanogr. 20: 981–987

    Google Scholar 

  • Farrington JW (1992) Marine organic geochemistry: review and challenges for the future. Mar. Chem. 39: 1–241

    Google Scholar 

  • Faust SJ & Hunter JV (1971) Organic compounds in aquatic environments (p 638). Marcel Dekker, New York

    Google Scholar 

  • Fogg GE (1966) The extracellular products of algae. Oceanogr. Mar. Biol. Ann. Rev. 4: 195–205

    Google Scholar 

  • —— (1983) The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Mar. 26: 3–14

    Google Scholar 

  • Fenchel T (1986) The ecology of heterotrophic microflagellates. Adv. Microb. Ecol. 9: 57–97

    Google Scholar 

  • Fischer B (1984) Die Bakterien des Meeres nach den Untersuchungen der Plankton-Expedition unter gleichzeitiger Berücksichtigung einiger älterer und neuerer Untersuchungen. Centalbl. Bakteriol. 15: 657–666

    Google Scholar 

  • Fuhrman JA (1987) Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach. Mar. Ecol. Progr. Ser. 37: 45–52

    Google Scholar 

  • —— (1990) Dissolved free amino acid cycling in an estuarine outflow plume. Mar. Ecol. Prog. Ser. 66: 197–203

    Google Scholar 

  • Fuhrman J & Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095

    Google Scholar 

  • Fuhrman JA & Ferguson RL (1986) Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. Mar. Ecol. Prog. Ser. 33: 237–242

    Google Scholar 

  • Francko DA & Wetzel RG (1981) Dynamics of cellular and extracellular cAMP inAnabaena flos-aquae (Cyanophyta): correlation with metabolic variables. J. Phycol. 17: 129–134

    Google Scholar 

  • Gagosian RB & Lee C (1981) Processes controlling the distribution of biogenic organic compounds in seawater. In: Duursma EK & Dawson R (Eds) Marine Organic Chemistry. Evolution, Composition, Interactions and Chemistry of Organic Matter in Seawater (pp 91–123) Elsevier, Amsterdam

    Google Scholar 

  • Gardner W & Lee GF (1975) The role of amino acids in the nitrogen cycle in Lake Mendota. Limnol. Oceanogr. 20: 379–388

    Google Scholar 

  • Gardner W, Chandler JF, Laird GA & Scavia D (1986) Microbial response to amino acid additions in Lake Michigan: grazer control and substrate limitation of bacterial populations. J. Great Lakes Res. 12: 161–174

    Google Scholar 

  • Gardner WS & Warren HM (1980) Intracellular composition and net release rates of free amino acids inDaphnia magna. Can. J. Fish. Aquat. Sci. 38: 157–162

    Google Scholar 

  • Gardner WS & Miller WH (1981) Intracellular and net release rates of free amino acids inDaphnia magna. Can. J. Fish. Aquat. Sci. 38: 157–162

    Google Scholar 

  • Gardner WS, Chandler JF & Laird GA (1989) Organic nitrogen mineralization and substrate limitation of bacteria in lake Michigan. Limnol. Oceanogr. 34: 478–485

    Google Scholar 

  • Geller A (1985a) Light-induced conversion of refractory, high molecular weight lake water constituents. Schweiz. Z. Hydrol. 47: 21–26

    Google Scholar 

  • —— (1985b) Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Schweiz. Z. Hydrol. 47: 27–34

    Google Scholar 

  • —— (1986) Comparison of mechanisms enhancing biodegradability of refractory lake waters constituents. Limnol. Oceanogr. 31: 755–764

    Google Scholar 

  • Gjessing ET (1976) Physical and chemical characteristics of aquatic humics. Ann Arbor Science, Ann Arbor, Mi

    Google Scholar 

  • Gocke K (1970) Untersuchungen über Abgabe und Aufnahme von Aminosäuren und Polypeptiden durch Planktonorganismen. Arch. Hydrobiol 67: 285–367

    Google Scholar 

  • —— (1975) Studies on short-term variations of heterotrophic activity in the Kiel Fjord. Mar. Biol. 33: 49–55

    Google Scholar 

  • —— (1977) Comparisons of methods for determining the turnover times of dissolved organic compounds. Mar. Biol. 42: 131–141

    Google Scholar 

  • Gocke K, Dawson R & Liebezeit G (1981) Availability of dissolved free glucose to heterotrophic microorganisms. Mar. Biol. 62: 209–216

    Google Scholar 

  • Haan H de (1974) Effect of a fulvic acid fraction on the growth of aPseudomonas sp. from Tjeukemeer (The Netherlands). Freshw. Biol. 4: 301–310

    Google Scholar 

  • Hagström A, Azam F, Andersson A, Wikner J & Rassoulzadegan F (1988) Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar. Ecol. Prog. Ser. 49: 171–178

    Google Scholar 

  • Hagström A, Ammerman JW, Henrichs S & Azam F (1984) Bacterioplankton growth in seawater: II. Organic matter utilization during steady-state growth in seawater cultures. Mar. Ecol. Prog. Ser. 18: 31–39

    Google Scholar 

  • Haider K (1988) The microbial degradation of lignin and its role in the carbon cycle. Forum Mikrobiol. 11: 477–489

    Google Scholar 

  • Hama J & Handa N (1987) Pattern of organic matter production of natural phytoplankton population in a eutrophic lake. 1. Intracellular products. Arch. Hydrobiol. 109: 107–120

    Google Scholar 

  • —— (1992) Diel photosynthetic production of cellular organic matter in natural phytoplankton populations, measured with13C and gas chromatography/mass spectrometry. Mar. Biol. 112: 175–181

    Google Scholar 

  • Hammer KD & Brockmann UH (1983) Rhythmic release of dissolved free amino acids from partly synchronizedThalassiosira rotula under nearly natural conditions. Mar. Biol. 74: 305–312

    Google Scholar 

  • Harder W & Dijkhuizen L (1982) Strategies of mixed substrate utilization in microorganisms. Philos. Trans. R. Soc. London 297: 459–479

    Google Scholar 

  • Harvey GR (1983) Dissolved carbohydrates in the New York bight and the variability of marine organic matter. Mar. Chem. 12: 333–339

    Google Scholar 

  • Harvey GR, Boran DA, Chosal LA & Tokar JM (1983) The structure of marine fulvic and humic acids. Mar. Chem. 12: 119–132

    Google Scholar 

  • Hedges JI (1992) Global biogeochemical cycles: progress and problems. Mar. Chem. 39: 67–93

    Google Scholar 

  • Hedges JI, Clark WA, Conoric GL (1988a) Organic matter sources to the water column and surfical sediments of marine bay. Limnol. Oceanogr. 33: 1116–1136

    Google Scholar 

  • —— (1988b) Fluxes and reactivities of organic matter in a coastal marine bay. Limnol. Oceanogr. 33: 1137–1152

    Google Scholar 

  • Heldal M & Bradtbak G (1991) Production and decay of viruses in aquatic environments. Mar. Ecol. Prog. Ser. 72: 205–212

    Google Scholar 

  • Hellebust JA (1974) Extracellular products. In: Stewart WDP (Ed) Algal Physiology and Biochemistry, Vol 10 (pp 838–863) Blackwell Sci. Publ., Oxford

    Google Scholar 

  • Herbst V (1984) Physiologische Untersuchungen zur Kopplung der Stoffwechsel vonOscillatoria redekei van Goor und Begleitbakterien. Arch. Hydrobiol. Suppl. 69: 525–594

    Google Scholar 

  • Herbst V & Overbeck J (1978) Metabolic coupling between the algaeOscillatoria redekei and accompanying bacteria. Naturwiss. 65: 598–599

    Google Scholar 

  • Hessen DO (1985) The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microb. Ecol. 31: 215–223

    Google Scholar 

  • —— (1992) Dissolved organic carbon in a small humic lake: effects on bacterial production and respiration. In: Salonen K, Kairesalo T & Jones RI (Eds) Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Hydrobiologia 229: 115–123

    Google Scholar 

  • Hickel B (1978) Phytoplankton population dynamics in Plußsee (East-Holstein, Germany). Verh. Ges. Ökol. Kiel 1977 (pp 119–126)

  • Hobbie JE (1992) Microbial control of dissolved organic carbon in lakes: research for the future. In: Salonen K, Kairesalo T & Jones RI (Eds) Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Hydrobiologia 229: 115–123

    Google Scholar 

  • Hobbie JE & Rublee P (1977) Radioisotope studies of heterotrophic bacteria in aquatic ecosystems. In: Cairns J (Ed) Aquatic Microbial Communities (pp 440–476) Garland Publ., New York

    Google Scholar 

  • Hodson RE, Azam F, Carlucci AF, Furhman JA, Karl DM & Holm-Hansen O (1981) Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar. Biol. 61: 89–94

    Google Scholar 

  • Hollibaugh JT & Azam F (1983) Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104–1116

    Google Scholar 

  • Hoppe HG (1978) Relationships between active bacteria and heterotrophic potential in the sea. Netherlands J. Sea Res. 12: 78–98

    Google Scholar 

  • —— (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 11: 299–308

    Google Scholar 

  • -- (1991) Microbial extracellular enzyme activity: a new key parameter in aquatic ecology. In: Chróst RJ (Ed) Microbial Enzymes in Aquatic Environments (pp 60–83) Brock/Springer Series in Contemporary Bioscience, Springer Verlag

  • Hoppe HG, Kim SJ & Gocke K (1988) Microbial decomposition in aquatic environments: combined processes of extracellular enzyme activity and substrate uptake. Appl. Environ. Microbiol. 54: 784–790

    Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bact. Rev. 36: 146–155

    PubMed  Google Scholar 

  • Ittekot V, Brockmann U, Michael W & Degens ET (1981) Dissolved free and combined carbohydrates during a phytoplankton bloom in the North Sea. Mar. Ecol. Prog. Ser. 4: 299–305

    Google Scholar 

  • Jannasch HW (1970) Threshold concentration of carbon sources limiting bacterial growth in seawater. In: Hood DW (Ed) Symposium on Organic Matter in Natural Waters (pp 321–330) Univ. Alaska Mar. Sci. Occ. Publ. No. 1

  • Jannasch HW, Eimhjellen K, Wirsen CO & Farmanfarmian A (1971) Microbial degradation of organic matter in the deep sea. Science 171: 672–675

    PubMed  Google Scholar 

  • Jacobsen TR & Azam F (1985) Role of bacteria in copepod fecal pellet decomposition: Colonization, growth rates and mineralization. Bull. Mar. Sci. 35: 495–502

    Google Scholar 

  • Jensen LM (1985)14C-labelling patterns of phytoplankton: specific activity of different product pools. J. Plankt. Res. 7: 643–652

    Google Scholar 

  • Jensen LM & Søondergaard M (1985) Comparison of two methods to measure algal release of dissolved organic carbon and the subsequent uptake by bacteria. J. Plankt. Res. 7: 44–56

    Google Scholar 

  • Johnson KM & Sieburth JMcN (1977) Dissolved carbohydrates in seawater. I. A precise spectrophotometric analysis for monosaccharides. Mar. Chem. 5: 1–13

    Google Scholar 

  • Jørgensen NOG (1982) Heterotrophic assimilation and occurrence of dissolved free amino acids in a shallow estuary. Mar. Ecol. Prog. Ser. 8: 145–159

    Google Scholar 

  • —— (1986) Fluxes of free amino acids in three Danish lakes. Freshw. Biol. 16: 255–268

    Google Scholar 

  • —— (1987) Free amino acids in lakes: Concentrations and assimilation rates in relation to phytoplankton and bacterial production. Limnol. Oceanogr. 32: 97–111

    Google Scholar 

  • Jørgensen NOG, Søndergaard M, Hansen HJ, Bosselman S & Riemann B (1983) Diel variation in concentration, assimilation and respiration of dissolved free amino acids in relation to planktonic primary and secondary production in two eutrophic lakes. Hydrobiologia 107: 107–122

    Google Scholar 

  • Jørgensen NOG & Sondergaard M (1984) Are dissolved free amino acids free? Microb. Ecol. 10: 301–316

    Google Scholar 

  • Jørgensen NOG & Bosselman S (1988) Concentrations of free amino acids and their bacterial assimilation rates in vertical profiles of two Danish lakes: Relations to diel changes in zoo-plankton grazing activity. Arch. Hydrobiol. Ergebn. Limnol. 31: 289–300

    Google Scholar 

  • Jürgens K & Güde H (1990) Incorporation and release of phosphorus by planktonic bacteria and phagotrophic flagellates. Mar. Ecol. Prog. Ser. 59: 271–284

    Google Scholar 

  • Kalle K (1966) The problem of the Gelbstoffe in the Sea. Oceanogr. Mar. Biol. Ann. Rev. 4: 91–104

    Google Scholar 

  • Kato K & Stabel HH (1984) Studies on the carbon flux from phyto-to bacterioplankton communities in Lake Constance. Arch. Hydrobiol. 102: 177–192

    Google Scholar 

  • Kieber DJ & Mopper K (1987) Photochemical formation of glyoxylic and pyruvic acids in seawater. Mar. Chem. 21: 135–149

    Google Scholar 

  • —— (1990) Determination of picomolar concentrations of carbonyl compounds in natural waters, including seawater, by liquid chromatography. Environ. Sci. Tech. 24: 1477–1481

    Google Scholar 

  • Kirchman DL (1990) Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific. Mar. Ecol. Progr. Ser. 62: 47–54

    Google Scholar 

  • Kirchman DL & Hodson R (1984) Inhibition by peptides of amino acid uptake by bacterial populations in natural waters: Implications for the regulation of amino acid transport and incorporation. Appl. Environ. Microbiol. 47: 624–631

    Google Scholar 

  • —— (1986) Metabolic regulation of amino acid uptake in marine waters. Limnol. Oceanogr. 31: 339–350

    Google Scholar 

  • Kirchman DL, K'ees E & Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49: 599–607

    PubMed  Google Scholar 

  • Kirchman DL, Suzuki Y, Gadide C & Ducklow HW (1991) High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature 352: 612–614

    Google Scholar 

  • Koike I, Hara S, Terauchi K & Kogure K (1990) Role of submicrometer particles in the ocean. Nature 345: 242–244

    Google Scholar 

  • Korinek J (1928) Über die Zersetzungsprozesse der organischen Substanz im Meerc. Biochem. Z. 192: 230

    Google Scholar 

  • Kreutzberg GW, Reddington M & Zimmermann H (1986) Cellular biology of ectoenzymes. Springer Verlag, Berlin

    Google Scholar 

  • Krogh AA & Lange E (1932) Quantitative Untersuchungen über Plankton, Kolloide und gelöste organische und anorganische Substanzen in dem Furesee. Int. Rev. Ges. Hydrobiol. 26: 20–53

    Google Scholar 

  • Lampert W (1978) Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 831–834

    Google Scholar 

  • Lancelot C (1979) Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the Southern North Sea, as determined by short-term kinetics. Mar. Ecol. Prog. Ser. 1: 179–186

    Google Scholar 

  • —— (1984) Extracellular release of small and large molecules by phytoplankton in the southern bight of the North Sea. Estuarine and Coastal Shelf Sciences 18: 65–77

    Google Scholar 

  • Lancelot C & Billén G (1984) Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnol. Oceanogr. 29: 721–730

    Google Scholar 

  • Lancelot C & Mathot S (1985) Biochemical fractionation of primary production by phytoplankton in Belgian coastal water during short- and long-term incubations with [14C]-bicarbonate. I. Mixed diatom population. Mar. Biol. 86: 219–226

    Google Scholar 

  • Larsson U & Hagström A (1979) Phytoplankton exudate release as energy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206

    Google Scholar 

  • —— (1982) Fractionated phytoplankton primary production, exudate release, and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70

    Google Scholar 

  • Lee C & Wakeham SG (1992) Organic matter in the water column: future research challenges. Mar. Chem. 39: 95–118

    Google Scholar 

  • Liebezeit G, Bölter M, Brown IF & Dawson R (1980) Dissolved free amino acids and carbohydrates at the pycnocline boundaries in the Sargasso Sea and related microbial activity. Oceanol. Acta 3: 357–362

    Google Scholar 

  • Lignell R (1990) Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary production and secondary productivity in the Baltic Sea. Mar. Ecol. Prog. Ser. 68: 85–99

    Google Scholar 

  • Lindroth P & Mopper K (1979) High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with ophthaldehyde. Anal. Chem. 51: 1667–1674

    Google Scholar 

  • Lord JM (1972) Glycolate oxidoreductase in Escherichia coli. Biochim. Biophys. Acta 267: 227–237

    PubMed  Google Scholar 

  • Longhurst AR, Koike I, Li WKW, Rodriguez J, Dickie P, Kepay P, Partensky F, Bautista B, Ruiz J, Wells M & Bird DF (1992) Sub-micron particles in northwest Atlantic shelf water. Deep Sea Res. 39: 1–7

    Google Scholar 

  • Mague TH, Friberg E, Highes DJ & Morris I (1980) Extracellular release of carbon by marine phytoplankton: a physiological approach. Limnol. Oceanogr. 23: 262–279

    Google Scholar 

  • Malone TC, Ducklow HW, Peele ER & Pike SE (1991) Picoplankton carbon flux in Chesapeake Bay. Mar. Ecol. Prog. Ser. 78: 11–22

    Google Scholar 

  • Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 33: 910–930

    Google Scholar 

  • Mantoura RFC & Riley JP (1975) The analytical concentration of humic substances from natural waters. Anal. Chim. Acta 76: 97–106

    Google Scholar 

  • Matin A (1979) Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat. In: Shilo M (Ed) Strategies of Microbial Life in Extreme Environments (pp 323–339) Verlag Chemie, Weinheim

    Google Scholar 

  • Martin JH & Fitzwater SE (1992) Dissolved organic carbon in the Atlantic, Southern and Pacific Oceans. Nature 356: 699–700

    Google Scholar 

  • Martin-Jézéquel V, Sournia A & Birrien JL (1992) A daily study of the diatom spring bloom at Roscoff (France) in 1985. III. Free amino acids composition studied by HPLC analysis. J. Plankt. Res. 14: 409–421

    Google Scholar 

  • McKnight DM, Aiken GR & Smith RL (1991) Aquatic fulvic acids in microbially based ecosystem: Results from two desert lakes in Antarctica. Limnol. Oceanogr. 36: 998–1006

    Google Scholar 

  • Menzel DW & Vaccaro RF (1964) The measurement of dissolved organic and particulate carbon in seawater. Limnol. Oceanogr. 9: 138

    Google Scholar 

  • Meyer-Reil LA (1986) Measurements of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments. Mar. Ecol. Progr. Ser. 31: 143–149

    Google Scholar 

  • —— (1991) Ecological aspects of enzymatic activity in marine sediments. In: Chróst RJ (Ed) Microbial Enzymes in Aquatic Environments (pp 84–95) Brock/Springer Series in Contemporary Bioscience. Springer Verlag, New York

    Google Scholar 

  • Moaledj K & Overbeck J (1980) Studies on uptake kinetics of oligocarbophilic bacteria. Arch. Hydrobiol. 89: 303–312

    Google Scholar 

  • Mopper K & Lindroth P (1982) Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27: 336–347

    Google Scholar 

  • Mopper K & Zika RG (1987a) Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling. Nature 325: 246–249

    Google Scholar 

  • Mopper K, Ittekot V, Dawson R & Liebezeit G (1980) The monosaccharide spectra of natural waters. Mar. Chem. 10: 55–66

    Google Scholar 

  • Mopper K, Zika RG & Fischer A (1990) Photochemistry and photophysics of marine humic substances. In: MacCarthy P, Gjessing ET, Mantoura RFC & Seki E (Eds) Humic Substances (pp 123–132) Vol 4

  • Mopper K, Xianliang Z, Kieber RJ, Kieber DJ, Sikorski RJ & Jones RG (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62

    Google Scholar 

  • Mopper K & Kieber DJ (1992) Distribution and biological turnover of dissolved organic compounds in the water column of the Black Sea. Deep Sea Res. Suppl. 39: S1021-S1047

    Google Scholar 

  • Moran MA & Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol. Oceanogr. 35: 1744–1756

    Google Scholar 

  • Moran BS & Buesseler KO (1992) Short residence time of colloids in the upper ocean estimated from238U-234Th disequilibria. Nature 359: 221–223

    Google Scholar 

  • Morris I & Skea W (1978) Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine. Mar. Biol. 47: 303–312

    Google Scholar 

  • Morita RY (1982) Starvation survival of heterotrophs in the marine environment. In: Marshall KC (Ed) Adv. Microb. Ecol. 6: 171–198

    Google Scholar 

  • —— (1984) Substrate capture by marine heterotrophic bacteria in low nutrient waters. In: Hobbie JE & Williams LeB PJ (Eds) Heterotrophic Activity in the Sea (pp 83–100) Plenum Press, New York

    Google Scholar 

  • Münster U (1984) Distribution, dynamic and structure of free dissolved carbohydrates in the Plußsee, a North German eutrophic lake. Verh. Internat. Verein. Limnol. 22: 929–935

    Google Scholar 

  • —— (1985) Investigations about structure, distribution and dynamics of different organic substrates in the DOM of lake Plußsee. Arch. Hydrobiol. Suppl. 70: 429–480

    Google Scholar 

  • —— (1991) Extracellular enzyme activity in eutrophic and polyhumic lakes. In: Chróst RJ (Ed) Microbial Enzymes in Aquatic Environments (pp 96–122) Brock/Springer Series in Contemporary Bioscience, Springer Verlag, New York

    Google Scholar 

  • —— (1992a) Microbial extracellular enzyme activities and biopolymer processing in two polyhumic lakes. Arch. Hydrobiol. Ergebn. Limnol. 37: 21–32

    Google Scholar 

  • —— (1992b) Microbial extracellular enzyme activities in HUMEX lake Skjervatjern. Environ. Internat. 18: 637–647

    Google Scholar 

  • Münster U, Einiö P & Nurminen J (1989) Evaluation of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4-methylumbelliferyl-substrates. Arch. Hydrobiol. 115: 321–337

    Google Scholar 

  • Münster U & Chróst RJ (1990) Dissolved organic matter (DOM) in aquatic environments: origin, distribution, composition and microbial utilization. In: Overbeck J & Chróst RJ (Eds) Advanced Biochemical and Molecular Approaches to Aquatic Microbial Ecology (pp 8–46) Brock/Springer Series in Contemporary Bioscience, Springer Verlag, New York

    Google Scholar 

  • Münster U, Einiö P, Nurminen J & Overbeck J (1992) Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. In: Salonen K, Kairesalo T & Jones RI (Eds) Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Hydrobiologia 229: 225–238

    Google Scholar 

  • Nagata T & Kirchman DL (1991) Release of dissolved free and combined amino acids by bacteriovorous marine flagellates. Limnol. Oceanogr. 36: 433–443

    Google Scholar 

  • —— (1992) Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar. Ecol. Prog. Ser. 83: 233–240

    Google Scholar 

  • Nalewajko C (1977) Extracellular release in freshwater algae and bacteria: extracellular products of algae as a source of carbon for heterotrophs. In: Cairns J (Ed) Aquatic Microbial Communities (pp 589–626) Garland, New York

    Google Scholar 

  • Nissen H, Nissen P, Azam F (1984) Multiphasic uptake of D-glucose by an oligotrophic marine bacterium. Mar. Ecol. Prog. Ser. 16: 155–160

    Google Scholar 

  • Ochiai M & Hanya T (1980) Change in monosaccharide composition in the course of decomposition of dissolved carbohydrates in lake water. Arch. Hydrobiol. 90: 257–264

    Google Scholar 

  • Odum EP (1963) Primary and secondary energy flow in relation to ecosystem structure. Proc. 16th Intern. Congr. of Zool. 4: 336–338

    Google Scholar 

  • Odum EP & de la Cruz AA (1963) Detritus as a major component of ecosystems. Bull. Am. Inst. Sci. 13: 39–48

    Google Scholar 

  • Ohle W (1934) Über organische Stoffe in Binnenseen. Verh. Internat. Verein. Limnol. 6: 249–262

    Google Scholar 

  • —— (1937) Kolloidgele als Nährstoffregulatoren der Gewässer. Naturwiss. 25: 471–474

    Google Scholar 

  • Olsen Y, Varum KM & Jensen A (1986) Some characteristics of the carbon compounds released by daphnia. J. Plankt. Res. 8: 505–518

    Google Scholar 

  • Overbeck J (1975) Distribution pattern of uptake kinetic responses in a stratified eutrophic lake. Verh. Internat. Verein. Limnol. 19: 2600–2615

    Google Scholar 

  • —— (1979) Studies on the heterotrophic function and glucose metabolism of microplankton in Plußsee. Arch. Hydrobiol. Ergebn. Limnol. 13: 56–76

    Google Scholar 

  • —— (1990) Aspects of aquatic microbial carbon metabolism: regulation of phosphoenolpyruvate carboxylase. In: Overbeck J & Chróst RJ (Eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches (pp 79–95) Springer Verlag, New York

    Google Scholar 

  • Overbeck J & Chróst RJ (1990) Aquatic microbial ecology: Biochemical and molecular approaches (p 190) Springer Verlag, New York

    Google Scholar 

  • Parrish CC (1988) Dissolved and particulate mareine lipid classes: a review. Mar. Chem. 23: 17–40

    Google Scholar 

  • Parsons TR & Strickland JDH (1962) On the production of particulate organic carbon by heterotrophic processes in sea water. Deep Sea Res. 8: 211–222

    Google Scholar 

  • Pearl H (1991) Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine phytoplankton. Appl. Environ. Microbiol. 57: 473–479

    Google Scholar 

  • Perdue & Gjessing ET (1990) Organic acids in aquatic ecosystems (p 345) Wiley & Sons, Chichester

    Google Scholar 

  • Poltz J (1972) Untersuchungen über das Vorkommen und den Abbau von Fettsäuren in Seen. Arch. Hydrobiol. Suppl. 40: 315–399

    Google Scholar 

  • Pomeroy LR (1974) The ocean's food web, a changing paradigm. Biosci. 24: 499–504

    Google Scholar 

  • Pomeroy LR & Wiebe WJ (1988) Energetics of microbial food webs. Hydrobiologia 156: 7–18

    Google Scholar 

  • Poole CF (1978) Recent advances in the silylating of organic compounds for gas chromatography. In: Blau K & King GS (Eds) Handbook of Derivatives for Chromatography (pp 152–200) Heyden, London

    Google Scholar 

  • Post WM, Chavez F, Mulholland PJ, Pastor J, Peng TH, Prentice K & Webb T (1992) Climatic feedbacks in the global carbon cycle. ACS Symp. Ser. 483: 392–412

    Google Scholar 

  • Poulet SA, Harris RP, Martin-Jezequel V, Moal J & Samain JS (1986) Free amino acids in copepod faecal pellets. Oceanol. Acta 9: 1991–197

    Google Scholar 

  • Priest FG (1984) Extracellular enzymes. Aspects of microbiology 9 (p 79) Van Nostrand Reinhold (UK) Co. Ltd.

  • Proctor LM & Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60–62

    Article  Google Scholar 

  • —— (1992) Mortality of marine bacteria in response to enrichments of the virus size fraction from seawater. Mar. Ecol. Progr. Ser. 87: 283–293

    Google Scholar 

  • Rai H (1984) Magnitude of heterotrophic metabolism of photosynthetically fixed dissolved organic carbon (PDOC) in Schöhsee, West Germany. Arch Hydrobiol. 102: 91–103

    Google Scholar 

  • Reinheimer G (1986) One hundred years marine microbiology — history and future development. IFREMER, Actes de Colloques 3: 15–22

    Google Scholar 

  • Rich PH (1984) Trophic-detrital interactions: vestiges of ecosystem evolution. Amer. Natur. 123: 20–29

    Google Scholar 

  • Rich PH & Wetzel RG (1978) Detritus in the lake ecosystem. Amer. Natur. 112: 57–71

    Google Scholar 

  • Riemann B, Søndergaard M, Schierup HH, Bosselmann S, Christensen G, Hansen J & Nielsen B (1982) Carbon metabolism during a spring diatom bloom in the eutrophic lake Mossø. Int. Rev. Ges. Hydrobiol. 67: 145–185

    Google Scholar 

  • Riemann B & Søndergaard M (1984) Bacterial growth in relation to phytoplankton primary production and extracellular release of organic carbon. In: Hobbie JR & Williams IeB PJ (Eds) Heterotrophic Activity of the Sea (pp 233–248) NATO SAD, Plenum Press, New York

    Google Scholar 

  • —— (1986a) Carbon dynamics in eutrophic, temperate lakes (p 290) Elsevier, Amsterdam

    Google Scholar 

  • —— (1986b) Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plank. Res. 8: 519–536

    Google Scholar 

  • Riemann B, Jørgensen NOG, Lampert W & Fuhrman JA (1986c) Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria. Microb. Ecol. 12: 247–258

    Google Scholar 

  • Riley JP & Segar DA (1970) Seasonal variation of the free and combined dissolved amino acids in the Irish Sea. J. Mar. Biol. Assoc. UK 50: 713–720

    Google Scholar 

  • Romankevich EA (1984) Geochemistry of organic matter in the ocean (p 334) Springer Verlag, Tokyo

    Google Scholar 

  • Sakugawa H & Handa N (1985) Chemical studies on dissolved carbohydrates in the water samples collected from North Pacific and Bering Sea. Oceanol. Acta 8: 185–196

    Google Scholar 

  • Salonen K (1981) The ecosystem of the oligotrophic lake Päärjärvi. 2. Bacterioplankton. Verh. Int. Verein. Limnol. 21: 448–553

    Google Scholar 

  • Salonen K, Kolonen K & Arvola L (1983) Respiration of plankton in two small, polyhumic lakes. Hydrobiol. 101: 65–70

    Google Scholar 

  • Salonen K, Kairesalo T & Jones RI (1992) Dissolved organic matter in lacustrine ecosystems: energy source and system regulator. Hydrobiologia 229: 291

    Google Scholar 

  • Salonen K & Hammar T (1986) On the importance of dissolved organic matter in the nutrition of zooplankton in some lakes waters. Oecologia 68: 246–253

    Google Scholar 

  • Salonen K & Tulonen T (1990) Photochemical and biological transformation of dissolved humic substances. Verh. Internat. Verein. Limnol. 24: 294

    Google Scholar 

  • Saunders GW (1977) Carbon flow in the aquatic systems. In: Cairn J Jr (Ed) Aquatic Microbial Communities (pp 417–440) Garland, New York

    Google Scholar 

  • Schindler DW, Mayley SE, Curtis PJ, Parker BR, Stainton MP & Kelly CA (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. In: Salonen K, Kairesalo T & Jones RI (Eds) Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Hydrobiologia 229: 1–2

    Google Scholar 

  • Sell A & Overbeck J (1992) Exudates: phytoplankton-bacterioplankton interactions in Plußsee. J. Plankt. Res. 14: 1199–1215

    Google Scholar 

  • Shah NM & Fogg GE (1973) The determination of glycolic acid in sea water. J. Mar. Biol. Assoc. UK 53: 321–324

    Google Scholar 

  • Shah NM & Wright RT (1974) The occurrence of glycolic acid in coastal sea water. Mar. Biol. 24: 121–124

    Google Scholar 

  • Sharp JH (1977) Excretion of organic matter by marine phytoplankton: Do healthy cells do it? Limnol. Oceanogr. 22: 381–399

    Google Scholar 

  • Sherr EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351

    Google Scholar 

  • Sherr BF, Sherr EB & Berman T (1982) Decomposition of organic detritus: a selective role for microflagellate protozoan. Limnol. Oceanogr. 27: 765–769

    Google Scholar 

  • Sherr BF, Sherr EB & Hopkinson CS (1989) Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159: 19–26

    Google Scholar 

  • Sieburth JMcN (1979) Sea microbes (p 654) Oxford Univ. Press, New York

    Google Scholar 

  • Sieburth JMcN & Jensen A (1968) Studies on algal substances in the Sea. J. Exp. Mar. Biol. Ecol. 2: 174–189

    Google Scholar 

  • Sugimura Y & Suzuki Y (1988) A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem. 24: 105–131

    Google Scholar 

  • Simon M (1985) Specific uptake rates of amino acids by attached and free-living bacteria in a mesotrophic lake. Appl. Environ. Microbiol. 49: 1254–1259

    PubMed  Google Scholar 

  • Simon M & Azam F (1988) Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213

    Google Scholar 

  • Smith DC, Simon M, Aldedge AL & Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359: 139–142

    Google Scholar 

  • Sorokin YI (1977) The heterotrophic phase of plankton succession in the Japan Sea. Mar. Biol. 41: 107–117

    Google Scholar 

  • Søndergaard M & Schierup HH (1982) Release of extracellular organic carbon during a diatom bloom in Lake Møsso: molecular weight fractionation. Freshw. Biol. 12: 313–320

    Google Scholar 

  • Søndergaard M, Riemann B & Jørgensen NOG (1985) Extracellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos 45: 323–332

    Google Scholar 

  • Søndergaard M, Rieman B, Møller-Jensen L, Jørgensen NOG, Bjørnsen PK, Olesen M, Larsen JB, Geertz-Hensen O, Hansen J, Christoffersen K, Jespersen AM, Andersen F & Bosselmann S (1988) Pelagic food web processes in an oligotrophic lake. Hydrobiologia 164: 271–286

    Google Scholar 

  • Stabel HH (1977) Gebundene Kohlenhydrate als stabile Komponenten im Schöhsee und inScenedesmus-Kulturen. Arch. Hydrobiol. Suppl. 53: 159–254

    Google Scholar 

  • Stabel HH, Moaledj J & Overbeck J (1979) On the degradation of dissolved organic molecules from Plußsee by oligocarbophilic bacteria. Arch. Hydrobiol. Ergebn. Limnol. 12: 95–104

    Google Scholar 

  • Stabel HH & Steinberg C (1976) Cleavage of macromolecular allochthonous soluble organic matter. Naturwiss. 63: 533

    Google Scholar 

  • Steinberg C (1977) Schwer abbaubare, stickstoffhaltige gelöste Substanzen im Schöhsee und in Algenkulturen. Arch. Hydrobiol. Suppl. 53: 48–158

    Google Scholar 

  • Steinberg C & Münster U (1985) Geochemistry and ecological role of humic substances in lakewater. In: Aiken GR, McKnight DN, Wershaw RL & MacCarthy P (Eds) Humic Substances in Soil, Sediment, and Water. Geochemistry, Isolation, and Characterization (pp 105–145) Wiley & Sons, NY

    Google Scholar 

  • Storch TA & Saunders GW (1978) Phytoplankton extracellular release and its relation to the seasonal cycle of dissolved organic carbon in a eutrophic lake. Limnol. Oceanogr. 23: 112–119

    Google Scholar 

  • Sundh I (1992) Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl. Environ. Microbiol. 58: 2938–2947

    Google Scholar 

  • Suttle CA, Chan AM & Fuhrman JA (1991) Dissolved free amino acids in the Sargasso Sea: uptake and respiration rates, turnover times, and concentrations. Mar. Ecol. Prog. Ser. 70: 189–199

    Google Scholar 

  • Tamminen T, Kuparinen J & Lignell R (1984) Diurnal cycles of phytoplankton exudation and bacteria uptake of organic substrates. Arch. Hydrobiol. Ergebn. Limnol. 19: 267–279

    Google Scholar 

  • Taylor GT, Iturriaga R & Sullivan CW (1985) Interactions of bacteriovorous grazers and heterotrophic bacteria with dissolved organic matter. Mar. Ecol. Prog. Ser. 22: 129–141

    Google Scholar 

  • Thienemann A (1925) Die Binnengewässer Mitteleuropas. Binnengewässer Vol 1: 1–255

    Google Scholar 

  • Thompson LA & Nedwell DB (1985) Existence of different pools of fatty acids in anaerobic model ecosystems and their availability to microbial metabolism. FEMS Microb. Ecol. 31: 141–146

    Google Scholar 

  • Thurman M (1985) Organic geochemistry of natural waters (p 497) Nijhoff/Junk Publ., Boston

    Google Scholar 

  • Tilzer MM & Horne AJ (1979) Diel patterns of phytoplankton productivity and extracellular release in ultra-oligotrophic Lake Tahoe. Int. Rev. Ges. Hydrobiol. 64: 157–176

    Google Scholar 

  • Tolbert NE (1974) Photorespiration by algae. In: Stewart WDP (Ed) Algal Physiology and Biochemistry (pp 474–504) Blackwell, Oxford

    Google Scholar 

  • Tolbert NE & Zill LP (1956) Excretion of glycolic acid by algae during photosynthesis. J. Biol. Chem. 22: 895–906

    Google Scholar 

  • Tranvik L (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322

    Google Scholar 

  • —— (1989) Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and clearwater lake. J. Plankt. Res. 11: 985–1000

    Google Scholar 

  • —— (1990) Bacterial growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl. Environ. Microbiol. 56: 1672–1677

    Google Scholar 

  • —— (1992) Allochthonous dissolved organic matter as energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114

    Google Scholar 

  • Tranvik L & Höfle M (1987) Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. Environ. Microbiol. 53: 482–488

    Google Scholar 

  • Vadstein O, Harkjerr BO & Jensen A (1989) Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria. Limnol. Oceanogr. 34: 840–855

    Google Scholar 

  • Vaughan GM & Mopper K (1987) Dissolved free amino acid enantiomeric composition of deep Sargasso seawater using a new HPLC technique. EOS 68: 1741-

    Google Scholar 

  • Waksman SA (1936) Humus (p 289) Williams & Wilkins, Baltimore

    Google Scholar 

  • Watanabe Y (1980) A study of the excretion and extracellular products of natural phytoplankton in lake Nakonuma, Japan. Int. Rev. Hydrobiol. 65: 809–834

    Google Scholar 

  • Webb KL & Johannes RE (1967) Studies of release of dissolved free amino acids by marine zooplankton. Limnol. Oceanogr. 12: 376–384

    Google Scholar 

  • Weinmann G (1970) Gelöste Kohlenhydrate und andere organische Stoffe in natürlichen Gewässern und in Kulturen vonScenedesmus quadricauda. Arch. Hydrobiol. Suppl. 37: 164–242

    Google Scholar 

  • Wetzel RG (1972) Functions and interactions of dissolved organic matter and the littoral zone in lake metabolism and eutrophication. In: Kajak Z & Hilbricht-Ilkowska A (Eds) Productivity Problems of Freshwater (pp 333–347) PWN, Warszawa

    Google Scholar 

  • —— (1979) The role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. Ergebn. Limnol. 13: 145–161

    Google Scholar 

  • —— (1983) Limnology, 2nd ed. (p 755) Saunders College, Philadelphia

    Google Scholar 

  • —— (1984) Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull. Mar. Sci. 35: 503–509

    Google Scholar 

  • —— (1990) Land-water interfaces: metabolic and limnological regulators. Verh. Internat. Ver. Limnol. 24: 6–24

    Google Scholar 

  • —— (1991) Extracellular enzymatic interactions in aquatic ecosystems: storage, redistribution, and interspecific communication. In: Chróst JR (Ed) Microbial Enzymes in Aquatic Environments (pp 6–28) Brock/Springer Series in Contemporary Bioscience. Springer Verlag, Berlin

    Google Scholar 

  • —— (1992) Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198

    Google Scholar 

  • Whittaker RH & Likens GE (1973) Carbon in the Biota. In: Woodwell GM & Pecan EV (Eds) Carbon and the Biosphere (pp 281–302) AEC 30 Technical Information Center, Washington, DC

    Google Scholar 

  • Wicks RJ, Moran MA, Pittman LJ & Hodson RE (1991) Carbohydrate signatures of aquatic macrophytes and their dissolved degradation products as determined by a sensitive high-performance ion chromatography method. Appl. Environ. Microbiol. 57: 3135–3143

    Google Scholar 

  • Williams LeB PJ (1981) Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. Sonderh. 5: 1–28

    Google Scholar 

  • —— (1990) The importance of losses during microbial growth: commentory on the physiology, measurement and ecology of the release of dissolved organic material. Mar. Microb. Food Webs 4: 175–206

    Google Scholar 

  • Williams LeB PJ & Yentsch CS (1976) An examination of photosynthetic production, excretion of photosynthetic products, and heterotrophic utilization of dissolved organic compounds with reference to results from coastal subtropical sea. Mar. Biol. 35: 41–47

    Google Scholar 

  • Williams PM (1971) The distribution and cycling of organic matter in the ocean. In: Faust SJ & Hunter JV (Eds) Organic Compounds in Aquatic Environments (pp 145–163) Marcel Dekker, New York

    Google Scholar 

  • -- (1986) Chemistry of the dissolved and particulate phases in the water column. In: Eppley RW (Ed) Plankton Dynamics of the Southern California Bight. Lecture Notes on Coastal and Estuarine Studies (pp 53–83) Vol 15

  • Williams R & Poulet SA (1986) Relationship between the zooplankton, phytoplankton, particulate matter and dissolved free amino acids in the Celtic Sea. Mar. Biol. 90: 279–284

    Google Scholar 

  • Wommack KE, Hill RT, Kessel M, Russek-Cohen E & Colwell RR (1992) Distribution of viruses in the Chesapeake Bay. Appl. Environ. Microbiol. 58: 2965–2970

    PubMed  Google Scholar 

  • Wood TM (1985) Properties of the cellulolytic enzyme systems. Biochem. Soc. Trans. 13: 407–410

    PubMed  Google Scholar 

  • Wood TM & McCrea SI (1979) Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181: 181–209

    Google Scholar 

  • Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC & Botkin (1978) The biota and the world carbon budget. Science 199: 141–146

    Google Scholar 

  • Wright RT (1970) Glycolic acid uptake by planktonic bacteria. In: Hood DW (Ed) Organic Matter in Natural Waters (pp 521–536) Institute of Marine Sciences, Alaska

    Google Scholar 

  • —— (1975) Studies on glycolic acid metabolism by freshwater bacteria. Limnol. Oceanogr. 20: 626–633

    Google Scholar 

  • —— (1984) Dynamics of pools of dissolved organic carbon. In: Hobbie JE & Wright RT (Eds) Heterotrophic Activity in the Sea (pp 121–154) Plenum Publ. Co, New York

    Google Scholar 

  • —— (1988a) Methods for evaluating the interaction of substrate and grazing as factors controlling planktoning bacteria. Arch. Hydrobiol. Ergebn. Limnol. 31: 229–242

    Google Scholar 

  • —— (1988b) A model for short-term control of the bacterioplankton by substrate and grazing. Hydrobiologia 159: 111–117

    Google Scholar 

  • Wright RT & Hobbie JE (1965) The uptake of organic solutes in lake water. Limnol. Oceanogr. 10: 22–28

    Google Scholar 

  • —— (1966) The use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464

    Google Scholar 

  • Wright RT & Shah N (1975) The trophic role of glycolic acid in coastal seawater. I. Heterotrophic metabolism in seawater and bacterial cultures. Mar. Biol. 33: 175–183

    Google Scholar 

  • Zehr JP, Axler RP & Goldman CR (1985) Heterotrophic mineralization of amino acid nitrogen in subalpine Castle lake, California. Mar. Chem. 16: 343–350

    Google Scholar 

  • Zeikus JG (1981) Lignin metabolism and the carbon cycle. In: Marshall KC (Ed) Advances in Microb. Ecol. 8: 211–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Drs. J. Overbeck on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münster, U. Concentrations and fluxes of organic carbon substrates in the aquatic environment. Antonie van Leeuwenhoek 63, 243–274 (1993). https://doi.org/10.1007/BF00871222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871222

Key words

Navigation