Skip to main content

Environmental Control of the Synthesis and Activity of Aquatic Microbial Ectoenzymes

  • Chapter
Microbial Enzymes in Aquatic Environments

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

The majority (>95%) of organic matter in aquatic environments is composed of polymeric, high-molecular-weight compounds (Allen, 1976; Romankevich, 1984; Cole et al., 1984; Thurman. 1985; Münster and Chróst, 1990). Because the passage of organic molecules across the microbial cytoplasmic membrane is an active process requiring specific transport enzymes (permeases), only small (low-molecular-weight) and simple molecules can be directly transferred from the environment into the cell (Rogers, 1961; Payne, 1980a; Geller, 1985). This means that only a small portion of the total dissolved organic matter (DOM) is readily utilizable in natural waters (Münster, 1985; Azam and Cho, 1987; Jørgensen, 1987), and that the majority of DOM cannot be directly transported to microbial cells because of the large size of its molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S. 1981. Chemical Communication at the Microbial Level, vol. 1. CRC Press Inc., Boca Raton. 184 pp.

    Google Scholar 

  • Allen, H.L. 1976. Dissolved organic matter in lakewater: characteristics of molecular weight size fractions and ecological implications. Oikos 27: 64–70.

    Article  CAS  Google Scholar 

  • Ammerman, J.W. and Azam, F. 1985. Bacterial 5’-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science 227: 1338–1340.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, F.B. 1983. Biochemistry, 2nd edition. Oxford University Press, New York. 653 pp.

    Google Scholar 

  • Azam, F. and B.C. Cho. 1987. Bacterial utilization of organic matter in the sea. pp. 261–281 in Fletcher, M., Gray, T.R.G. and Jones, J.G. (editors), Ecology of Microbial Communities, Cambridge University, Cambridge.

    Google Scholar 

  • Barman, T.E. 1969. Enzyme Handbook, vol. 2. Springer Verlag, Berlin. 928 pp.

    Google Scholar 

  • Bell, R.T. and J. Kuparinen. 1984. Assessing phytoplankton and bacterioplankton production during early spring in lake Erken, Sweden. Applied and Environmental Microbiology 48: 1221–1231.

    PubMed  CAS  Google Scholar 

  • Bengtsson, G. 1988. The impact of dissolved amino acids on protein and cellulose degradation in stream waters. Hydrobiologia 164: 97–102.

    Article  CAS  Google Scholar 

  • Boethling, R.S. 1975. Regulation of extracellular protease secretion in Pseudomonas maltophilia. Journal of Bacteriology 123: 954–961.

    PubMed  CAS  Google Scholar 

  • Botsford, J.L. 1981. Cyclic nucleotides in prokaryotes. Microbiological Reviews 45: 620–645.

    PubMed  CAS  Google Scholar 

  • Bretaudiere, J.P. and T. Stillman. 1984. Alkaline phosphatases. pp. 75–82 in Bergmeyer, H.U. (editor), Methods of Enzymatic Analysis, vol. 4, Verlag Chemie, Weinheim.

    Google Scholar 

  • Burns, R.G. 1983. Extracellular enzyme-substrate interactions in soil. pp. 249–298 in Slater, J.H., Whittenbury, R., and Wimpenny, J.W.T. (editors), Microbes in Their Natural Environments. Cambridge University Press, London.

    Google Scholar 

  • Chróst, R.J. 1975. Inhibitors produced by algae as an ecological factor affecting bacteria in water ecosystems. I. Dependence between phytoplankton and bacteria development. Acta Microbiologica Polonica 7(B): 125–133.

    Google Scholar 

  • Chróst, R.J. 1981. The composition and bacterial utilization of DOC released by phytoplankton. Kieler Meeresforschung Sonderheft 5: 325–332.

    Google Scholar 

  • Chróst, R.J. 1986. Algal-bacterial metabolic coupling in the carbon and phosphorus cycle in lakes. pp. 360–366 in Meguar, F. and Gantar, M. (editors), Perspectives in Microbial Ecology, Slovene Society for Microbiology, Ljubljana.

    Google Scholar 

  • Chróst, R.J. 1988. Phosphorus and microplankton development in a eutrophic lake. Acta Microbiologica Polonica 37: 205–225.

    Google Scholar 

  • Chróst, R.J. 1989. Characterization and significance of ß-glucosidase activity in lake water. Limnology and Oceanography 34: 660–672.

    Article  Google Scholar 

  • Chróst, R.J. 1990a. Microbial ectoenzymes in aquatic environments. pp. 47–78 in Overbeck, J. and Christ, R.J. (editors), Aquatic Microbial Ecology: Biochemical and Molecular Approaches, Springer Verlag, New York. 190 pp.

    Google Scholar 

  • Chróst, R.J. 1990b. Can bacteria affect the phytoplankton succession in lacustrine environments? pp. 15–20 in Burhardt, L. (editor), Evolution of Freshwater Lakes, Adam Mickiewicz University Press, Poznan.

    Google Scholar 

  • Chróst, R.J. 1991. Ectoenzymes in aquatic environments: microbial strategy for substrate supply. Verhandlungen der Internationalen Vereinigung für Theoretische and Angewandte Limnologie 24: 936–942.

    Google Scholar 

  • Chróst, R.J. and M.A. Faust. 1983. Organic carbon release by phytoplankton: its com- position and utilization by bacterioplankton. Journal of Plankton Research 5: 477–493.

    Article  Google Scholar 

  • Chróst, R.J., Münster, U., Rai, H., Albrecht, D., Witzel, P.K. and J. Overbeck. 1989. Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of an eutrophic lake. Journal of Plankton Research 11: 223–242.

    Article  Google Scholar 

  • Chróst, R.J. and J. Overbeck. 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake Plußsee (north German eutrophic lake). Microbial Ecology 13: 229–248.

    Article  Google Scholar 

  • Chróst, R.J. and J. Overbeck. 1990. Substrate-ectoenzyme interaction: significance of β-glucosidase activity for glucose metabolism by aquatic bacteria. Archiv für Hydrobiologie Beihefte Ergebnisse Limnologie 34: 93–98.

    Google Scholar 

  • Chróst, R.J., Siuda, W., Albrecht, D. and J. Overbeck. 1986. A method for determining enzymatically hydrolyzable phosphate (EHP) in natural waters. Limnology and Oceanography 31: 662–667.

    Article  Google Scholar 

  • Chróst, R.J., Siuda, W. and G.Z. Hałemejko. 1984. Longterm studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake eutrophication and phosphorus cycle. Archiv für Hydrobiologie Supplement 70: 1–32.

    Google Scholar 

  • Chróst, R.J., Wciso, R. and G.Z. Hałemejko. 1986. Enzymatic decomposition of organic matter by bacteria in an eutrophic lake. Archiv für Hydrobiologie 107: 145–165.

    Google Scholar 

  • Chróst, R.J., Wciso, R. and J. Overbeck. 1988. Evaluation of the [3H]thymidine method for estimating bacterial growth rates and production in lake water: Re-examination and methodological comments. Acta Microbiologica Polonica 37: 95–112.

    Google Scholar 

  • Cole, J.J., McDowell, W.H. and G.E. Likens. 1984. Sources and molecular weight of dissolved organic carbon in an oligotrophic lake. Oikos 42: 1–9.

    Article  CAS  Google Scholar 

  • Crofton, P.M. 1982. Biochemistry of alkaline phosphatase isoenzymes. CRC Critical Reviews in Clinical and Laboratory Sciences 16: 161–194.

    Article  CAS  Google Scholar 

  • Daatselaar, M.C.C. and W. Harder. 1974. Some aspects of the regulation of the production of extracellular proteolytic enzymes by a marine bacterium. Archiv für Hydrobiologie 101: 21–34.

    CAS  Google Scholar 

  • Daniels, L.B. and R.H. Glew. 1984. β-Glucosidases in tissue. pp. 217–226 in Bergmeyer, H.U. (editor), Methods of Enzymatic Analysis, vol. 4, Verlag Chemie, Weinheim.

    Google Scholar 

  • Dobrogosz, W.J. 1981. Enzymatic activity. pp. 365–392 in Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R. and Phillips, G.B. (editors), Manual of Methods for General Bacteriology. American Society for Microbiology, Washington DC.

    Google Scholar 

  • Dowd, J.E. and D.S. Riggs. 1965. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. Journal of Biological Chemistry 240: 863–869.

    PubMed  CAS  Google Scholar 

  • Fogg, G.E. 1966. The extracellular products of algae. Oceanography and Marine Biology Annual Reviews 4: 195–205.

    CAS  Google Scholar 

  • Fogg, G.E. 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Botanica Marina 26: 3–14.

    Article  CAS  Google Scholar 

  • Francko, D. 1984. Phytoplankton metabolism and cyclic nucleotides. II. Nucleotide-induced perturbations of alkaline phosphatase activity. Archiv für Hydrobiology 100: 409–421.

    CAS  Google Scholar 

  • Gage, M.A. and E. Gorham. 1985. Alkaline phosphatase activity and cellular phosphorus as an index of the phosphorus status of phytoplankton in Minnesota lakes. Freshwater Biology 15: 227–233.

    Article  CAS  Google Scholar 

  • Geller, A. 1985. Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Swiss Journal of Hydrology 47: 27–44.

    Article  CAS  Google Scholar 

  • Glenn, A.R. 1976. Production of extracellular proteins by bacteria. Annual Reviews in Microbiology 30: 41–62.

    Article  CAS  Google Scholar 

  • Hałemejko, G.Z. and R.J. Chróst. 1984. The role of phosphatases in phosphorus mineralization during decomposition of lake phytoplankton blooms. Archiv für Hydrobiologie 101: 489–502.

    Google Scholar 

  • Hałemejko, G.Z. and R.J. Chróst. 1986. Enzymatic hydrolysis of proteinaceous particulate and dissolved material in an eutrophic lake. Archiv für Hydrobiologie 107: 1–21.

    Google Scholar 

  • Hancock, I.C. and I.R. Poxton. 1988. Bacterial Cell Surface Techniques. John Wiley and Sons, Chichester, 329 pp.

    Google Scholar 

  • Healey, F.P. and L.L. Hendzel. 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 37: 442–453.

    Article  CAS  Google Scholar 

  • Hellebust, J.A. 1974. Extracellular products. pp. 838–863 in W.D.P. Stewart (editor), Algal Physiology and Biochemistry. Blackwell, Oxford.

    Google Scholar 

  • Hollibaugh, J.T. and Azam, F. 1983. Microbial degradation of dissolved proteins in seawater. Limnology and Oceanography 28: 1104–1116.

    Article  CAS  Google Scholar 

  • Holm-Hansen, O. 1984. Composition and nutritional mode of nanoplankton. Archiv für Hydrobiologie Beihefte Ergebnisse Limnologie 19: 125–129.

    Google Scholar 

  • Hoppe, H.G. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl substrates. Marine Ecology Progress Series 11: 299–308.

    Article  CAS  Google Scholar 

  • Hoppe, H.G. 1986. Degradation in sea water. pp. 453–474 in Rehm, H.J. and Reed, G. (editors), Biotechnology, vol. 8, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Hoppe, H.G., Kim, S.J. and K. Gocke. 1988, Microbial decomposition in aquatic environments: combined processes of extracellular enzyme activity and substrate uptake. Applied and Environmental Microbiology 54: 784–790.

    PubMed  CAS  Google Scholar 

  • Jacobsen, T.R. and H. Rai. 1988. Determination of aminopeptidase activity in lakewater by a short term kinetic assay and its application in two lakes of differing eutrophication. Archiv für Hydrobiologie 113: 359–370.

    CAS  Google Scholar 

  • Jørgensen, N.O.G. 1987. Free amino acids in lakes: concentrations and assimilation rates in relation to phytoplankton and bacterial production. Limnology and Oceanography 32: 97–111.

    Article  Google Scholar 

  • Karl, D.M. and M.D. Bailiff. 1989. The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnology and Oceanography 34: 543–558.

    Article  CAS  Google Scholar 

  • King, G.M. 1986. Characterization of β-glucosidase activity in intertidal marine sediments. Applied and Environmental Microbiology 51: 373–380.

    PubMed  CAS  Google Scholar 

  • Law, B.A. 1980. Transport and utilization of proteins by bacteria. pp. 381–409 in Payne, J.W. (editor), Microorganisms and Nitrogen Sources, John Wiley and Sons, New York.

    Google Scholar 

  • Lazdunski, M. 1974. “Half of the sites” reactivity and the role of subunit interactions in enzyme catalysis. pp. 81–140 in Kaiser, E.T. and Kezdy, F.J. (editors), Progress in Bioorganic Chemistry, vol. 3, John Wiley & Sons, New York.

    Google Scholar 

  • Leatherbarrow, R.J. 1987. Enzfitter. A Non-linear Regression Data Analysis Program for the IBM PC. Elsevier-Biosoft, Cambridge. 91 pp.

    Google Scholar 

  • Linden, G., Chappelet-Tordo, D. and M. Lazdunski. 1977. Milk alkaline phosphatase, stimulation by Mg2+ and properties of the Mg2+ site. Biochimica et Biophysica Acta 483: 100–106.

    PubMed  CAS  Google Scholar 

  • Litchfield, C.D. and J.M. Prescott. 1976. Regulation of proteolytic enzyme production by Aeromonas proteolytica. II. Extracellular aminopeptidase. Canadian Journal of Microbiology 16: 23–27.

    Article  Google Scholar 

  • Little, J.E., Sjogren, R.E. and G.R. Carson. 1979. Measurement of proteolysis in natural waters. Applied and Environmental Microbiology 37: 900–908.

    PubMed  CAS  Google Scholar 

  • Lundin, A., Amer, P. and J. Hellmer. 1989. A new linear plot for standard curves in kinetic substrate assays extended above the Michaelis-Menten constant: application to a luminometric assay of glycerol. Analytical Biochemistry 177: 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, M. and N. Taga. 1973. Deoxyribonuclease activity in seawater and sediment. Marine Biology 20: 58–63.

    Article  CAS  Google Scholar 

  • McComb, R.B., Bowers, G.N., Jr. and S. Posen. 1979. Alkaline Phosphatase. Plenum Press, New York. 358 pp.

    Google Scholar 

  • Mayer, L.M. 1989. Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat. Limnology and Oceanography 34: 973–981.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L.A. 1987. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Applied and Environmental Microbiology 53: 1748–1755.

    PubMed  CAS  Google Scholar 

  • Morton, R.K. 1954. The purification of alkaline phosphatases of animal tissues. Biochemical Journal 57: 595–603.

    PubMed  CAS  Google Scholar 

  • Murgier, M., Pelissier, C., Lazdunski, A. and C. Lazdunski. 1976. Existence, location and regulation of the biosynthesis of amino-endopeptidase in Gram-negative bacteria. European Journal of Biochemistry 65: 517–520.

    Article  PubMed  CAS  Google Scholar 

  • Münster, U. 1985. Investigations about structure, distribution and dynamics of different organic substrates in the DOM of lake Plußsee. Archiv für Hydrobiologie Supplement 70: 429–480.

    Google Scholar 

  • Münster, U. and R.J. Chróst. 1990. Origin, composition and microbial utilization of dissolved organic matter. pp. 8–46 in Overbeck, J. and Chróst, R.J. (editors), Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer Verlag, New York. 190 pp.

    Google Scholar 

  • Nikaido, H. and Nakae, T. 1979. The outer membrane of Gram-negative bacteria. Advances of Microbial Physiology 20: 163–250.

    Article  CAS  Google Scholar 

  • Paul, J.H., Jeffrey, W.H. and M.F. DeFlaun. 1987. Dynamics of extracellular DNA in the marine environment. Applied and Environmental Microbiology 53: 170–179.

    PubMed  CAS  Google Scholar 

  • Paul, J.H., Jeffrey, W.H. and J.P. Cannon. 1990. Production of dissolved DNA, RNA, and protein by microbial populations in a Florida reservoir. Applied and Environmental Microbiology 56: 2957–2962.

    PubMed  CAS  Google Scholar 

  • Payne, J.W. 1980a. Microorganisms and Nitrogen Sources. John Wiley and Sons, New York. 764 pp.

    Google Scholar 

  • Payne, J.W. 1980b. Transport and utilization of peptides by bacteria. pp. 211–256 in Payne, J.W. (editor), Microorganisms and Nitrogen Sources. John Wiley and Sons, New York.

    Google Scholar 

  • Pettersson, K. 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicators in Lake Erken. Archiv für Hydrobiologie 89: 54–87.

    CAS  Google Scholar 

  • Priest, F.G. 1984. Extracellular Enzymes. Van Nostrand Reinhold (UK) Co. Ltd., Wokingham. 79 pp.

    Google Scholar 

  • Rego, V.J., Billen, G., Fontigny, A. and M. Somville. 1985. Free and attached proteolytic activity in water environments. Marine Ecology Progress Series 21: 245–249.

    Article  CAS  Google Scholar 

  • Riemann, B. and M. Sendergaard. 1986. Carbon Dynamics in Eutrophic,Temperate Lakes. Elsevier, Amsterdam. 345 pp.

    Google Scholar 

  • Rogers, H.J. 1961. The dissimilation of high molecular weight organic substrates. pp. 261–318 in Gunsalus, I.C. and Starrier, R.Y. (editors), The Bacteria, vol. 2, Academic Press, New York.

    Google Scholar 

  • Rogers, H.J., Perkins, H.R. and Ward, J.B. 1980. Microbial Cell Wall and Membranes. Chapman and Hall, London. 258 pp.

    Google Scholar 

  • Romankevich, E.A. 1984. Geochemistry of Organic Matter in the Ocean. Springer Verlag, Tokyo. 478 pp.

    Google Scholar 

  • Rosso, A.L. and F. Azam. 1987. Proteolytic activity in coastal oceanic waters: depth distribution and relationship to bacterial populations. Marine Ecology Progress Series 41: 231–240.

    Article  CAS  Google Scholar 

  • Siuda, W. 1984. Phosphatases and their role in organic phosphorus transformation in natural waters. A review. Polskie Archiwum Hydrobiologii 31: 207–233.

    CAS  Google Scholar 

  • Siuda, W. and R.J. Chróst. 1987. The relationship between alkaline phosphatase (APA) activity and phosphate availability for phytoplankton and bacteria in eutrophic lakes. Acta Microbiologica Polonica 36: 247–257.

    Google Scholar 

  • Smith, E.L. and R.L. Hill. 1960. Leucine aminopeptidase. pp. 37–62 in Boyer, P.D., Lardy, H. and Myrbäck, K. (editors), The Enzymes, vol. 4, Academic Press, New York.

    Google Scholar 

  • Somville, M. 1984. Measurement and study of substrate specificity of exoglucosidase activity in eutrophic water. Applied and Environmental Microbiology 48: 1181–1185.

    PubMed  CAS  Google Scholar 

  • Somville, M. and G. Billen. 1983. A method for determining exoproteolytic activity in natural waters. Limnology and Oceanography 28: 190–193.

    Article  CAS  Google Scholar 

  • Stewart, A.J. and R.G. Wetzel. 1982. Phytoplankton contribution to alkaline phosphatase activity. Archiv für Hydrobiologie 93: 265–271.

    CAS  Google Scholar 

  • Suttle, C.A., Chan, A.M. and M.T. Cottrell. 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347: 467–469.

    Article  Google Scholar 

  • Tamminen, T. 1989. Dissolved organic phosphorus regeneration by bacterioplankton: 5’nucleotidase activity and subsequent phosphate uptake in a mesocosm enrichment experiment. Marine Ecology Progress Series 5: 89–100.

    Article  Google Scholar 

  • Thurman, E.M. 1985. Organic Geochemistry of Natural Waters. Nijhoff/Junk, Boston. 687 pp.

    Book  Google Scholar 

  • Vincent, W.V. 1981. Rapid physiological assays for nutrient demand by the plankton. II. Phosphorus. Journal of Plankton Research 3: 699–710.

    Article  CAS  Google Scholar 

  • Wetzel, R.G. and G.E. Likens. 1979. Limnological Analyses. Saunders, Philadelphia. 395 pp.

    Google Scholar 

  • Wouters, J.T.M. and P.J. Bieysman. 1977. Production of some exocellular enzymes by Bacillus licheniformis 749/C in chemostat cultures. Federation of European Microbiological Societies Letters 1: 109–112.

    CAS  Google Scholar 

  • Wynne, D. and M. Gophen. 1981. Phosphatase activity in freshwater zooplankton. Oikos 37: 369–376.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Chróst, R.J. (1991). Environmental Control of the Synthesis and Activity of Aquatic Microbial Ectoenzymes. In: Chróst, R.J. (eds) Microbial Enzymes in Aquatic Environments. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3090-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3090-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7793-4

  • Online ISBN: 978-1-4612-3090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics