Skip to main content

Anatomy and Function of the Classic Vasopressin-Secreting Hypothalamus-Neurohypophysial System

  • Chapter
Vasopressin

Abstract

It is probably no exaggeration to declare that the hypothalamus-neurohypophysial system (HNS) is the quintessence of neurosecretion and vasopressin (VP) the quintessential brain peptide. The system comprises magnocellular neurons, with cell bodies located in the hypothalamus, which project to and release their hormone in the neurohypophysis, a large storage organ outside the confines of the central nervous system (CNS). Most magnocellular VP and oxytocin (OX) neurons have their large cell bodies (25–30-μm diameter) segregated in the relatively discrete supraoptic nuclei (SON) and paraventricular nuclei (PVN) of the hypothalamus (Fig. 1). Since VP is released into the systemic circulation and stimulates distant target organs, it fits the definition of a true hormone, but it may have effects in the CNS as well. The unique anatomy of this system not only contributed to its early discovery but also facilitated subsequent experimental manipulation of this relatively accessible neurosecretory complex. Also, the discovery of the Brattleboro rat, which fails to produce hypothalamic VP in the homozygous form (see Valtin, 1982) and, to a much lesser extent, of mice with hereditary diabetes insipidus resulting from renal unresponsiveness to VP (Falconer et al., 1964), has provided animal models of great value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., and Ogata, N., 1982, Ionic mechanism for the osmotically-induced depolarization in neurons of the guinea-pig supraoptic nucleus in vitro. J. Physiol. (Lond.) 327: 157–172.

    CAS  Google Scholar 

  • Akaishi, T., and Sakuma, Y., 1985, Estrogen excites oxytocinergic, but not vasopressinergic cells in the paraventricular nucleus of the rat hypothalamus, Brain Res. 335: 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Aletta, J. M., and Goldberg, D. J., 1982, Rapid and precise down regulation of fast axonal transport of transmitter in an identified neuron, Science 218: 913–916.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, G., and Assenmacher, I., 1978, Electron microscopic study of the orthograde axonal transport of horseradish peroxidase in the supraopticoneurohypophysial tract of the rat, Cell Tissue Res. 194: 525–531.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, G., and Assenmacher, I., 1979a, The smooth endoplasmic reticulum in neurohypophysial axons of the rat: Possible involvement in transport, storage and release of neurosecretory material, Cell Tissue Res. 199: 415–429.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, G., and Assenmacher, I., 1919b, Three-dimensional organization of the endoplasmic reticulum in supraoptic neurons of the rat. A structural functional correlation, Brain Res. 170: 247–258.

    Article  Google Scholar 

  • Alonso, G., and Assenmacher, I., 1983, Retrograde axoplasmic transport of neurosecretory material. An immunocytochemical and electron-microscopic study of transected axons in normal and colchicine-treated rats, Cell Tissue Res. 233: 183–196.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, G., Bloch, B., Lutz-Bucher, B., Bugnon, B., and Assenmacher, I., 1981, Light-and electronmicroscope differentiation of axons containing vasopressin and oxytocin in the neurohypophyseal lobe of the rat, Neurosci. Lett. 25: 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Ambach, G., and Palkovits, M., 1979, The blood supply of the hypothalamus of the rat, in: Handbook of the Hypothalamus, Vol. 1 (P. J. Morgane and J. Panksepp, eds.), Dekker, New York, pp. 261–377.

    Google Scholar 

  • Andersson, B., 1978, Regulation of water intake, Physiol. Rev. 58: 582–603.

    PubMed  CAS  Google Scholar 

  • Andrew, R. D., Macvicar, B. A., Dudek, F. E., and Hatton, G. I., 1981, Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus, Science 211: 1187–1189.

    Article  PubMed  CAS  Google Scholar 

  • Ang, V. T. Y., and Jenkins, J. S., 1984, Neurohypophysial hormones in the adrenal medulla, J. Clin. Endocrinol. Metab. 58: 688–691.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, W. E., and Hatton, G. I., 1980, The localisation of projection neurons in the rat hypothalamic paraventricular nucleus following vascular and neurohypophyseal injections of HRP, Brain Res. Bull. 5: 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, W. E., Warach, S., Hatton, G. I., and McNeill, T. H., 1980, Subnuclei in the rat hypothalamic paraventricular nucleus: A cytoarchitectural horseradish peroxidase and immunocytochemical analysis, Neuroscience 5: 1931–1958.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, W. E., Scholer, J., and McNeill, T. H., 1982, Immunocytochemical, Golgi and electron microscopic characterization of putative dendrites in the ventral glial lamina of the rat supraoptic nucleus, Neuroscience 7: 679–694.

    Article  PubMed  CAS  Google Scholar 

  • Arnauld, E., Circino, M., Layton, B. S., and Renaud, L. P., 1983, Contrasting actions of amino acids, acetylcholine, noradrenaline and leucine enkephalin on the excitability of supraoptic vasopressinsecreting neurons, Neuroendocrinology 36: 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Azmitia, E. C., and Segal, M., 1978, An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat, Comp. Neurol. 179: 641–668.

    Article  CAS  Google Scholar 

  • Baertschi, A. J., and Vallet, P. G., 1981, Osmosensitivity of hepatic portal vein area and vasopressin release in rats, J. Physiol. (Lond.) 315: 217–230.

    CAS  Google Scholar 

  • Bainton, D. F., 1981, The discovery of lysosomes, J. Cell Biol. 91: 665–765.

    Article  Google Scholar 

  • Baker, P. F., Meves, H., and Ridgway, E. B., 1973, Calcium entry in response to maintained depolarization of squid axons, J. Physiol. (Lond.) 231: 527–548.

    CAS  Google Scholar 

  • Banks, D., and Harris, M. C., 1982, Abolition of baroreceptor input to phasic supraoptic neurons following thermal or 6-hyroxydopamine lesions in the locus coeruleus of the rat, J. Physiol. (Lond.) 327: 49P.

    Google Scholar 

  • Barer, R., Heller, H., and Lederis, K., 1963, The isolation, identification and properties of the hormonal granules of the neurohypophysis, Proc. R. Soc. Lond. 158: 388–416.

    Article  PubMed  CAS  Google Scholar 

  • Bargmann, W., 1949, Uber die Neurosekretorische verknufung von Hypothalamus und Neurohypophyse, Z. Zellforsch. 34: 610–634.

    PubMed  CAS  Google Scholar 

  • Bargmann, W., 1968, Neurohypophysis. Structure and function, in: Handbuch der Experimentellen Pharmakologie, Vol. 23: Neurohypophysial Hormones and Similar Polypeptides (E. Berde, ed.), Springer-Verlag, Berlin, pp. 1–39.

    Google Scholar 

  • Bargmann, W., and Scharrer, E., 1951, The site of origin of the hormones of the posterior pituitary, Am. Sci. 39: 255–259.

    Google Scholar 

  • Barker, J. L., Crayton, J. W., and Nicoll, R. A., 1971, Supraoptic neurosecretory cells: Adrenergic and cholinergic sensitivity, Science 171: 208–210.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., Holstein, A. F., and Nobin, A., 1972, Organisation and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary, Z. Zellforsch. 126: 483–517.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, C. T., and Pert, A., 1974, Antidiuresis produced by injection of histamine into the supraoptic nucleus, Brain Res. 78: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Berk, M. L., and Finkelstein, J. A., 1981a, Afferent projections to the preoptic area and hypothalamic regions in the rat brain, Neuroscience 6: 1601–1624.

    Article  PubMed  CAS  Google Scholar 

  • Berk, M. L., and Finkelstein, J. A., 1981b, An autoradiographic determination of the efferent projections of the suprachiasmatic nucleus of the hypothalamus, Brain Res. 226: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Bern, H. A., and Knowles, F. G. W., 1966, Neurosecretion in: Neuroendocrinology, (L. Martini and W. F. Ganong, eds.), Academic, New York, pp. 139–186.

    Google Scholar 

  • Bicknell, R. J., 1985, Endogenous opioid peptides and hypothalamic neuroendocrine neurones, J. Endocr. 107: 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Bicknell, R. J., and Leng, G., 1982, Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis, Nature (Lond.) 298: 161–162.

    Article  CAS  Google Scholar 

  • Bicknell, R. J., and Leng, G., 1983, Differential regulation of oxytocin-and vasopressin-secreting nerve terminals, Prog. Brain Res. 60: 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Bicknell, R. J., Leendertz, J., and Worley, R. T. S., 1983, Time lapse video recording of rapid morphological changes of rat pituicytes in culture, J. Physiol. (Lond.) 343:11P.

    Google Scholar 

  • Bie, P., 1980, Osmoreceptors, vasopressin and control of renal water excretion, Physiol. Rev. 60: 961–1047.

    PubMed  CAS  Google Scholar 

  • Billenstein, D. C., and Leveque, T. F., 1955, The reorganization of the neurohypophysial stalk following hypophysectomy in the rat, Endocrinology 56: 704–717.

    Article  Google Scholar 

  • Bioulac, B. O., Gaffori, M., Harris, M., and Vincent, J.-D., 1978, Effects of acetylcholine, sodium glutamate, and GABA on the discharge of supraoptic neurons in the rat, Brain Res. 154: 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Birkett, S. D., Swann, S. W., Gonzalez, C. B., and Pickering, B. T., 1983, Analysis of the neurohypophyseal components accumulating in the supraoptic nucleus of the rat after injection of colchicine, Arch. Biochem. Biophys. 225: 430–435.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. A., and Billiar, R. B., 1981, Properties and regional distribution of nicotinic cholinergic receptors in the rat hypothalamus, Brain Res. 212: 152–158.

    Article  PubMed  CAS  Google Scholar 

  • Bobillier, P., Seguin, F., Petitjean, D., Salvert, M., Touret, M., and Jouvet, M., 1976, The raphe nuclei of the cat brain stem: A topographic atlas of their efferent projections as revealed by autoradiography, Brain Res. 113: 449–486.

    Article  PubMed  CAS  Google Scholar 

  • Boer, G. J., and Jongkind, 1974, Quantitative lysosomal enzyme activity changes in the neural lobe of the rat following water deprivation and lactation, J. Neurochem. 22: 965–970.

    Article  PubMed  CAS  Google Scholar 

  • Boer, G. J., Nolten, J. W. L., Koenders, Y., and van Rheenen-Verberg, C. M. F., 1976, Enzymic preparation of neurosecretosome-and pituicyte-enriched fractions from the rat neurohypophysis, Brain Res. 114: 257–277.

    Article  PubMed  CAS  Google Scholar 

  • Boer, G. J., and van Rheenen-Verberg, C. M. F., 1976, Acid phosphatase in rat neurohypoophyseal dispersions and its fractions enriched for neurosecretosomes and pituicytes after water deprivation and lactation, Brain Res. 114: 279–292.

    Article  PubMed  CAS  Google Scholar 

  • Boer, G. J., van Leeuwen, F. W., Swaab, D. F., and Nolten, J. W. L., 1976, Acid phosphatase activity in the rat neurohypophysis during increased levels of gonadotropic hormones, in diabetes insipidus and after water loading, Acta Endocrinol. (Copenh.) 81: 697–706.

    CAS  Google Scholar 

  • Boer, G. J., Uylings, H. B. M., Patel, A. J., Boer, K., and Kragten, R., 1982, The regional impairment of brain development in the Brattleboro diabetes insipidus rat; some vasopressin supplementation studies, Ann. N.Y. Acad. Sci. 394: 703–717.

    Article  PubMed  CAS  Google Scholar 

  • Bonne, D., Nicolas, P., Lauber, M., Camier, M., Tixier-Vidal, A., and Cohen, P., 1977, Evidence for adenyl-cyclase activity in neurosecretory granule membranes from bovine neurohypophysis, Eur. J. Biochem. 78: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Boudier, J.-A., 1978, Formation et évolution des vacuoles autophagiques dans les axones neurosécrétrices et leurs terminaisons chez le rat, Biol. Cell. 31: 45–50.

    Google Scholar 

  • Boudier, J.-L., Boudier, J. A., and Picard, D., 1979, Ultrastructure du lobe postérieur de l’hypophyse du rat et ses modifications au cours de l’excrétion de vasopressine, Z. Zellforsch. 108: 357–379.

    Article  Google Scholar 

  • Boudier, J. A., Boudier, J. L., Massacrier, A., Cau, P., and Picard, D., 1979, Structural and functional aspects of lysosomes in the neurosecretory neurons, Biol. Cell. 36: 185–191.

    Google Scholar 

  • Boudier, J.-A., Marchi, D., Cataldo, C., Massacrier, A., and Lau, P., 1981, Origin and fate of autophagic vacuoles in axons and nerve endings of the rat neurohypophysis. II. Relationships with axoplasmic reticulum and three dimensional aspects, Biol. Cell. 40: 33–40.

    Google Scholar 

  • Brennan, T. J., Morris, M., and Haywood, J. R., 1984, GABA agonists inhibit the vasopressin-dependent pressor effects of central angiotensin. II. Neuroendocrinology 39: 429–436.

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R. D., and Cataldo, A. M., 1983, The neuronal endoplasmic reticulum: Its cytochemistry and contribution to the endomembrane system, J. Histochem. Cytochem. 31: 1077–1088.

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R. D., and Cataldo, A. M., 1984, The neuronal endoplasmic reticulum: Its cytochemistry and contribution to the endomembrane system. II. Axons and terminals. J. Comp. Neurol. 230: 231–248.

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R. D., and Oliver, C., 1980, Morphological basis for the synthesis and packaging of neuronal peptides, in: The Role of Peptides in Neuronal Function (J. L. Barker and T. G. Smith, Jr., eds.), Dekker, New York, pp. 21–48.

    Google Scholar 

  • Broadwell, R. D., and Oliver, C., 1981, Golgi apparatus, GERL, and secretory granule formation within the neurons of the hypothalamo-neurohypophysial system of control and hyperosmotically stressed mice, J. Cell Biol. 90: 474–484.

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R. D., Oliver, C., and Brightman, M. W., 1979, Localization of neurophysin within organelles associated with protein synthesis and packaging in the hypothalamo-neurohypophysial system: An immunocytochemical study, Proc. Natl. Acad. Sci. USA 76: 5999–6003.

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R. D., Brightman, M. W., and Oliver, C., 1980, Neuronal transport of acid hydrolases and peroxidases within the lysosomal system of organelles: Involvement of agranular reticulum-like cisterns, J. Comp. Neurol. 190: 519–532.

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R. D., Cataldo, A. M., and Balin, B. J., 1984, Further studies of the secretory process in hypothalamo-neurohypophysial neurons: An analysis using immunocytochemistry, wheat-germ agglutinin-peroxidase, and native peroxidase, J. Comp. Neurol. 228: 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Brody, M. J., and Johnson, A. K., 1980, Role of the anteroventral third ventricle (AV3V) region in fluid and electrolyte balance, arterial pressure regulation, and hypertension, in: Frontiers in Neuroendocrinology, Vol. 6, (Martini, L., and Ganong, W. F., eds.), Raven Press, New York, pp. 249–292.

    Google Scholar 

  • Brownstein, M. J., Saavedra, J. M., Palkovits, M., and Axelrod, J., 1974, Histamine content of hypothalamic nuclei of the rat, Brain Res. 77: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein, M. J., Russell, J. T., and Gainer, H., 1980, Synthesis, transport, and release of posterior pituitary hormones, Science 207: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Burbach, J. P. H., De Hoop, M. J., Schmale, D., Richter, D., DeKloet, E. R., Ten Haaf, J. A., and De Wied, D., 1984, Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei, Neuroendocrinology 39: 582–584.

    Article  PubMed  CAS  Google Scholar 

  • Burford, G. D., and Pickering, B. T., 1973, Intra-axonal transport and turnover of neurophysis in the rat. A proposal for a possible origin of the minor neurophysin component, Biochem. J. 136: 1047–1052.

    PubMed  CAS  Google Scholar 

  • Caffe, A. R., and van Leeuwen, F. W., 1983, Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat, Cell Tissue Res. 233: 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Cannata, M. A., and Morris, J. F., 1973, Changes in the appearance of hypothalamo-neurohypophysial neurosecretory granules associated with their maturation, J. Endocrinol. 57: 531–538.

    Article  PubMed  CAS  Google Scholar 

  • Card, J. P., Brecha, N., Karten, H. J., and Moore, R. Y., 1981, Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the cat: light and electron microscopic analysis, J. Neurosci. 1: 1289–1303.

    PubMed  CAS  Google Scholar 

  • Card, J. P., Grecha, N., and Moore, R. Y., 1983, Immunohistochemical localization of avian pancreatic polypeptide-like immunoreactivity in the rat hypothalamus, J. Comp. Neurol. 217: 123–136.

    Article  PubMed  CAS  Google Scholar 

  • Carithers, J., and Johnson, A. K., 1984, Long term effects on the supraoptic nuclei and neural lobe produced by ablation of the tissue surrounding the preoptic recess, Brain Res. 305: 123–140.

    Article  PubMed  CAS  Google Scholar 

  • Carithers, J., Bealer, S. L., Brody, M. J., and Johnson, A. K., 1980, Fine structural evidence of degeneration in supraoptic nucleus and subfornical organ of rats with lesions in the anteroventral third ventricle, Brain Res. 201: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Carithers, J., Dellmann, H. D., Bealer, S. L., Brody, M. J., and Johnson, A. K., 1981, Ultrastructural effects of anteroventral third ventricle lesions on supraoptic nuclei and neural lobes of rats, Brain Res. 220: 13–29.

    Article  PubMed  CAS  Google Scholar 

  • Carithers, J., Bealer, S. L., and Johnson, A. K., 1984, The effects of transverse cuts caudal to the preoptic recess on the hypothalamus-neurohypophyseal system, Brain Res. 305: 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Castel, M., 1974, In vivo uptake of tracers by neurosecretory axon terminals in normal and dehydrated mice, Gen. Comp. Endocrinol. 22: 336–337.

    Google Scholar 

  • Castel, M., and Abraham, M., 1969, Effects of a dry diet on the hypothalamic neurohypophyseal neurosecretory system in spiny mice as compared to the albino rat and mouse, Gen. Comp. Endocrinol. 12: 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Castel, M., and Abraham, M., 1972, Effects of a dry diet on the antidiuretic hormone content of the neurohypohphysis in spiny mice as compared to the albino rat and mouse, Gen. Comp. Endocrinol. 19: 48–55.

    Article  PubMed  CAS  Google Scholar 

  • Castel, M., and Dellmann, H.-D, 1980, Thiamine pyrophosphatase activity in the axonal smooth endoplasmic reticulum of neurosecretory neurons, Cell Tissue Res. 210: 205–221.

    Article  PubMed  CAS  Google Scholar 

  • Castel, M., and Dellmann, H.-D., 1981, Cytochemistry of neurosecretory cells reveals different compartments for axonal transport, in: Neurosecretion: Molecules, Cells, Systems (D. S. Farner and K. Lederis, eds.), Plenum, New York, pp. 468–470.

    Google Scholar 

  • Castel, M., and Hochman, J., 1976, Ultrastructural immunocytochemical localization of vasopressin in the hypothalamic neurohypophysial system of three murids, Cell Tissue Res. 174: 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Castel, M., Gainer, H., and Dellman, H.-D., 1984, Neuronal secretory systems, Int. Rev. Cytol. 88: 303–459.

    Article  PubMed  CAS  Google Scholar 

  • Castel, M., Morris, J., Ben-Barak, Y., Timberg, R., Sivan, M., and Gainer, H., 1985, Ultrastructural localization of immunoreactive neurophysins using monoclonal antibodies and protein A-gold, J. Histochem. Cytochem. 33: 1015–1025.

    Article  PubMed  CAS  Google Scholar 

  • Castel, M., Morris, J. F., Whitnall, M. H., and Sivan, N., 1986, Improved visualisation of the immunoreactive hypothalamo-neurohypophysial system by use of immuno-gold techniques, Cell Tissue Res. 243: 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Caverson, M. M., Ciriello, J., and Calarescu, F. R., 1983, Cardiovascular afferent input to neurons in the ventrolateral medulla projecting directly to the central autonomic area of the thoracic cord in the cat, Brain Res. 274: 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, D. B., and Morris, J. F., 1985, Granule population in oxytocin and abnormal perikarya of the suproptic nucleus of homozygous Brattleboro rats: effects of colchicine administration, Cell Tissue Res. 241: 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Chapman D. B., Morris, J. F., and Valtin, H., 1982, How do granules distribute between nerve endings and nerve swellings in the neural lobe? Evidence from Brattleboro rats, in: Neuroendocrinology of Vasopressin, Corticoliberin and Opiomelanocortins (A. J. Baertschi and J. J. Dreifuss, eds.), Academic, London, pp. 1–10.

    Google Scholar 

  • Chapman, D. B., Sokol, H. W., Morris, J. F., and Theodosis, D. T., 1984, Control of magnocellular neurosecretory neurones: Analysis of synapses and cell-to-cell contacts in normal rats and rats with hereditary diabetes insipidus, J. Anat. 139: 734–735.

    Google Scholar 

  • Chapman, D. B., Morris, J. F., Theodosis, D. T., Montagnese, C., and Poulain, D. A., 1986, Osmotic stimulation causes structural plasticity of neurone-glia relationships of the oxytocin-but not the vasopressin-secreting neurones in the hypothalamic supraoptic nucleus, Neuroscience 17: 679–686.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K. W., and Friesen, H. G., 1970, Physiological factors regulating secretion and neurophysin. Metab. Clin. Exp. 19: 876–890.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, S. W. T., and North, W. G., 1986, Exogenous vasopressin modulates activity of oxytocin neurons in homozygous Brattleboro rats, Am. J. Physiol. 251:E556-E562.

    Google Scholar 

  • Christ, J. F., 1962, The early changes in the hypophysial neurosecretory fibres after coagulation, Mem. Soc. Endocrinol. 12: 125–147.

    Google Scholar 

  • Ciriello, J., and Calaresu, F. R., 1980a, Autoradiographic study of ascending projections from cardiovascular sites in the nucleus tractus solitarius in the cat, Brain Res. 186: 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Ciriello, J., and Calaresu, F. R., 1980b, Monosynaptic pathway from cardiovascular neurons in the nucleus tractus solitarii to the paraventricular nucleus in the cat, Brain Res. 193: 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Ciriello, J., and Caverson, M. M., 1984a, Direct pathway from neurons in the ventrolateral medulla relaying cardiovascular afferent information to the supraoptic nucleus in the cat, Brain Res. 292: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Ciriello, J., and Caverson, M. M., 1984b, Ventrolateral medullary neurons relay cardiovascular inputs to the paraventricular nucleus, Am. J. Physiol. 246:R968-R978.

    Google Scholar 

  • Clarke, G., and Patrick, G., 1983, Differential inhibitory action by morphine on the release of oxytocin and vasopressin from the isolated neural lobe, Neurosci. Lett. 39: 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, P., and Hatton, O. I., 1984, Dye coupling in hypothalamic slices: Dependence on in vivo hydration state and osmolality of incubation medium, J. Neurosci. 4: 3034–3038.

    PubMed  CAS  Google Scholar 

  • Cobbett, P., Yang, Q.-Z., and Hatton, G. I., 1985a, Dye coupling of magnocellular neurosecretory cells: A modulating role for gonadal steroids?, in: Programme of British Neuroendocrine Group Meeting, July 1985.

    Google Scholar 

  • Cobbett, P., Smithson, K. G., and Hatton, G. L, 1985b, Dye-coupled magnocellular peptidergic neurons of the rat paraventricular nucleus show homotypic immunoreactivity, Neuroscience 16: 585–595.

    Article  Google Scholar 

  • Cobbett, P., Smithson, K. G., and Hatton, G. I., 1986, Immunoreactivity to vasopressin-but not oxytocin-associated neurophysin antiserum in phasic neurons of rat hypothalamic paraventricular nucleus, Brain Res. 362: 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Coghlan, J. P., Biall, H. D., Penschow, J., and Tregear, G. W., 1984, Hybridization histochemistry: tissue localization of gene expression, Excerpta Med. Int. Congr. Ser. 625: 5.

    Google Scholar 

  • Coghlan, J. P., Aldred, P., Hara, J., Niall, H. D., Perschaw, J. D., Tregear, G. W., 1985a, Hybridization histochemistry, Analytical Biochem. 149: 1–28.

    Article  CAS  Google Scholar 

  • Coghlan, J. P., Aldred, P., Butkus, A., Crawford, R. J., Darby, I. A., Haralambidis, Penschow, J. D. Roche, P. J., Troiani, C., and Tregear, G. W., 1986, in: Neuroendocrine Molecular Biology, (Fink, G., Harmar, A. J., McKerns, K. W., eds.), Plenum, New York, pps. 33–39.

    Google Scholar 

  • Conrad, L. C., and Pfaff, D. W., 1976a, Autoradiographic tracing of nucleus accumbens efferents in the rat, Brain Res. 113: 589–596.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, L. C., and Pfaff, D. W., 1976b, Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area, J. Comp. Neurol. 169: 185–220.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, L. G, and Pfaff, D. W., 1976c, Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus, J. Comp. Neurol. 169: 221–262.

    Article  PubMed  CAS  Google Scholar 

  • Correa, F. M. A., and Saavedra, J. M., 1983, High histamine levels in specific hypothalamic nuclei of Brattleboro rats lacking vasopressin, Brain Res. 176: 247–252.

    Article  Google Scholar 

  • Cotte, G., and Picard, D., 1970, Les corps multivésiculaires des cellules neurosécrétrices du noyau supra-optique du rat, C. R. Assoc. Anat. 55: 194–199.

    Google Scholar 

  • Cross, B. A., and Dyball, R. E. J., 1974, Central pathways for neurohypophysial hormone release, in: Handbook of Physiology, Endocrinology. Vol. IV. Part 1 (E. L. Knobil and W. H. Sawyer, eds.), American Society for Physiology, Washington, D.C., pp. 269–285.

    Google Scholar 

  • Cross, B. A., and Leng, G., eds. 1983, The neurohypophysis: Structure, function and control, Prog. Brain Res. 60: 1–542.

    Google Scholar 

  • Daniel, A. R., and Lederis, K., 1966, Effects of ether anaesthesia and haemorrhage on hormone storage and ultrastructure of the rat neurohypophysis, J. Endocrin. 34: 91–104.

    Article  CAS  Google Scholar 

  • Daniel, P. M., and Prichard, M. M. L., 1966, Distal retraction balls in the neurohypophysis after transection of the pituitary stalk, J. Comp. Neurol. 127: 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Davies, I., and Fotheringham, A. P., 1981a, The influence of age on the response of the supraoptic nucleus of the hypothalamo-neurohypophysial system to physiological stress. I. Ultrastructural aspects, Mech. Aging Dev. 15: 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Davies, I., and Fotheringham, A. P., 1981b, The influence of age on response of the hypothalamoneurohypophysial system to physiological stress. II. Quantitative Morphology, Mech. Aging Dev. 15: 367–378.

    Article  PubMed  CAS  Google Scholar 

  • Davies, I., and Fotheringham, A. P., 1981c, Lipofuscin—does it affect cellular performance?, Exp. Geront. 16: 119–125.

    Article  CAS  Google Scholar 

  • Davis, B. J., Sokol, H. W., and Sladek, J. R., Jr., 1983, Altered noradrenergic innervation of the supraoptic nucleus in the nephrogenic diabetes insipidus mouse, Anat. Rec. 205:44A.

    Google Scholar 

  • Davis, B. J., Sokol, H. W., and Sladek, J. R., Jr., 1984, Altered noradrenergic innervation of the supraoptic nucleus in the nephrogenic diabetes insipidus mouse, Neuroendocrinology 41: 394–399.

    Article  Google Scholar 

  • Dawson, A. B., 1953, Evidence for the termination of neurosecretory fibres within the pars intermedia of the hypophysis of the frog, Rana pipiens, Anat. Rec. 115: 63–69.

    Article  CAS  Google Scholar 

  • Day, T. A., Jhamandas, J. H., and Renaud, L. P., 1985, Comparison between the actions of avian pancreatic polypeptide, neuropeptide Y and norepinephrine on the excitability of rat supraoptic vasopressin neurons, Neurosci. Letts. 62: 181–185.

    Article  CAS  Google Scholar 

  • De Duve, C., and Wattiaux, R., 1966, Functions of Lysosomes, Annu. Rev. Physiol. 28: 435–492.

    Article  PubMed  Google Scholar 

  • De Mey, J., Vandesande, F., and Dierickx, K., 1974, Identification of neurophysin producing cells, Identification of the neurophysin I and the neurophysin II producing neurons in the bovine hypothalamus, Cell Tissue Res. 153: 531–543.

    Article  PubMed  CAS  Google Scholar 

  • Dellmann, H.-D., 1973, Degeneration and regeneration of neurosecretory systems, Int. Rev. Cytol. 36: 215–315.

    Article  PubMed  CAS  Google Scholar 

  • Dellman, H.-D., and Rodriguez, E. M., 1970, Comparative study of the ultrastructure and hormonal content of the proximal and distal stumps of the transected neurosecretory hypothalamo-hypophysial system, Experientia 26: 414–415.

    Article  Google Scholar 

  • Dellmann, H.-D., and Sikora-Vanmeter, K. C., 1982, Reversible fine structural changes in the supraoptic nucleus of the rat following intraventricular administration of colchicine, Brain Res. Bull. 8: 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Dellmann, H.-D., Stoeckel, M. E., Porte, A., and Stutinsky, F., 1974, Ultrastructure of the neurohypophysial glial cells following stalk transection in the rat, Experientia 30: 1220–1222.

    Article  PubMed  CAS  Google Scholar 

  • Dellmann, H.-D., Castel, M., and Linner, J. G., 1978, Ultrastructure of peptidergic neurosecretory axons in the developing neural lobe of the rat, Gen. Comp. Endocrinol. 36: 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey, G. P., Bullivant, S., and Watkins, W. B., 1973, Ultrastructure of the rat posterior pituitary gland and evidence of hormone release by exocytosis as revealed by freeze-fracturing, Z. Zellforsch 143: 465–484.

    Article  PubMed  CAS  Google Scholar 

  • Dogterom, J., Van Wimersma Greidanus, T. J. B., and De Wied, D., 1976, Histamine as an extremely potent releaser of vasopressin in the rat, Experientia 32: 659.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, W. W., 1974, Mechanism of release of neurohypophysial hormones: Stimulus-secretion coupling, in: Handbook of Physiology, Sect. VII: Endocrinology, Vol. IV: The Pituitary Gland and Its Neuroendocrine Control, Part I (R. O. Greep and E. B. Astwood, sect. eds.; E. Knobil and W. H. Sawyer, (vol. eds.), American Physiological Society, Washington, D. C., pp. 191–224.

    Google Scholar 

  • Douglas, W. W., and Poisner, A. M., 1964, Stimulus-secretion coupling in a neurosecretory organ: The role of calcium in the release of vasopressin from the neurohypophysis, J. Physiol (Lond.) 172: 1–18.

    CAS  Google Scholar 

  • Douglas, W. W., Nagasawa, J., and Schulz, R., 1971, Electron microscope studies on the mechanism of secretion of the posterior pituitary hormones and significance of micro vesicles (“synaptic vesicles”): Evidence of secretion by exocytosis and formation of micro vesicles as a by-product of this process, Mem. Soc. Endocrinol. 19: 353–378.

    Google Scholar 

  • Dreifuss, J. J., Nordmann, J. J., Akert, K., Sandri, C., and Moor, H., 1974, Exo-endocytosis in the neurohypophysis as revealed by freeze-fracturing, in: Neurosecretion—The Final Neuroendocrine Pathway (F. Knowles and L. Vollrath, eds.), Springer-Verlag, New York, pp. 31–37.

    Google Scholar 

  • Droz, B., 1975, Synthetic machinery and axoplasmic transport: Maintenance of neuronal connectivity, in: The Nervous System (D. Tower, ed.), Raven, New York, pp. 111–127.

    Google Scholar 

  • Duce, I. R., and Keen, P., 1978, Can neuronal smooth endoplasmic reticulum function as a calcium reservoir?, Neuroscience 3: 837–868.

    Article  PubMed  CAS  Google Scholar 

  • Duong, L. T., Fleming, P. J., and Russell, J. T., 1984, An identical cytochrome b561 is present in bovine adrenal chromaffin vesicles and posterior pituitary neurosecretory vesicles, J. Biol. Chem. 259: 4885–4889.

    PubMed  CAS  Google Scholar 

  • Dyball, R. E. J., 1974, Single unit activity in the hypothalamo-neurohypophysial system of Brattleboro rats. J. Endocr. 60: 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Dyball, R. E. J., and Kemplay, S. K., 1982, Dendritic trees of neurones in the rat supraoptic nucleus, Neuroscience 7: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Dyball, R. E. J., and Prilusky, J., 1981, Responses of supraoptic neurons in the intact and deafferented rat hypothalamus to injections of hypertonic sodium chloride, J. Physiol. (Lond.) 311: 443–452.

    CAS  Google Scholar 

  • Dyball, R. E. J., Howard, M., and Kemplay, S. K., 1979, A Golgi study of the neurosecretory neurons in the suproptic nucleus of the rat, J. Anat. 128: 417.

    Google Scholar 

  • Edwards, B. A., 1984, The activity of the hypothalamo-neurohypophysis during rehydration following water deprivation in the gerbil (Meriones unguiculatus) and the laboratory rat (Rattus norvegicus), Gen. Biochem. Physiol. 77A: 557–561.

    Article  CAS  Google Scholar 

  • Edwards, B. A., Edwards, M. E., and Thorn, N. A., 1973, The release in vitro of vasopressin unaccompanied by the axoplasmic enzymes: Lactic acid dehydrogenase and adenylate kinase, Acta Endocrinol (Copenh.) 72: 417–424.

    CAS  Google Scholar 

  • Epstein, Y., Castel, M., Glick, S. M., Sivan, N., and Ravid, R., 1983, Changes in hypothalamic and extra-hypothalamic vasopressin content of water-deprived rats, Cell Tissue Res. 233: 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Falconer, D. S., Latyszewski, M., and Isaacson, J. H., 1964, Diabetes insipidus associated with oligosyndactyly in the mouse, Genet. Res. 5: 473–488.

    Article  Google Scholar 

  • Falke, N., and Martin, R., 1985, Opioid binding in a rat neurophypophysial fraction enriched in oxytocin and vasopressin nerve endings, Neurosci. Letts. 58: 37–41.

    Article  Google Scholar 

  • Farquhar, M. G., and Palade, G. E., 1981, The Golgi apparatus (complex) (1954–1981)—from artifact to center stage, J. Cell, Biol. 91: 775–1035.

    Article  Google Scholar 

  • Fawcett, C. P., Powell, A., and Sachs, H., 1968, Biosynthesis and release of neurophysin, Endocrinology 83: 1299–1310.

    Article  PubMed  CAS  Google Scholar 

  • Feiten, D. L., and Cashner, K. A., 1979, Cytoarchitecture of the supraoptic nucleus. A Golgi study, Neuroendocrinology 29: 221–230.

    Article  Google Scholar 

  • Ferguson, A. V., Day, T. A., and Renaud, L. P., 1984, Subfornical organ efferents influence the excitability of neurohypophyseal and tuberoinfundibular paraventricular nucleus neurons in the rat, Neuroendocrinology 39: 423–428.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, A. V., Bourque, C. W., and Renaud, L. P., 1985, Subfornical organ and supraoptic nucleus connections with septal neurons in rats, Am. J. Physiol. 249:R214-R218.

    Google Scholar 

  • Fischer, H. D., Gonzalez-Noriega, A., and Sly, W. S., 1980, β-glucuronidase binding to human fibroblast membrane receptors, J. Biol. Chem. 255: 5069–5074.

    PubMed  CAS  Google Scholar 

  • Fisher, A. W. F., and Price, P. G., 1975, Retrograde axonal transport of exogenous horseradish peroxidase from the rat hypophysis, Proc. Can. Fed. Biol. Sci. 18:30.

    Google Scholar 

  • Fisher, A. W. F., Price, P. G., Burford, G. D., and Lederis, K., 1979, A 3-dimensional reconstruction of the hypothalamo-neurohypophysial system of the rat, Cell Tissue Res. 204: 343–354.

    Article  PubMed  CAS  Google Scholar 

  • Freund-Mercier, M. J., Stoeckel, M. E., Moos, F., Porte, A., and Richard, P. L., 1981, Ultrastructural study of electrophysiologically identified neurons in the paraventricular nucleus of the rat, Cell Tissue Res. 216: 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Freund-Mercier, M. J., Moos, F., Guerne, Y., and Richard, Ph., 1983, Possible control by oxytocin of periodical and synchronous neurosecretory bursts of oxytocin cells, Prog. Brain Res. 60: 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, P. J., Clements, J. A., and Funder, J. W., 1985, Localization of arginine vasopressin-neurophysin II messenger ribonucleic acid in the hypothalamus of control and Brattleboro rats by hybridization histochemistry with a synthetic pentadecamer oligonucleotide probe, Endocrinology 116: 2366–2368.

    Article  PubMed  CAS  Google Scholar 

  • Gainer, H., Same, Y., and Brownstein, M. J., 1911a, Neurophysin biosynthesis: Conversion of a putative precursor during axonal transport, Science 195: 1354–1356.

    Article  Google Scholar 

  • Gainer, H., Same, Y., and Brownstein, M. J., 1977b, Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides, J. Cell. Biol. 73: 366–381.

    Article  PubMed  CAS  Google Scholar 

  • Geis, R., Weber, E., Martin, R., and Voigt, K. H., 1982, Hypothalamo-posterior pituitary system in Brattleboro rats: Immunoreactive levels of leucine-enkephalin, dynorphin (1–17), dynorphin (1–8) and a-neoendorphin, Life Sci. 31: 1809–1812.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. P., Allen, R. D., and Sloboda, R. D., 1985, Translocation of vesicles from squid axoplasm on flagellar microtubules, Nature (Lond.) 315: 245–247.

    Article  CAS  Google Scholar 

  • Ginsberg, M., and Ireland, M., 1964, Binding of vasopressin and oxytocin to protein in extracts of bovine and rabbit neurohypophyses, J. Endocrinol. 30: 131–145.

    Article  Google Scholar 

  • Gomori, G., 1941, Observations with differential stains on human islets of Langerhans, Am. J. Pathol. 17: 395–406.

    PubMed  CAS  Google Scholar 

  • Gomori, G., 1950, Aldehyde-fuchsin: A new stain for elastic tissue, Am. J. Pathol. 20: 665–666.

    CAS  Google Scholar 

  • Gonzalez, C. B., and Rodriguez, E. M., 1980, Ultrastructure and immunocytochemistry of neurons in the supraoptic and paraventricular nuclei of the lizard Liolaemus cyanogaster. Evidence for the intracistemal location of the precursor of neurophysin, Cell Tissue Res. 207: 463–477.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C. B., Swann, R. W., and Pickering, B. T., 1981, Effects of tunicamycin on the hypothalamo-neurohypophysial system of the rat, Cell Tissue Res. 217: 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Grafstein, B., and Forman, D. S., 1980, Intracellular transport in neurons, Physiol. Rev. 60: 1167–1283.

    PubMed  CAS  Google Scholar 

  • Grainger, F., and Sloper, J. C., 1974, Correlation between microtubular number and transport activity, Cell Tissue Res. 153: 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Grainger, F., and Sloper, J. C., 1976, Microtubular number in the tractus hypophyseus of newborn normal rats and newborn rats with congenital diabetes insipidus, Cell Tissue Res. 169: 405–414.

    Article  PubMed  CAS  Google Scholar 

  • Gratzl, M., Dahl, G., Russell, J. T., and Thom, N. A., 1977, Fusion of neurohypophyseal membranes in vitro, Biochem. Biophys. Acta 470: 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Gratzl, M., Russell, J. T., and Thorn, N. A., 1983, Stimulation-dependent uptake of an extracellular marker to subcellular fractions of isolated neurohypophysial tissue, Experientia 39: 1007–1009.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, W. A., Tweedle, C. D., and Hatton, G. I., 1980, Ultrastructure of neurons in the paraventricular nucleus of normal, dehydrated and rehydrated rats, Brain Res. Bull. 5: 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Guldenaar, S. E. F., Nahke, P., and Pickering, B. T., 1986, Immunocytochemical evidence for the presence of a mutant vasopressin precursor in the supraoptic nucleus of the homozygous Brattleboro rat, Cell Tissue Res. 244: 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L., Wolf, P., and Nussbaumer, J.-C, 1975, Histamine: action on supraoptic and other hypothalamic neurones in the cat, Brain Res. 88: 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, A., Guaraldo, S. P., Pelletier, G., Brasiliero, I. L. G., and Marchi, F., 1980, Glycoprotein secretion in the hypothalamo-neurohyophysial system of the rat, Cell Tissue Res. 209: 399–422.

    Article  PubMed  CAS  Google Scholar 

  • Haller, E. W., and Wakerley, J. B., 1980, Electrophysiological studies of paraventricular and supraoptic neurones recorded in vitro from slices of rat hypothalamus, J. Physiol. (Lond.) 302: 347–362.

    CAS  Google Scholar 

  • Hamamura, M., Shibuki, K., and Yagi, K., 1982, Amygdalar inputs to ADH-secreting supraoptic neurons in rats, Exp. Brain Res. 48: 420–428.

    Article  PubMed  CAS  Google Scholar 

  • Hand, A. R., and Oliver, C., 1977, Cytochemical studies of GERL and its role in secretory granule formation in exocrine cells, Histochem. J. 9: 375–392.

    Article  PubMed  CAS  Google Scholar 

  • Hanley, M. R., Benton, H. P., Lightman, S. L., Todd, K., Bones, E. A., Fretten, P., Palmer, S., Kirk, C. J., and Michell, R. H., 1984, A vasopressin-like peptide in the mammalian sympathetic nervous system, Nature (Lond.) 309: 258–261.

    Article  CAS  Google Scholar 

  • Harris, M. C., 1978, The concept of the neuroendocrine reflex, in: Cell Biology of Hypothalamic Neurosecretion (J. D. Vincent and C. Kordon, eds.), CNRS, Paris, pp. 47–51.

    Google Scholar 

  • Hartmann, B. K., Swanson, L. W., Raichle, M. E., Preskorn, S. H., and Clark, H. B., 1980, Central adrenergic regulation of cerebral micro vascular permeability and blood flow; anatomic and physiologic evidence, Adv. Exp. Med. Biol. 131: 113–126.

    Google Scholar 

  • Hatton, G. I., 1976, Nucleus circularis: Is it an osmoreceptor in the brain?, Brain Res. Bull. 1: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Hatton, G. I., and Tweedle, C. D., 1982, Magnocellular neuropeptidergic neurons in hypothalamus: Increase in membrane apposition and number of specialized synapses from pregnancy to lactation, Brain Res. Bull. 8: 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Hatton, G. I., and Walters, J. K., 1973, Induced multiple nucleoli, nucleolar margination and cell size changes in supraoptic neurons during dehydration and rehydration, Brain Res. 59: 137–154.

    Article  PubMed  CAS  Google Scholar 

  • Hatton, G. I., Hutton, U. E., Hoblitzell, E. R., and Armstrong, W. E., 1976, Morphological evidence for two populations of magnocellular elements in the rat paraventricular nucleus, Brain Res. 108: 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Hatton, G. I., Ho, Y. W., and Mason, W. T., 1983, Synaptic activation of phasic bursting in rat supraoptic nucleus neurones recorded in hypothalamic slices, J. Physiol. (Lond.) 345: 297–317.

    CAS  Google Scholar 

  • Hatton, G. I., Perlmutter, L. S., Salm, A. K. and Tweedle, C. D., 1984, Dynamic neuronal-glial interactions in hypothalamus and pituitary: Implications for control of hormone synthesis and release, Peptides 5 (Suppl. 1): 121–138.

    Google Scholar 

  • Hatton, G. I., Cobbett, P., and Salm, A. K., 1985, Extranuclear axon collaterals of paraventricular neurons in the rat hypothalamus: Intracellular staining, immunocytochemistry and electrophysiology, Brain Res. Bull. 14: 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Hayward, J. N., 1974, Physiological and morphological identification of hypothalamic magnocellular neuroendocrine cells in goldfish preoptic nucleus, J. Physiol. (Lond.) 239: 103–124.

    CAS  Google Scholar 

  • Hayward, J. N., 1977, Functional and morphological aspects of hypothalamic neurons, Physiol. Rev. 57: 574–658.

    PubMed  CAS  Google Scholar 

  • Hayward, J. N., and Vincent, J. D., 1970, Osmosensitive single neurones in the hypothalamus of unanaesthetised monkeys, J. Physiol. (Lond.) 210: 947–972.

    CAS  Google Scholar 

  • Heap, P. F., Jones, C. W., Morris, J. F., and Pickering, B. T., 1975, Movement of neurosecretory product through the anatomical compartments of the neural lobe of the pituitary gland, Cell Tissue Res. 156: 483–497.

    Article  PubMed  CAS  Google Scholar 

  • Heritage, A. S., Stumpf, W. E., Sar, M., and Grant, L. D., 1980, Brainstem catecholamine neurons are target sites for sex steroid hormones, Science 207: 1377–1399.

    PubMed  CAS  Google Scholar 

  • Hild, W., 1951, Experimentell-morphologische Untersuchungen Uber das verhalten der “neurosecretorischen bahn” nach hypophysentieldurch frennagen, eingriften in den Wasserhaushalt und belastung der osmoregulation, Virchows Arch. Pathol. Anat. Physiol. 319: 526–546.

    Article  CAS  Google Scholar 

  • Hild, W., and Zetler, G., 1953, Experimenteller Beweis fur die Enstehung der sogenannten Hypophysenhinterlappenwirkstoffe im Hypothalamus, Pflugers Arch. 257: 169–201.

    Article  PubMed  CAS  Google Scholar 

  • Hindelang-Gertner, C., Stoeckel, M.-E., Porte, A., and Stutinsky, F., 1976, Colchicine effects on neurosecretoru neurons and other hypothalamic and hypophysial cells, with special reference to changes in cytoplasmic membranes, Cell Tissue Res. 170: 17–41.

    Article  PubMed  CAS  Google Scholar 

  • Hoblitzell, E. R., Hatton, G. I., and Armstrong, W. E., 1976, Paraventricular nucleus: Changes in the medial and lateral cell groups during dehydration and rehydration in the rat, Brain Res. Bull. 1: 329–332.

    Article  Google Scholar 

  • Höllt, V., Haarmann, I., Seizinger, B. R., and Herz, A., 1981, Levels of dynorphin-(l–13) immunoreactivity in rat neurointermediate pituitaries are concomitantly altered with those of leucine enkephalin and vasopressin in response to various endocrine manipulations, Neuroendocrinology 33: 333–339.

    Article  PubMed  Google Scholar 

  • Hoover, D. B., Hancock, J. C., and Tally, N. S., 1981, Binding of [3H]-quinuclidinyl benzylate to regions of rat pituitary and hypothalamus, Brain Res. 6: 209–211.

    CAS  Google Scholar 

  • Iijima, K., and Ogawa, T., 1980a, An HRP study on the cell types and their regional topography within the locus coeruleus innervating the supraoptic nucleus of the rat, Acta Histochem. 67: 127–138.

    Article  PubMed  CAS  Google Scholar 

  • Iijima, K., and Ogawa, T., 1980b, Demonstration of projections from locus coeruleus to supraoptic necleus by the HRP method with special reference to cell types in the rat, Acta Histol. Jpn. 43: 411–421.

    Article  CAS  Google Scholar 

  • Iversen, I. L., Iversen, S. D., and Bloom, F. E., 1980, Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis, Nature (Lond.) 284: 350–351.

    Article  CAS  Google Scholar 

  • Johnson, A. K., 1985, The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis, Brain Res. Bull. 15: 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, A. K., and Buggy, J., 1978, Periventricular preoptic-hypothalamus is vital for thirst and normal water economy, Am. J. Physiol. 234: R122–R129.

    PubMed  CAS  Google Scholar 

  • Johnson, J. A., Zehr, J. E., and Moore, W. W., 1970, Effects of separate and concurrent osmotic and volume stimuli on plasma ADH in sheep, Am. J. Physiol. 218: 1273–1280.

    PubMed  CAS  Google Scholar 

  • Jones, B. E., and Moore, R. Y., 1977, Ascending projections of the locus coeruleus of the rat. II. Autoradiographic study, Brain Res. 127: 23–53.

    Article  Google Scholar 

  • Jones, C. W., and Pickering, B. T., 1969, Comparison of the effect of water deprivation and sodium chloride inhibition on the hormone content of the neurohypophysis of the rat, J. Physiol. (Lond.) 203: 449–458.

    CAS  Google Scholar 

  • Jones, C. W., and Pickering, B. T., 1970, Rapid transport of neurohypophysial hormones in the hypothalamo-neurohypophysial tract, J. Physiol. (Lond.) 208:73-74P.

    Google Scholar 

  • Jones, C. W., and Pickering, B. T., 1972, Intra-axonal transport and turnover of neurohypophysial hormones in the rat, J. Physiol. (Lond.) 227: 553–564.

    CAS  Google Scholar 

  • Jongkind, J. F., and Swaab, D. F., 1967, The distribution of thiaminea-diphosphate-phosphohydrolase in the neurosecretory nuclei of the rat following osmotic stress, Histochemie 11: 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Juss, T. S., and Wakerley, J. B., 1981, Mesencephalic areas controlling pulsatile oxytocin release in the suckled rat, J. Endocrinol. 91: 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Kaelber, W. W., and Leeson, C. R., 1967, A degeneration and electron microscopic study of the nucleus hypothalamicu ventromedialis of the cat, J. Anat. 101: 209–221.

    PubMed  CAS  Google Scholar 

  • Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S., and Numa, S., 1982, Cloning and sequence analysis of cDNA for porcine β-neoendorphin/dynorphin precursor, Nature (Lond.) 298: 245–249.

    Article  CAS  Google Scholar 

  • Kalimo, H., 1971, Ultrastructural studies on the hypothalamic neurosecretory neurons of the rat. I. The paraventricular neurones of the non-treated rat, Z. Zellforsch. Mikrosk. Anat. 122: 283–300.

    Article  PubMed  CAS  Google Scholar 

  • Kalimo, H., 1975, Ultrastructural studies on the hypothalamic neurosecretory neurons of the rat. III. Paraventricular and supraoptic neurones during lactation and dehydration, Cell Tissue Res. 163: 151–168.

    Article  PubMed  CAS  Google Scholar 

  • Kalimo, H., and Rinne, U. K., 1972, Ultrastructural studies on the hypothalamic neurosecretory neurons of the rat. II. The hypothalamoneurohypophysial system in rats with hereditary hypothalamic diabetes insipidus, Z. Zellforsch. Mikrosk. Anat. 134: 205–225.

    Article  PubMed  CAS  Google Scholar 

  • Kannan, H., and Yamashita, H., 1985, Connections of neurons in the region of the nucleus tractus solitarius with the hypothalamic paraventricular nucleus: their possible involvement in neural control of the cardiovascular system in rats, Brain Res. 329: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Kannan, H., Yamashita, H., and Osaks, T., 1984, Paraventricular neurosecretory neurons: Synaptic inputs from the ventrolateral medulla, Neurosci. Lett. 51: 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Kannan, H., Yamashita, H., and Inenaga, K., 1985, Neural connections between the hypothalamic paraventricular nucleus and the autonomic centres in the brainstem and spinal cord with particular reference to cardiovascular function: An electrophysiological study in rats and cats, Gunma Symp. Endocrinol 22: in press.

    Google Scholar 

  • Karcsú, S., László, F. A., Jancsó, G., Tóth, L., and Bácsy, E., 1982, Morphological evidence for the involvement of calcium in neurohypophyseal hormone release, Brain Res. 238: 278–281.

    Article  PubMed  Google Scholar 

  • Karcsú, S., László, F. A., Tóth, L. Jancsó, G., and Bácsy, E., 1983, Calcium-containing mitochondrial granules in neurohypophysial axon terminals disappear following vasopressin treatment of Brattleboro rats, Neurosci. Lett. 39: 181–186.

    Article  PubMed  Google Scholar 

  • Katz, F. N., Rothman, J. E., Lingappa, V. R., Blobel, G., and Lodish, H. F., 1977, Membrane assembly in vitro: Synthesis, glycosylation, and asymmetric insertion of a transmembrane protein, Proc. Natl. Acad. Sci. USA 74: 3778–3782.

    Google Scholar 

  • Kaufman, S., 1981, Control of fluid intake in pregnant and lactating rats, J. Physiol (Lond.) 318: 9–16.

    CAS  Google Scholar 

  • Kawata, M., Ueda, S., and Sano, Y., 1983, Two types of oxytocin and vasopressin nerve fibres in the intra-and extrahypothalamic neuronal systems as revealed by immunocytochemistry, Acta, Anat. 116: 193–200.

    Article  CAS  Google Scholar 

  • Kent, C., and Williams, M. A., 1974, The nature of hypothalamoneurohypophyseal neurosecretion in the rat. A study by light-and electron-microscope autoradiography, J. Cell Biol. 60: 554–570.

    Article  PubMed  CAS  Google Scholar 

  • Kent, D. L., and Sladek, J. R., Jr., 1978, Histochemical, pharmacological and microspectrofluoreimetric analysis of new sites of serotonin localization in rat hypothalamus, J. Comp. Neurol. 180: 221–236.

    Article  PubMed  CAS  Google Scholar 

  • Kilcoyne, M. M., Hoffman, D. L., and Zimmerman, E. A., 1980, Immunocytochemical localization of angiotensin II and vasopressin in rat hypothalamus: Evidence for production in the same neuron, Clin. Sci. 59: 575–605.

    Google Scholar 

  • Kimura, T., McGeer, P. L., Peng, J. H., and McGeer, E. G., 1981, The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat, J. Comp. Neurol. 200: 151–201.

    Article  PubMed  CAS  Google Scholar 

  • Knepel, W., and Meyer, D. K., 1983, The effect of naloxone on vasopressin release from rat neurohypophysis incubated in vitro, J. Physiol. (Lond.) 341: 507–515.

    CAS  Google Scholar 

  • Koh, E. T., and Ricardo, J. A., 1979, Connections of hypothalamic neurosecretory nuclei with visceral sensory structures in the brainstem of the rat, Soc. Neurosci. Abst. 5: 450.

    Google Scholar 

  • Koh, E. T., and Ricardo, J. A., 1980, Paraventricular nucleus of the hypothalamus: Anatomical evidence for ten functionally discrete subdivisions, Soc. Neurosci. Abst. 6: 521.

    Google Scholar 

  • Kondo, H., Pappas, G. D., and Wolosewick, J. J., 1983, The cytoskeletal lattice of the neurohypophysial cells, Biol. Cell. 49: 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski, G. P., 1982, Frontiers in Hormone Research 9: 105–118

    CAS  Google Scholar 

  • Krettek, J. E., and Price, J. L., 1978, Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat, J. Comp. Neurol. 178: 255–280.

    Article  PubMed  CAS  Google Scholar 

  • Krisch, B., 1976, Immunohistochemical and electron microscopic study of the rat hypothalamic nuclei and cell clusters under various experimental conditions. Possible sites of hormone release, Cell Tissue Res. 174: 109–127.

    Article  PubMed  CAS  Google Scholar 

  • Krisch, B., 1977, Electronmicroscopic immunocytochemical study on the vasopressin-containing neurons of the thirsting rat, Cell Tissue Res. 184: 237–247.

    Article  PubMed  CAS  Google Scholar 

  • Krisch, B., 1979, Indication for a granule-free form of vasopressin in immobilization-stressed rats, Cell Tissue Res. 197: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Krisch, B., 1980a, Electron microscopic immunocytochemical investigation on the postnatal development of the vasopressin system in the rat, Cell Tissue Res. 205: 453–471.

    PubMed  CAS  Google Scholar 

  • Krisch, B., 1980b, Immunocytochemistry of neuroendocrine systems, Prog. Histochem. Cytochem. 13: 1–163.

    Article  PubMed  CAS  Google Scholar 

  • Krisch, B., Becker, K., and Bargmann, W., 1972, Exocytose im Hinterlappen der Hypophyse, Z. Zellforsch. 123: 47–54.

    Article  CAS  Google Scholar 

  • Krisch, B., Nahke, P., and Richter, D., 1986, Immunocytochemical staining of supraoptic neurons from homozygous Brattleboro rats by use of antibodies against two domains of the mutated vasopressin precursor, Cell Tissue Res. 244: 351–388.

    Article  PubMed  CAS  Google Scholar 

  • Kurosumi, K., 1977, Morphological and morphometric studies on the ultrastructural changes during active release of neurosecretory substance from the neurohypophyseal nerve terminals in dehydrated rats, Arch. Histol. Jpn. 40: 225.

    Article  PubMed  CAS  Google Scholar 

  • LaFarga, M., Palacios, G., and Perez, R., 1975, Morphological aspects of the functional synchronisation of supraoptic nucleus neurones, Experientia 31: 348–349.

    Article  PubMed  CAS  Google Scholar 

  • Lauber, M., Nicholas, P., Boussetta, H., Fahy, C., Béguin, P., Camier, M., Vaudry, H., and Cohen, P., 1981, The Mr 80,000 common forms of neurophysin and vasopressin from bovine neurohypophysis have corticotropin-and β-endorphin-like sequences and liberate by proteolysis biologically active corticotropin, Proc. Natl. Acad. Sci. USA 78: 6086–6090.

    Article  PubMed  CAS  Google Scholar 

  • LeClerc, R., and Pelletier, G., 1974, Electron microscope immunocytochemical localization of vasopressin in the hypothalamus and neurohypophysis of the normal and Brattleboro rat, Am. J. Anat. 140: 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., 1980, Rat supraoptic neurones: The effects of locally applied hypertonic saline, J. Physiol. (Lond.) 304: 405–414.

    CAS  Google Scholar 

  • Leng, G., 1981a, The effects of neural stalk stimulation upon firing patterns in rat supraoptic neurones, Exp. Brain Res. 41: 135–145.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., 1981b, Phasically firing neurones in the lateral hypothalamus of anaesthetized rats, Brain Res. 230: 390–393.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., 1982, Lateral hypothalamic neurones: osmosensitivity and the influence of activating magnocellular neurosecretory neurones, J. Physiol. (Lond.) 326: 35–48.

    CAS  Google Scholar 

  • Leng, G., and Dyball, R. E. J., 1984, Altered baroreceptor inputs to the supraoptic nucleus of the Brattleboro rat, Exp. Brain Res. 54: 571–574.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., and Mason, W. T., 1982, Influence of vasopressin upon firing patterns of supraoptic neurons: a comparison of normal and Brattleboro rats, Ann. NY. Acad. Sci. 394: 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., and Wiersma, J., 1981, Effects of neural stalk stimulation in phasic discharge of supraoptic neurones in Brattleboro rats devoid of vasopressin, J. Endocrinol. 90: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., Mason, W. T., and Dyer, R. G., 1982, The supraoptic nucleus as an osmoreceptor, Neuroendocrinology 34: 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Leranth, C. S., Zaborsky, L., Marton, J., and Palkovits, M., 1975, Quantitative studies on the supraoptic nucleus of the rat. I. Synaptic organization, Exp. Brain Res. 22: 509–523.

    Article  PubMed  CAS  Google Scholar 

  • Lescure, H., and Nordmann, J. J., 1980, Neurosecretory granule release and endocytosis during prolonged stimulation of the rat neurohypophysis in vitro, Neuroscience 5: 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Liard, J. F., Dolci, W., Valloton, M. B., 1984, Plasma vasopressin levels after infusions of hypertonic saline solutions into the neural, portal, carotid or systemic circulation in conscious dogs, Endocrinology 114: 986–986.

    Article  CAS  PubMed  Google Scholar 

  • Lightman, S. L., Todd, K., and Everitt, B., 1983a, Role for lateral tegmental noradrenergic neurons in the vasopressin response to hypertonic saline Neurosci. Lett. 42: 55–59.

    Article  PubMed  CAS  Google Scholar 

  • Lightman, S. L., Ninkovic, M., Hunt, S. P., and Iverson, L. L., 1983b, Evidence for opiate receptors on pituicytes, Nature (Lond.) 305: 235–237.

    Article  CAS  Google Scholar 

  • Lim, A. T. W., Lolait, S. J., Barlow, J. W., Autelitano, D. J., Toh, B. H., Boublik, J., Abrahams, J., Johnston, C. I., and Funder, J. W., 1984, Immunoreactive arginine-vasopressin in Brattleboro rat ovary, Nature (Lond.) 310: 61–64.

    Article  CAS  Google Scholar 

  • Lind, R. W., Ohman, L. E., Lansing, M. B., and Johnson, A. K., 1983, Transection of subfornical organ neural connections diminishes the pressor response to intravenously infused angiotensin II, Brain Res. 275: 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Livingston, A., 1973, Ultrastructure of the rat neural lobe during recovery from hypertonic saline treatment, Z. Zellforsch, Mikrosk. Anat. 137: 361–374.

    Article  CAS  Google Scholar 

  • Livingston, A., 1975, Morphology of the perivascular regions of the rat neural lobe in relation to hormone release, Cell Tissue Res. 159: 551–561.

    Article  PubMed  CAS  Google Scholar 

  • Loewy, A. D., and Saper, C. B., 1978, Efferent projections of the locus coeruleus, Soc. Neurosci. Abst. 4: 277.

    Google Scholar 

  • Loewy, A. D., Wallach, J. H., and McKellar, S., 1981, Efferent connections of the ventral medulla, Brain Res. Rev. 3: 63–80.

    Article  Google Scholar 

  • Loizou, L., 1969, Projections of the nucleus locus coeruleus in the albino rat, Brain Res. 15: 563–566.

    Article  PubMed  CAS  Google Scholar 

  • Long, J. B., and Holoday, J. W., 1985, Blood-brain barrier: Endogenous medulation by adreno-cortical function, Science 227: 1580–1583.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, R. G., Evans, C. J., and Barchas, J. D., 1985, Effects of dehydration on pro-dynorphin derived peptides in the neurointermediate lobe of the rat pituitary, Life Sci. 37: 1523–1528.

    Article  PubMed  CAS  Google Scholar 

  • Lu, L., Cantin, M., Seidah, N. G., and Chretien, M., 1982, Immunohistochemical localization of human pituitary glycopeptide (HPGP)-like immunoreactivity in the hypothalamus and pituitary of normal and homozygous diabetes insipidus (Brattleboro) rats, J. Histochem. Cytochem. 30: 999–1003.

    Article  PubMed  CAS  Google Scholar 

  • LuQui, I. J., and Fox, C. A., 1976, The supraoptic nucleus and the supraopticohypophysial tract in the monkey (Macaca mulatta), J. Comp. Neurol. 168: 7–40.

    CAS  Google Scholar 

  • Lutz-Bucher, B., and Koch, B., 1980, Evidence for a direct inhibitory effect of morphine on the secretion of posterior pituitary hormones, Eur. J. Pharmacol. 66: 375–378.

    Article  PubMed  CAS  Google Scholar 

  • Majzoub, J. A., 1985, Vasopressin biosynthesis, in: Vasopressin (R. W. Schrier, ed.), Raven, New York, pp. 465–474.

    Google Scholar 

  • Mangiapane, M. L., Thrasher, T. N., Keil, L. C., Simpson, J. B., and Ganong, W. F., 1983, Deficits in drinking and vasopressin secretion after lesions of the nucleus medianus, Neuroendocrinology 37: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Mangiapane, M. L., Thrasher, T. N., Keil, L. C., Simpson, J. B., and Ganong, W. F., 1984, Role for the subfornical organ in vasopressin release, Brain Res. Bull. 13: 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R., and Voigt, K. H., 1981, Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis, Nature (Lond.) 289: 502–504.

    Article  CAS  Google Scholar 

  • Martin, M., and Voigt, K. H., 1982, Leucine-enkephaline-like immunoreactivity in vasopressin terminals is enhanced by treatment with peptidases, Life Sci. 31: 1729–1732.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R., Moll, V., and Voigt, K. H., 1983a, An attempt to characterize by immunocytochemical methods the enkephalin-like material in oxytocin endings of the rat neurohypophysis, Life Sci. 33 (Suppl. l): 69–72.

    Google Scholar 

  • Martin, R., Geis, R., Holl, R., Schaefer, M., and Voigt, K. H., 1983b, coexistence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: Immunoreactive methionineenkephalin, leucine-enkephalin and cholecystokinin-like substances, Neuroscience 8: 213–227.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W. T., 1980, Supraoptic neurons of rat hypothalamus are osmotically sensitive, Nature (Lond.) 287: 154–157.

    Article  CAS  Google Scholar 

  • Mason, W. T., 1983, Control of neurosecretory cell activity in the hypothalamic slice preparation, Prog. Brain Res. 60: 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W. T., Ho, Y. W., Eckenstein, F., and Hatton, G. I., 1983, Mapping cholinergic neurons associated with rat supraoptic nucleus: Combined immunocytochemical and histochemical identification, Brain Res. Bull. 11: 617–626.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W. T., Ho, Y. W., and Hatton, G. I., 1984, Axon collaterals of supraoptic neurones: Anatomical and electrophysiological evidence for their existence in the lateral hypothalamus, Neuroscience 11: 169–182.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W. T., Hatton, G. I., Ho, Y. W., Chapman, C., Robinson, I. C. F., 1986, Central release of oxytocin, vasopressin and neurophysin by magnocellular neurone depolarization: evidence in slices of guinea pig and rat hypothalamus, Neuroendocrinology 42: 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Mathison, R., and Lederis, K., 1978, Modification by cAMP and phosphodiesterase inhibitors of potassium-stimulated vasopressin release from the isolated neural lobe and the hypothalamoneurohypophyseal system in vitro, in: Current Studies of Hypothalamic Function (Lederis, K. and Veale, W. L., eds.), Karger, Basel, pp. 88–97.

    Google Scholar 

  • Matthews, E. K., Legros, J. J., Grau, J. D., Nordmann, J. J., and Dreifuss, J. J., 1973, The release of neurohypophysial hormones by exocytosis, Nature New Biol. 241: 86–88.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, J. T., Morrell, J. I., and Pfaff, D. W., 1986a, Measurement of expression of the vasopressin and oxytocin genes in single neurons by in situ hybridization, in: Neuroendocrine Molecular Biology (Fink, G., Harmar, A. J., and McKerns, K. W., eds.), Plenum Press, New York, pps. 219–229.

    Google Scholar 

  • McCabe, J. T., Morrell, J. I., Richter, D., and Pfaff, D. W., 1986b, Localization of neuroendocrinologically relevant RNA in brain by in situ hybridization, in: Frontiers in Neuroendocrinology, Vol. 9 (Ganong, W. F., and Martini, L., eds.), Raven Press, New York, pps. 149–167.

    Google Scholar 

  • McKellar, S., and Loewy, A. D., 1981, Organisation of some brain stem afférents to the paraventricular nucleus of the hypothalamus in the rat, Brain Res. 217: 351–357.

    Article  PubMed  CAS  Google Scholar 

  • McNeill, T. H., and Sladek, J. R., Jr., 1980a, Simultaneous monamine histofluorescence and neuropeptide immunocytochemistry. I. Correlative distribution of catecholamine varicosities and magnocellular neurosecretory neurons in the rat supraoptic and paraventricular nuclei, J. Comp. Neurol. 193: 1023–1033.

    Article  PubMed  CAS  Google Scholar 

  • McNeill, T. H., and Sladek, J. R., Jr., 1980b, Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. V. A methodology for examining correlative monoamine-neuropeptide neuroanatomy, Brain Res. Bull. 5: 599–608.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D. K., Oertel, W. H., and Brownstein, M. J., 1980, Deafferentation studies on the glutamic acid decarboxylase content of the supraoptic nucleus of the cat, Brain Res. 200: 566–569.

    Article  Google Scholar 

  • Mezey, E., Seidah, N. G., Chrétien, M., and Brownstein, M. J., 1986, Demonstration of the vasopressin associated glycopeptide in the brain and peripheral tissue of the Brattleboro rat Neuropeptides 7: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Millan, M. J., Millan, M. H., and Herz, A., 1983, Contribution of the supraoptic nucleus to brain and pituitary pools of immunoreactive vasopressin and particular opioid peptides, and the interrelationships between these, in the rat, Neuroendocrinology 36: 310–319.

    Article  PubMed  CAS  Google Scholar 

  • Millan, M. H., Millan, M. J., and Herz, A., 1984, The hypothalamic paraventricular nucleus: Relationship to brain and pituitary pools of vasopressin and oxytocin as compared to dynorphin, β-endorphin and related opioid peptides in the rat, Neuroendocrinology 38: 108–116.

    Article  PubMed  CAS  Google Scholar 

  • Mulhouse, O. E., 1980, A Golgi anatomy of the rodent hypothalamus, in: Handbook of Hypothalamus, Vol. 1 (P. J. Morgane and S. Penksepp, eds.), Dekker, New York, pp. 221–265.

    Google Scholar 

  • Miselis, R. R., 1981, Efferent projections of the subfornical organ of the rat: A circumventricular organ within a neural network subserving water balance, Brain Res. 230: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Miselis, R. R., Shapiro, R. E., and Hand, P. J., 1979, Subfornical organ efferents to neural systems for control of body water, Science 205: 1022–1024.

    Article  PubMed  CAS  Google Scholar 

  • Mohr. E., Hilliers, M., Ivell, R., Haulica, I. D., and Richter, D., 1985, Expression of vasopressin and oxytocin genes in human hypothalamus, FEBS Lett. 193: 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Monroe, B. G., and Scott, D. E., 1966, Ultrastructural changes in the neural lobe of the hypophysis of the rat during lactation and suckling, J. Ulstrastruct. Res. 14: 497–517.

    Article  CAS  Google Scholar 

  • Moore, R. Y., Halaris, A. E., and Jones, B. E., 1978, Serotonin neurons of the midbrain raphe: Ascending projections, J. Comp. Neurol. 180: 417–438.

    Article  PubMed  CAS  Google Scholar 

  • Moos, F., Freund-Mercier, M. J., Guerné, Y., Stoeckel, M. E., and Richard, P. M., 1984, Release of oxytocin and vasopressin by magnocellular nuclei in vitro: Specific facilitatory effect of oxytocin on its own release, J. Endocrinol. 102: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., 1974, On the nature of hypothalamo-neurohypophysial neurosecretory granules: Inferences from their appearance after different fixation procedures, in: Neurosecretion—The Final Neuroendocrine Pathway (F. Knowles and L. Vollrath, eds.), p. 314. Springer-Verlag, New York.

    Google Scholar 

  • Morris, J. F., 1976a, Hormone storage in individual neurosecretory granules of the pituitary gland: A quantitative ultrastructural approach to hormone storage in the neural lobe, J. Endocrinol 68: 209–224.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., 1976b, Distribution of neurosecretory granules among the anatomical compartments of the neurosecretory processes of the pituitary gland: A quantitative ultrastructural approach to hormone storage in the neural lobe, J. Endocrinol. 68: 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., 1982, The Brattleboro magnocellular neurosecretory system: A model for the study of peptidergic neurons, NY. Acad. Sci. 394: 54–71.

    Article  CAS  Google Scholar 

  • Morris, J. F., 1983, Organization of neural inputs to the supraoptic and paraventricular nuclei: Anatomical aspects, Prog. Brain Res. 60: 3–18.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., and Cannata, M. A., 1973, Ultrastructural preservation of the dense core of posterior pituitary neurosecretory granules and its implications for hormone release, J. Endocrinol. 57: 517–529.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., and Dyball, R. E. J., 1974, A quantitative study of the ultrastructural changes in the hypothalamo-neurohypophysial system during and after experimentally induced hypersecretion, Cell Tissue Res. 149: 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., and Nordmann, J. J., 1979, Lysosomal control in neurosecretion: The roles of cellular compartmentation and granule age, Biol. Cell 36: 193–200.

    Google Scholar 

  • Morris, J. F., and Nordmann, J. J., 1980, Membrane recapture after hormone release from nerve endings in the neural lobe of the rat pituitary gland, Neuroscience 5: 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., and Nordmann, J. J., 1982, Membrane retrieval by vacuoles after exocytosis in the neural lobe of Brattleboro rats, Neuroscience 7: 1631–1639.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. F., Goldsmith, P. C., and Rorvik, M, 1976, Immunohistochemical evidence for intragranular maturation of neurosecretory product, Physiologist 19: 303.

    Google Scholar 

  • Morris, J. F., Sokol, H. W., and Valtin, H., 1977, One neuron—one hormone? Recent evidence from Brattleboro rats, in: Neurohypophysis (A. M. Moses and Share, L., eds.), Karger, Basel, pp. 58–66.

    Google Scholar 

  • Morris, J. F., Nordmann, J. J., and Dyball, R. E. J., 1978, Structure-function correlation in mammalian neurosecretion, Int. Rev. Exp. Pathol. 18: 1–95.

    PubMed  CAS  Google Scholar 

  • Morris, J. F., Nordmann, J. J., and Shaw, F. D., 1981, Granules, microvesicles, and vacuoles: their roles in the functional compartments of the neural lobe, in: Neurosecretion. Molecules, Cells, Systems (D. S. Farner and K. Lederis, eds.), Plenum, New York, pp. 187–196.

    Google Scholar 

  • Moses, A. M., and Miller, M., 1970, Accumulation and release of pituitary vasopressin in rats heterozygous for hypothalamic diabetes insipidus, Endocrinology 68: 34–41.

    Article  Google Scholar 

  • Müller, J. R., Thorn, N. A., and Torp-Pederson, C., 1975, Effects of calcium and sodium on vasopressin release in vitro induced by a prolonged potassium stimulation, Acta Endocrinol. (Copenh.) 79: 51–59.

    Google Scholar 

  • Murthy, A. S. N., Mains, R. E., and Eipper, B. A., 1985, Purification and characterization of peptidylglycine-amidating monooxygenases from bovine neurointermediate pituitaries, J. Biol. Chem. 261: 1815–1822.

    Google Scholar 

  • Nagasawa, J., Douglas, W. W., and Schulz, R. A., 1971, Micropincytotic origin of coated and smooth microvesicles (“synaptic vesicles”) in neurosecretory terminal of posterior pituitary glands demonstrated by incorporation of horseradish peroxidase, Nature (Lond.) 232: 341–342.

    Article  CAS  Google Scholar 

  • Naik, D. V., and Sokol, H. W., 1970, The hypothalamohypophyseal neurosecretory system in mice with vasopressin-resistant urinary concentrating defects, Gen. Comp. Endocrinol. 15: 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Nakada, H., and Nakai, Y., 1985, Electron microscopic examination of the catecholaminergic innervation of neurophysin-or vasopressin-containing neurons in the rat hypothalamus, Brain Res. 361: 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, H. D., Swann, R. W., Burford, G. D., Wathes, D. C., Porter, D. G., and Pickering, B. T., 1983, More steroidogenic tissues containing oxytocin and vasopressin: human testis and fetal adrenal, Acta Endocrinol. (Copenh.) 103 (Suppl. 256):243.

    Google Scholar 

  • Nicoll, R. A., and Barker, J. L., 1971, The pharmacology of recurrent inhibition in the supraoptic neurosecretory system, Brain Res. 35: 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka, R. S., Zambrano, P., and Bern, H. A., 1970, Electron microscope radioautography of amino acid incorporation by supraoptic neurons of the rat, Gen. Comp. Endocrinol. 15: 477–495.

    Article  PubMed  CAS  Google Scholar 

  • Noble, R., and Wakerley, J. B., 1982, Behaviour of phasically active supraoptic neurones in vitro during challenge with sodium chloride or mannitol, J. Physiol (Lond.) 327:47P.

    Google Scholar 

  • Nordmann, J. J., 1976, Evidence for calcium activation during hormone release in the rat neurohypophysis, J. Exp. Biol. 65: 669–683.

    PubMed  CAS  Google Scholar 

  • Nordmann, J. J., 1977, Ultastructural morphometry of the rat neurohypophysis, J. Anat. 123: 213–218.

    PubMed  CAS  Google Scholar 

  • Nordmann, J. J., 1982, Evidence for an aging process within neurosecretory granules, in: Vasopressin, Corticotiberin and ACTH-Related Peptides (A. J. Baertschi and J. J. Dreifuss, eds.), Academic, London, pp. 11–20.

    Google Scholar 

  • Nordmann, J. J., 1983, Stimulus-secretion coupling, Prog. Brain Res. 60: 281–304.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., 1985, Hormone content and the movement of neurosecretory granules in the rat neural lobe during and after dehydration, Neuroendocrinology 40: 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., and Cazalis, M., 1982, Identification of newly-formed and aged neurosecretory granules, Gen. Comp. Endocrinol. 46: 368a.

    Google Scholar 

  • Nordmann, J. J., and Chevallier, J., 1981, On the role of microvesicles in buffering Ca2+ in the neurohypophysis, Nature (Lond.) 287: 54–56.

    Article  Google Scholar 

  • Nordmann, J. J., and Dyball, R. E. J., 1978, Effects of veratridine on Ca fluxes and the release of oxytocin and vasopressin from isolated rat neurohypophysis, J. Gen. Physiol. 72: 297–304.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., and Labouesse, J., 1981, Neurosecretory granules: Evidence for an aging process within the neurohypophysis, Science 211: 595–597.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., and Morris, J. F., 1976, Membrane retrieval at neurosecretory axon endings, Nature (Lond.) 261: 723–725.

    Article  CAS  Google Scholar 

  • Nordmann, J. J., and Morris, J. F., 1982, Neurosecretory granules, in: Neurotransmitter Vesicles (R. L. Klein, H. Lagercrantz, and U. Zimmermann, eds.), Academic, London, pp. 41–63.

    Google Scholar 

  • Nordmann, J. J., and Morris, J. F., 1984, Method for quantitating the molecular content of a subcellular organelle: Hormone and neurophysin content of newly formed and aged neurosecretory granules, Proc. Natl. Acad. Sci. USA 81: 180–184.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., Dreifuss, J. J., and Legros, J. J., 1971, A correlation of release of polypeptide hormones and of immunoreactive neurophysin from isolated rat neurohypophyses, Experientia 27: 1344–1345.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., Dreifuss, J. J., Baker, P. F., Ravazzola, M., Malaisse-Lagae, F., and Orci, L., 1974, Secretion-dependent uptake of extracellular fluid by the rat neurohypophysis, Nature (Lond.) 250: 155–157.

    Article  CAS  Google Scholar 

  • Nordmann, J. J., Louis, F., and Morris, S. J., 1979, Purification of two structurally and morphologically distinct populations of rat neurohypophysial secretory granules, Neuroscience 4: 1367–1379.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, J. J., Cazalis, M., Dayanithi, G., Castanas, E., Giraud, P., Legros, J.-J., and Louis, F., 1986a, Are opioid peptides co-localized with vasopressin or oxytocin in the neural lobe of the rat? Cell Tissue Res. 246: 177–182.

    PubMed  CAS  Google Scholar 

  • Nordmann, J. J., Dayanithi, G., and Cazalis, M., 1986b, Do opioid peptides modulate, at the level of the nerve endings, the release of neurohypophysial hormones? Exp. Brain Res. 61: 560–566.

    Article  PubMed  CAS  Google Scholar 

  • Norström, A., 1972, Release in vitro of neurohypophysial protein from neural lobe tissue slices and from isolated neurosecretory granules of the rat, Z. Zeilforsch. 129: 114–139.

    Article  Google Scholar 

  • Norström, A., and Sjöstrand, J., 1971a, Axonal transport of proteins in the hypothalamo-neurohy-pophysial system of the rat, J. Neurochem. 18: 29–39.

    Article  PubMed  Google Scholar 

  • Norström, A., and Sjöstrand, J., 1971b, Transport and turnover of neurohypophysial proteins of the rat, J. Neurochem. 18: 2007–2016.

    Article  PubMed  Google Scholar 

  • Norström, A., and Sjöstrand, J., 1972a, Effect of salt-loading, thirst, and water-loading on transport and turnover of neurohypophysial proteins of the rat, J. Endocrinol. 52: 85–105.

    Google Scholar 

  • Norström, A., and Sjöstrand, J., 1972b, Effect of suckling and parturition on axonal transport and turnover of neurohypophysial proteins of the rat, J. Endocrinol. 52: 107–117.

    Article  PubMed  Google Scholar 

  • Norström, A., Hansson, H.-A., and Sjöstrand, J., 1971, Effects of colchicine on axonal transport and ultrastructure of the hypothalamo-neurohypophyseal system of the rat, Z. Zeilforsch. 113: 271–293.

    Article  Google Scholar 

  • North, W. G., Valtin, H., Morris, J. F., and LaRochelle, F. T., Jr., 1977, Evidence for metabolic conversions of rat neurophysins within neurosecretory granules of the hypothalamo-neurohypophysial system, Endocrinology 101: 109–118.

    Article  Google Scholar 

  • Novikoff, A. B., and Essner, E., 1962, Pathological changes in cytoplasmic organelles, Fed. Proc. 21: 1130–1142.

    PubMed  CAS  Google Scholar 

  • Novikoff, P. M, Novikoff, A. B., Quintana, A. N., and Hauw, J. J., 1971, Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry, J. Cell Biol. 50: 859–886.

    Article  PubMed  CAS  Google Scholar 

  • Nussey, S. S., Ang, V. T. Y., Jenkins, J. S., Chowdrey, H. S., and Bisset, G. W., 1984, Brattleboro rat adrenal contains vasopressin, Nature (Lond.) 310: 63–66.

    Article  Google Scholar 

  • Oksche, A., Farner, D. S., Serventy, D. L., Wolff, F., and Nicholls, C. A., 1963, The hypothalamo-neurosecretory system of the zebra finch Taenopygia castanotis, Z. Zellforsch. 58: 846–914.

    CAS  Google Scholar 

  • Oldfield, B. J., and Silverman, A. J., 1985, A light microscope HRP study of limbic projections to the vasopressin-containing nuclear groups of the hypothalamus, Brain Res. Bull. 14: 143–157.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield, B. J., Hou-Yu, A., and Silverman, A.-J., 1983, Technique for the simultaneous ultrastructural demonstration of anterogradely transported horseradish peroxidase and an immunocytochemically identified neuropeptide, J. Histochem. Cytochem. 31: 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield, B. J., Hou-Yu, A., and Silverman, A.-J., 1985, A combined electron microscopic HRP and immunocytochemical study of the limbic projections to rat hypothalamic nuclei containing vasopressin and oxytocin neurons, J. Comp. Neurol. 231: 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Orkand, P. M., and Palay, S. L., 1967, Effect of treatment with exogenous vasopressin on the structural alterations in the hypothalamo-neurohypophysial system of rats with hereditary diabetes insipidus, Anat. Rec. 157:295.

    Google Scholar 

  • Ortmann, R., 1951, Uber experimentelle Veranderungen der Morphologie des Hypophysen-Zwischenhirn systems und die Beziehung der sog. “Gomorisubstanz” zum adiuretin, Z. Zellforsch. 36: 92–140.

    Article  PubMed  CAS  Google Scholar 

  • Ortmann, R., 1960, Neurosecretion, in: Handbook of Physiology, Sect. 1. Vol. II: Neurophysiology, American Physiology Society, Washington, D.C., pp. 1039–1065.

    Google Scholar 

  • Osinchak, J., 1964, Electron microscopic localization of acid phophatase and thiamine pyrophosphatase activity in hypothalamic neurosecretory cells of the rat, J. Cell Biol. 21: 35–47.

    Article  PubMed  CAS  Google Scholar 

  • Palade, G. E., 1975, Intracellular aspects of the process of protein secretion, Science 189: 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Palay, S. L., 1943, Neurosecretion. V. The origin of neurosecretory granules from the nuclei of nerve cells in fishes, J. Comp. Neurol. 79: 247–275.

    Article  Google Scholar 

  • Palay, S. L., 1957, The fine structure of the neurohypophysis, in: Ultrastructure and Cellular Chemistry of Neural Tissue (H. Waelsch, ed.), Hoeber, New York, pp. 31–49.

    Google Scholar 

  • Palay, S. L., 1960, The fine structure of secretory neurons in the preoptic nucleus of the goldfish (Carassius auratus), Anat. Rec. 138: 417–444.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., 1981, Catecholamines in the hypothalamus: An anatomical review, Neuroendocrinology 33: 123–128.

    Article  PubMed  Google Scholar 

  • Palkovits, M., and Zaborsky, L., 1980, Neural connections of the hypothalamus, in: Handbook of Hypothalamus, Vol. 1, (P. J. Morgane and S. Panksapp, eds.), Dekker, New York, pp. 379–509.

    Google Scholar 

  • Palkovits, M, Brownstein, M, Saavedra, J. M., and Axelrod, J., 1974, Norepinephrine and dopamine content of hypothalamic nuclei of the rat, Brain 77: 137–149.

    Article  CAS  Google Scholar 

  • Palkovits, M., Brownstein, M., and Zamir, N., 1983, Immunoreactive dynorphin and α-neoendorphin in rat hypothalamo-neurohypophyseal system, Brain Res. 278: 258–261.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., Mezey, E., Zaborsky, L., Feminger, A., Versteeg, D. H. G., Wijnen, H. J. L. M, DeJong, W., Fekete, M. I. K., Herman, J. P., and Kanyicska, B., 1980a, Adrenergic innervation of the hypothalamus, Neurosci. Lett. 18: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., Zaborsky, L., Feminger, A., Herman, J. P., Kanyicska, B., and Szabo, D., 1980b, Noradrenergic innervation of the rat hypothalamus: Experimental, biochemical and electron microscopic studies, Brain Res. 191: 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., and Butcher, L. L., 1976, Organisation and morphologies of acetylcholinesterase-containing neurons in the thalamus and hypothalamus of the rat, J. Comp. Neurol. 170: 205–226.

    Article  PubMed  Google Scholar 

  • Parish, D. C., Rodriguez, E. M., Birkett, S. D., and Pickering, B. T., 1981, Effects of small doses of colchicine on the components of the hypothalamo-neurohypophysial system of the rat, Cell Tissue Res. 220: 809–827.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, T. D., Obaid, A. L., Salzberg, B. M, 1985, Light scattering changes associated with secretion from nerve terminals of mammalian neurohypophysia are depressed by aminoglycoside antibiotics, Biophys. J. 47: 477a.

    Google Scholar 

  • Paterson, J. A., and Leblond, C. P., 1977, Increased proliferation of neuroglia and endothelial cells in the supraoptic nucleus and hypophysial neural lobe in young rats drinking hypertonic sodium chloride solution, J. Comp. Neurol. 175: 373–390.

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter, L. S., Hatton, G. I., and Tweedle, C. D., 1984, Plasticity in the in vitro neurohypophysis: Effects of osmotic changes in pituicytes, Neuroscience 12: 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R. P., 1966, Magnocellular neurosecretory centres in the rat hypothalamus, J. Comp. Neurol. 128: 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Picard, D., Michel-Bechet, M., Athouel, A. M., and Rua, S., 1972, Granules neurosécretoires, lysosomes et complèxe GRL dans le noyau supra-optique du rat. Bipolarité de complèxes Golgiens, Exp. Brain Res. 14: 331–353.

    Article  PubMed  CAS  Google Scholar 

  • Picard, D., Boudier, J.-L., and Tasso, F., 1978, Ultrastructural approach of magnocellular neurosecretory activity, Coll. Int. C. N. R. S. 280: 645–667.

    Google Scholar 

  • Pickering, B. T., Jones, C. W., and Burford, G. D., 1971, Biosynthesis and intraneuronal transport of neurosecretory products in the hypothalamo-neurohypophysial system, in: Neurohypophysial hormones (G. E. W. Wolstenholme and J. Birch, eds.), Churchill Livingstone, London, pp. 58–74.

    Google Scholar 

  • Pickering, B. T., Swann, R. W., and Gonzalez, C. B., 1983, Biosynthesis and processing of neurohypophysial hormones, Pharmacol. Ther. 22: 143–161.

    Article  PubMed  CAS  Google Scholar 

  • Pickford, M., 1939, The inhibitory effect of acetylcholine on water diuresis in the dog, and its pituitary transmission, J. Physiol. (Lond.) 95: 226–238.

    CAS  Google Scholar 

  • Piekut, D. T., 1983, Ultrastructural characteristics of vasopressin-containing neurons in the paraventricular nucleus of the hypothalamus, Cell Tissue Res. 234: 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Pilgrim, C., 1969, Morphologische und funktioneile Untersuchungen zur Neurosecretbildung, Ergeh. Anat. Entwicklungsgesch. 41: 1–79.

    Google Scholar 

  • Poisner, A. M., and Douglas, W. W., 1968, Adenosine triphosphate and adenosine triphosphatase in hormone-containing granules in the posterior pituitary gland, Science 160: 203–204.

    Article  PubMed  CAS  Google Scholar 

  • Post, S., and Mai, J. K., 1980, Contribution to the amygdaloid projection field in the rat, J. Hirnforsch. 21: 199–225.

    PubMed  CAS  Google Scholar 

  • Poulain, D. A., 1983, Electrophysiology of the afferent input to oxytocin-and vasopressin-secreting neurones. Facts and problems, Prog. Brain Res. 60: 39–52.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, D. A., and Wakerley, J. B., 1982, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin, Neuroscience 7: 773–808.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, D. A., Ellendorff, F., and Vincent, J. J. 1980, Septal connections with identified oxytocin and vasopressin-secreting neurones in the supraoptic nucleus of the rat. An electrophysiological investigation, Neuroscience 5: 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, D. A., Lebrun, A. C. J., and Vincent, J. J., 1981, Electrophysiological evidence for connections between septal neurones and the supraoptic nucleus of the hypothalamus of the rat, Exp. Brain Res. 42: 260–268.

    Article  PubMed  CAS  Google Scholar 

  • Powell, E. W., and Rorie, D. K., 1967, Septal projections to nuclei functioning in oxytocin release, Am. J. Anal. 120: 605–610.

    Article  CAS  Google Scholar 

  • Raichle, M. E., and Grubb, R. L., 1978, Regulation of brain water permeability by centrally-released vasopressin, Brain Res. 143: 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Raisman, G., 1973a, Electron microscopic studies of the development of new neurohaemal contacts in the median eminence of the rat after hypophysectomy, Brain Res. 55: 245–261.

    Article  PubMed  CAS  Google Scholar 

  • Raisman, G., 1973b, An ultrastructural study of the effects of hypophysectomy on the supraoptic nucleus of the rat, J. Comp. Neurol. 147: 181–208.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay, D. J., Thrasher, T. N., and Keil, L. C., 1983, The organum vasculosum laminae terminalis: A critical area for osmoreception, Prog. Brain Res. 60: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Reaves, T. A., and Hayward, J. N., 1979, Immunocytochemical identification of vasopressinergic and oxytocinergic neurons in the hypothalamus of the cat, Cell Tissue Res. 196: 117–122.

    Article  PubMed  Google Scholar 

  • Reaves, T. A., Jr., Hou-Yu, A., Zimmerman, E. A., and Hayward, J. N., 1983, Supraoptic neurons in the rat hypothalamo-neurohypophysial expiant: Double labeling with Lucifer Yellow injection and immunocytochemical identification of vasopressin-and neurophysin-containing neuroendocrine cells, Neurosci. Lett. 37: 137–142.

    Article  PubMed  Google Scholar 

  • Rechard, L., 1969, Electron microscopic and histochemical observations on the supraoptic nucleus of normal and dehydrated rats, Acta Physiol. Scand. (Suppl.) 329: 1–79.

    Google Scholar 

  • Reinhardt, H. F., Henning, L. C., and Rohr, H. P., 1969a Morphometrisch-ultrastrukturelle Untersuchungen am Nucleus Supraopticus der Ratte nach Dehydration, Z. Zellforsch. 102: 172–182.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt, H. F., Henning, L. C., and Rohr, H. P., 1969b, Morphometrisch-ultrastrukturelle Untersuchungen am Hypophysenhinterlappen der Ratte nach Dehydratation, Z. Zellforsch. 102: 182–192.

    Article  PubMed  CAS  Google Scholar 

  • Renaud, L. P., Rogers, J., and Sgro, S., 1983, Terminal degeneration in supraoptic nucleus following subfornical organ lesions: ultrastructural observations in the rat, Brain Res. 275: 365–368.

    Article  PubMed  CAS  Google Scholar 

  • Renaud, L. P., Ferguson, A. V., Day, T. A., Bourque, C. W., and Sgro, S., 1985, Electrophysiology of the subfornical organ and its hypothalamic connections—an in-vivo study in the rat, Brain Res. Bull. 15: 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, C. H., Morrell, J. I., and Pfaff, D. W., 1981a, Distribution of estrogen-concentrating, neurophysin containing magnocellular neurons in the rat hypothalamus as demonstrated by a technique combining steroid autoradiography and immunohistology in the same tissue, Neuroendocrinology 33: 18–23.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, C. H., Morrell, J. I., and Pfaff, D. W., 1981b, Immunohistochemical analysis of magnocellular elements in rat hypothalamus: Distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin, J. Comp. Neurol. 198: 45–64.

    Article  PubMed  CAS  Google Scholar 

  • Ricardo, J. A., 1981, Efferent connections of the subthalamic region of the rat. II. The zona incerta, Brain Res. 197: 291–317.

    Google Scholar 

  • Ricardo, J. A., and Koh, E. J., 1978, Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala and other forebrain structures in the rat, Brain Res. 153: 126.

    Article  Google Scholar 

  • Richards, S.-J., Morris, R. J., and Raisman, G., 1986, Solitary magnocellular neurones in the homozygous Brattleboro rat have vasopressin and glycopeptide immunoreactivity, Neuroscience 16: 617–624.

    Article  Google Scholar 

  • Robertson, G. L., 1977, The regulation of vasopressin function in health and disease, Recent Prog. Horm. Res. 33: 333–374.

    Google Scholar 

  • Robinson, I. C. A. F., 1983, Neurohypophyseal peptides in cerebrospinal fluid, Prog. Brain Res. 60: 129–145.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, A. G., Seif, S. M., Verbalis, J. G., and Brownstein, M. J., 1983, Quantitation of changes in the content of neurohypophyseal peptides in hypothalamic nuclei after adrenalectomy, Neuroendocrinology 36: 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Rodeck, H., 1959, Zusammenhange zwischen Neurosekret und den sogenannten Hypophysenhinterlappenhormonen. III. Untersuchungen zur faberischen Darstellung von synthetischem Oxytocin, Z. Ges. Ex. Med. 132: 122–125.

    Article  CAS  Google Scholar 

  • Rodriguez, E. M., 1969, Fixation of the central nervous system by perfusion of the cerebral ventricles with a threefold aldehyde mixture, Brain Res. 15: 395–412.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, R. C., Talbot, K., Novin, D., and Butcher, L. L., 1979, Afferent projections to the supraoptic nucleus of the rat, Soc. Neurosci. Abst. 5:233.

    Google Scholar 

  • Rossier, J., Battenberg, E., Pittman, Q., Bayon, A., Koda, L., Miller, R., Guillemin, R., and Bloom, R., 1979, Hypothalamic enkephalin neurons may regulate the neurohypophysis, Nature (Lond.) 277: 653–655.

    Article  CAS  Google Scholar 

  • Rougon-Rapuzzi, G., Cau, P., Boudier, J. A., and Cupo, A., 1978, Evolution of vasopressin levels in the hypothalamo-posthypophysial system of the rat during rehydration following water deprivation, Neuroendocrinology 27: 46–62.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. T., 1984, ΔpH, H+ diffusion potentials, and Mg2+ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses, J. Biol. Chem. 259: 9496–9507.

    PubMed  CAS  Google Scholar 

  • Russell, J. T., and Holz, R. W., 1981, Measurement of pH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses, J. Biol. Chem. 256: 5950–5953.

    PubMed  CAS  Google Scholar 

  • Russell, J. T., and Thorn, N. A., 1975, Adenosine triphosphate dependent calcium uptake by subcellular fractions from bovine neurohypophyses, Acta Physiol. Scand. 93: 364–377.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. T., Brownstein, M. J., and Gainer, H., 1980, [35S]cysteine labeled peptides transported to the neurohypophyses of adrenalectomized, lactating, and Brattleboro rats, Brain Res. 201: 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. T., Brownstein, M. J., and Gainer, H., 1981, Time course of appearance and release of [35S]cysteine labelled neurophysins and peptides in the neurohypophysis, Brain Res. 205: 299–311.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, H., and Haller, E. W., 1968, Further studies on the capacity of the neurohypophysis to release vasopressin, Endocrinology 83: 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, H., Share, L., Osinchak, J., and Carpi, A., 1967, Capacity of the neurohypophysis to release vasopressin, Endocrinology 81: 755–770.

    Article  PubMed  CAS  Google Scholar 

  • Saermark, T., Jones, P. M., and Robinson, I. C. A. F., 1984, Membrane retrieval in the guinea pig neurohypophysis, Biochem. J. 218: 591–599.

    PubMed  CAS  Google Scholar 

  • Sakumoto, T., Tohyama, M., Satoh, K., Kimoto, Y., Kinugasa, T., Tanizawa, O., Kurachi, K., and Shimizu, N., 1978, Afferent fiber connections from lower brain stem to hypothalamus studied by the horse radish peroxidase method with special reference to noradrenergic innervation, Exp. Brain Res. 31: 81–94.

    Article  PubMed  CAS  Google Scholar 

  • Salzberg, B. M., Obaid, A. L., Gainer, H., 1985, Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis, J. Gen. Physiol. 86: 395–411.

    Article  PubMed  CAS  Google Scholar 

  • Santolaya, R. C., Bridges, T. E., and Lederis, K., 1972, Elementary granules, small vesicles and exocytosis in the rat neurohypophysis after acute haemorrhage, Z. Zeilforsch. 125: 277–288.

    Article  CAS  Google Scholar 

  • Saper, C. B., and Levison, D., 1983, Afferent connections of the medial preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricle (AV3V) region, Brain Res. 288: 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C. B., and Loewy, A. D., 1980, Efferent connections of the parabrachial nucleus in the rat, Brain Res. 197: 291–317.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C. B., Swanson, L. W., and Cowan, W. M., 1976, The efferent connections of the ventromedial nucleus of the hypothalamus of the rat, J. Comp. Neurol. 169: 409–442.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C. B., Swanson, L. W., and Cowan, W. M., 1978, The efferent connections of the anterior hypothalamic area of the rat, cat and monkey, J. Comp. Neurol. 182: 575–600.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C. B., Swanson, L. W., and Cowan, W. M, 1979, An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat, J. Comp. Neurol. 183: 689–706.

    Article  PubMed  CAS  Google Scholar 

  • Sar, M., and Stumpf, W. E., 1973, Autoradiographic localization of radioactivity in the rat brain after the injection of l,2-3H-testosterone, Endocrinology 92: 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Sar, M., and Stumpf, W. E., 1980, Simultaneous localisation of [3H]estradiol and neurophysin I or arginine vasopressin in hypothalamic neurons demonstrated by a combined technique of drymount autoradiography and immunohistochemistry, Neurosci. Lett. 17: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W., 1981a, Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomie responses, Science 214: 685–687.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W., 1981b, The distribution and cells of origin of some afferent projections to the paraventricular and supraoptic nuclei in the rat, Soc. Neurosci. Abst. 7:325.

    Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W., 1982, The organisation of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat, Brain Res. Rev. 4: 275–325.

    Article  Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W., 1983a, The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei, Prog. Brain Res. 60: 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W., 1983b, The organisation of forebrain efferents to the paraventricular and supraoptic nuclei of the rat, J. Comp. Neurol. 218: 121–144.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., Swanson, L. W., and Joseph, S. A., 1982, The distribution and cells of origin of ACTH (1–39)-stained varicosities in the paraventricular and supraoptic nuclei, Brain Res. 232: 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., Swanson, L. W., Steinbusch, H. W. M., and Verhofstad, A. A. J., 1983, The distribution and cells of origin of serotoninergic inputs to the paraventricular and supraoptic nuclei of the rat, Brain Res. 277: 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., Swanson, L. W., and Vale, W. W., 1984, Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurons of the adrenalectomized rat, Proc. Natl. Acad. Sci. USA 81: 1883–1887.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., Swanson, L. W., Grzanna, R., Howe, P. R. C., Blook, S. R., and Polak, J. M., 1985, Colocalization of neuropeptide Y immunoreactivity in brainstem catecholamine neurons that project to the paraventricular nucleus of the hypothalamus, J. Comp. Neurol. 241: 138–153.

    Article  PubMed  CAS  Google Scholar 

  • Scharrer, E., and Scharrer, B., 1937, Uber Drusen-Nervenzellen und Neurosekretorische Organe bei Wirbellosen und Wirbeltieren, Biol. Rev. 12: 185–216.

    Article  Google Scholar 

  • Scharrer, E., and Scharrer, B., 1940, Secretory cells within the hypothalamus, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 20: 170–194.

    Google Scholar 

  • Scharrer, E., and Scharrer, B., 1954, Hormones produced by neurosecretory cells, Recent. Prog. Horm. Res. 10: 183–240.

    CAS  Google Scholar 

  • Scherman, D., and Nordmann, J. J., 1982, Internal pH of isolated newly formed and aged neurohypophysial granules, Proc. Natl. Acad. Sci. USA 79: 476–479.

    Article  PubMed  CAS  Google Scholar 

  • Schmale, H., and Richter, D., 1984, Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats, Nature 308: 705–709.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, F. O., Dev, P., and Smith, B. H., 1976, Electrotonic processing of information by brain cells, Science 193: 114–120.

    Article  PubMed  CAS  Google Scholar 

  • Schöler, J., and Sladek, J. R., Jr., 1981, Supraoptic nucleus of the Brattleboro rat has an altered afferent noradrenergic input, Science 214: 347–349.

    Article  PubMed  Google Scholar 

  • Schöler, J., and Saldek, J. R., Jr., 1982, An altered noradrenergic innervation of the Brattleboro rat supraoptic nucleus, Ann. N.Y. Acad. Sci. 394: 718–728.

    Article  PubMed  Google Scholar 

  • Schwartz, W. J., and Reppert, S. M., 1985, Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: a pre-eminent role for the suprachiasmatic nuclei, J. Neurosci. 5: 2771–2778.

    PubMed  CAS  Google Scholar 

  • Sgro, S., Ferguson, A. V., and Renaud, L. P., 1984, Subfornical organ-supraoptic nucleus connections: An electrophysiologic study, Brain Res. 303: 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, F. D., and Dyball, R. E. J., 1984, The relationship between calcium uptake and hormone release in the isolated neurohypophysis, Neuroendocrinology 38: 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, F. D., and Morris, J. F., 1980, Calcium isolation in the rat neurohypophysis, Nature (Lond.) 287: 56–58.

    Article  CAS  Google Scholar 

  • Shaw, F. D., Dyball, R. E. J., and Nordmann, J. J., 1983, Mechanisms of inactivation of neurohypophysial hormone release, Prog. Brain Res. 60: 305–317.

    Article  PubMed  CAS  Google Scholar 

  • Sherlock, D. A., Field, P. M., and Raisman, G., 1975, Retrograde transport of horseradish peroxidase in the magnocellular neurosecretory system of the rat, Brain Res. 88: 403–414.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, T. G., and McKelvy, J. F., 1983, Cell-Free biosynthesis of rat neurophysin polypeptides from Poly (A) RNA isolated from individual hypothalamic nuclei, Neurosci. Abst. 9:622.

    Google Scholar 

  • Sherman, T. G., Akil, H., and Watson, S. J., 1985, Vasopressin in RNA expression: a Northern and in situ hybridization analysis, in: Vasopressin (R. W. Schrier, Ed.) Raven Press, N. Y., pp. 475–483.

    Google Scholar 

  • Silverman, A.-J., 1976, Ultrastructural studies on the localization of neurohypophysial hormones and their carrier proteins, J. Histochem. Cytochem. 24: 816–827.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A.-J., and Zimmerman, E. A., 1975, Ultrastructural immunocytochemical localization of neurophysin and vasopressin in the median eminence and posterior pituitary of the guinea-pig, Cell Tissue Res. 159: 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A.-J., and Zimmerman E. A., 1983, Magnocellular neurosecretory system, Annu. Rev. Neurosci. 6: 357–380.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A. J., Hoffman, D. L., and Zimmerman, E. A., 1981, The descending afferent connections of the paraventricular nucleus of the hypothalamus, Brain Res. Bull. 6: 47–61.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A.-J., Hou-Yu, A., and Oldfield, B. J., 1983a, Ultrastructural identification of noradrenergic nerve terminals and vasopressin-containing neurons of the paraventricular nucleus in the same thin section, J. Histochem. Cytochem. 31: 1151–1156.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A.-J., Hou-Yu, A., and Zimmerman, E. A., 1983b, Ultrastructural studies of vasopressin neurons of the paraventricular nucleus using a monoclonal antibody to vasopressin: analysis of synaptic input, Neuroscience 9: 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A.-J., Oldfield, B. J., Hou-Yu, A., and Zimmerman, E. A., 1985, The noradrenergic innervation of vasopressin neurons in the paraventricular nucleus of the rat hypothalamus: An ultrastructural study using radioautography and immunocytochemistry, Brain Res. 325: 215–229.

    Article  PubMed  CAS  Google Scholar 

  • Sims, K., Hoffman, D. L., Said, S. I., and Zimmerman, E. A., 1980, Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: An immunocytochemical study, Brain Res. 186: 165–183.

    Article  PubMed  CAS  Google Scholar 

  • Skowsky, W. R., Swan, L., and Smith, P., 1979, Effects of sex steroid hormones on arginine vasopressin in intact and castrated male and female rats, Endocrinology 104: 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Sladek, C. D., 1983, Regulation of vasopressin release by neurotransmitters, neuropeptides, and osmotic stimuli, Prog. Brain Res. 60: 71–90.

    Article  PubMed  CAS  Google Scholar 

  • Sladek, J. R., Jr., and McNeill, T. H., 1980, Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. IV. Verification of catecholamine-neurophysin interactions through single-section analysis, Cell Tissue Res. 210: 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Sladek, J. R., Jr., and Sladek, C. D., 1983, Anatomical reciprocity between magnocellular peptides and noradrenaline in putative cardiovascular pathways, Prog. Brain Res. 60: 437–443.

    Article  PubMed  Google Scholar 

  • Sofroniew, M. V., 1983, Morphology of vasopressin and oxytocin neurons and their central vascular projections, Prog. Brain Res. 60: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. V., 1985, Vasopressin-and neurophysin-immunoreactive neurons in the septal region, medial amygdala and locus coerulus in colchicine-treated rats, Neuroscience 15: 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. V., and Glassmann, W., 1981, Golgi-like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat, Neuroscience 6: 619–643.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. V., Weindl, A., Schinko, I., and Wetzstein, R., 1979, The distribution of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig brain, Cell Tissue Res. 196: 367–384.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. V., Schrell, Y., Glassmann, W., Weindl, A., and Wetzstein, R., 1980, Hypothalamic accessory magnocellular vasopressin, oxytocin and neurophysin neurons projecting to the neurohypophysis in the rat, Soc. Neurosci. Abst. 6:456.

    Google Scholar 

  • Sofroniew, M. V., Weindl, A., Schrell, U., and Wetzstein, R., 1981, Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain, Acta Histochem. (Suppl.) 24: 79–95.

    CAS  Google Scholar 

  • Sofroniew, M. V., Gahwiler, B. H., and Dreifuss, J. J., 1982, Cultured hypothalamic vasopressin (AVP), oxytocin (OT), and neurophysin (NPH) neurons examined by Golgi-like immunoperoxidase staining, Neuroscience 7 (Suppl):S198-199.

    Google Scholar 

  • Sokol, H. W., and Valtin, H., 1965, Morphology of the neurosecretory system in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain), Endocrinology 77: 692–700.

    Article  PubMed  CAS  Google Scholar 

  • Sokol, H. W., and Valtin, H., 1967, Evidence for the synthesis of oxytocin and vasopressin in separate neurons, Nature (Lond.) 214: 314–316.

    Article  CAS  Google Scholar 

  • Sokol, H. W., and Valtin, H. (eds.), 1982, The Brattleboro Rat, Ann. N.Y. Acad. Sci. 394: 1–828.

    Google Scholar 

  • Sokol, H. W., Zimmerman, E. A., Sawyer, W. H., and Robinson, A. G., 1975, The hypothalamic-neurohypophysial system of the rat: Localization and quantitative of neurophysin by light microscopic immunocytochemistry in normal rats and in Brattleboro rats deficient in vasopressin and neurophysin, Endocrinology 98: 1176–1188.

    Article  Google Scholar 

  • Sokol, H. W., Brown, S. J., and North, W. G., 1981, Immunocytochemical analysis of the hypothal-amo-neurohypophyseal system in normal mice and in mice with nephrogenic diabetes insipidus, in: Sixty-Third Annual Meeting of the Endocrine Society, Abst. 757.

    Google Scholar 

  • Steinbusch, H. W. M., 1981, Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals, Neuroscience 6: 557–618.

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel, M. E., Hindelang-Gertner, C., Dellmann, H.-D., Porte, A., and Stutinsky, F., 1975, Subcellular localization of calcium in the mouse hypophysis. I. Calcium distribution in the adeno-and neurohypophysis under normal conditions, Cell Tissue Res. 157: 307–322.

    Article  PubMed  CAS  Google Scholar 

  • Stutinsky, F. S., 1957, Recherches expérimentales sur le complèxe hypothalamo-neurohypophysaire, Arch. Anat. Microsc. Morphol. Exp. 46: 93–158.

    Google Scholar 

  • Sunde, D. A., and Sokol, H. W., 1975, Quantification of rat neurophysins by polyacrylamide gel electrophoresis (PAGE): Application to the rat with hereditary hypothalamic diabetes insipidus, Ann. N.Y. Acad. Sci. 248: 345–364.

    Article  PubMed  CAS  Google Scholar 

  • Swaab, D. F., and Jongkind, J. F., 1970, The hypothalamic neurosecretory activity during the oestrus cycle, pregnancy, parturition, lactation and persistent oestrus, and after gonadectomy, in the rat, Neuroendocrinology 6: 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Swaab, D. F., and Jongkind, J. F., 1971, Influence of gonadotropic hormones on the hypothalamic neurosecretory activity in the rat, Neuroendocrinology 8: 36–47.

    Article  PubMed  CAS  Google Scholar 

  • Swaab, D. F., Nijveldt, F., and Pool, C. W., 1975, Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J. Endocrinol. 67: 461–462.

    Article  PubMed  CAS  Google Scholar 

  • Swann, R. W., and Pickering, B. T., 1976, Incorporation of radioactive precursors into the membrane and contents of the neurosecretory granules of the rat neurohypophysis as a method of studying their fate, J. Endocrinol. 68: 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., 1976, An autoradiographic study of the efferent connections of the preoptic region of the rat, J. Comp. Neurol. 167: 227–256.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Cowan, W. M., 1975a, Hippocampal-hypothalamic connections: Origins in subicular cortex, not Ammon’s horn, Science 189: 303–304.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Cowan, W. M., 1975b, The efferent connections of the suprachiasmatic nucleus of the guinea pig, J. Comp. Neurol. 169: 1–12.

    Article  Google Scholar 

  • Swanson, L. W., and Cowan, W. M., 1979, The connections of the septal region in the cat, J. Comp. Neurol. 186: 621–656.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Hartman, B. K., 1980, Biochemical specificity in central pathways related to peripheral and intracerebral homeostatic functions, Neurosci. Lett. 16: 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Kuypers, H. G., 1980, The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organisation of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double labelling methods, J. Comp. Neurol. 194: 555–570.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Mogenson, G. J., 1981, Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behaviour, Brain Res. 228: 1–34.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Sawchenko, P. E., 1980, Paraventricular nucleus: a site for the integration of neuroendocrine and autonomie mechanisms, Neuroendocrinology 31: 410–417.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Sawchenko, P. E., 1983, Hypothalamic integration: organization of paraventricular and supraoptic nuclei, Annu. Rev. Neurosci. 6: 269–324.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., Connelly, M. A., and Hartman, B. K., 1977, Ultrastructural evidence for central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus, Brain Res. 136: 166–173.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., Connelly, M. A., and Hartman, B. K., 1978, Further studies on the fine structure of the adrenergic innervation of the hypothalamus, Brain Res. 151: 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., Sawchenko, P. E., Berod, A., Hartman, B, K., Helle, K. B., and Vanorden, D. E., 1981, An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus, J. Comp. Neurol 196: 271–285.

    Article  PubMed  CAS  Google Scholar 

  • Tager, H., Hohenboken, M., Markese, J., and Dinerstein, R. J., 1980, Identification and localization of glucagon-related peptides in rat brain, Proc. Natl. Acad. Sci. USA 77: 6229–6233.

    Article  PubMed  CAS  Google Scholar 

  • Takabatake, Y., and Sachs, H., 1964, Vasopressin biosynthesis. III. In vitro studies, Endocrinology 75: 934–942.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, H., Shiosaka, S., Tohyama, M., Senba, E., and Sakanaka, M., 1980, Ascending components of the medial forebrain bundle from the lower brain stem in the rat with special reference to raphe and catecholamine cell groups. A study by HRP method, Brain Res. 193: 315–337.

    Article  PubMed  CAS  Google Scholar 

  • Tappaz, M., Brownstein, M. J., and Kopin, I., 1977, Glutamate decarboxylase (GAD) and γ-aminobutyric acid (GABA) in discrete nuclei of the hypothalamus and substantia nigra, Brain Res. 125: 109–121.

    Article  PubMed  CAS  Google Scholar 

  • Tasso, F., and Rua, S., 1975, Etude cytochimique ultrastructurale des glycoprotéines dans le complèxe hypothalamo-post-hypophysaire du rat, Arch. Anat. Microsc. Morphol. Exp. 64: 247–260.

    PubMed  CAS  Google Scholar 

  • Tasso, F., and Rua, S., 1978, Ultrastructural observations on the hypothalamo-posthypophysial complex of the Brattleboro rat, Cell Tissue Res. 191: 267–286.

    Article  PubMed  CAS  Google Scholar 

  • Tasso, F., Picard, D., and Dreifuss, J. J., 1976, Ultrastructural identification of granules containing oxytocin and vasopressin, Nature (Lond.) 260: 621–622.

    Article  CAS  Google Scholar 

  • Tasso, F., Rua, S., and Picard, D., 1977, Cytochemical duality of neurosecretory material in the hypothalamo-posthypophysial system of the rat as related to hormonal content, Cell Tissue Res. 180: 11–29.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., 1982, Secretion-related accumulation of horseradish peroxidase in magnocellular cell bodies of the rat supraoptic nucleus, Brain Res. 233: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., 1985, Oxytocin-immunoreactive terminals synapse on oxytocin neurons in the supraoptic nucleus, Nature (Lond.) 313: 682–684.

    Article  CAS  Google Scholar 

  • Theodosis, D. T., and Poulain, D. A., 1984a, Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation, Neuroscience 11: 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., and Poulain, D. A., 1984b, Evidence that oxytocin-secreting neurones are involved in the ultrastructural reorganisation of the rat supraoptic nucleus apparent at lactation, Cell Tissue Res. 235: 217–219.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., Dreifuss, J. J., Harris, M. C., and Orci, L. 1976, Secretion-related uptake of horseradish peroxidase in neurohypophysial axons, J. Cell Biol. 70: 294–303.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., Dreifuss, J. J., and Orci, L., 1977, Two classes of microvesicles in the neurohypophysis, Brain Res. 123: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., Burlet, C., Boudier, J. L., and Dreifuss, J. J., 1978a, Morphology of membrane changes during neurohypophyseal hormone release in a hibernating rodent, Brain Res. 154: 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., Dreifuss, J. J., and Orci, L., 1978b, A freeze-fracture study of rnembrane events during neurohypophysial secretion, J. Cell Biol. 78: 542–553.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., Poulain, D. A., and Vincent, J. D., 1981, Possible morphological basis for synchronisation of neuronal firing in the rat SON during lactation, Neuroscience 6: 919–929.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D. T., Chapman, D. B., Montagnese, C., Poulain, D. A., and Morris, J. F., 1985, Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-but not vasopressin-secreting neurones, Neuroscience 17: 661–678.

    Article  Google Scholar 

  • Thorn, N. A., Torp-Pederson, C., Treiman, M., Dartt, D. A, and Worm-Peterson, S., 1979, Influence of calcium on release of neurohypophyseal hormones, in: Brain and Pituitary Peptides. Ferring Symposium, Munich (W. Wuttke, A. Weindl, K. H. Voigt, and R.-R. Dries, eds.), Karger, Basel, pp. 118–124.

    Google Scholar 

  • Thrasher, T. N., Keil, L. C., and Ramsay, D. J., 1982, Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog, Endocrinology 110: 1837–1841.

    Article  PubMed  CAS  Google Scholar 

  • Torp-Pedersen, C., Saermark, T., Bundgaard, M., and Thorn, N. A., 1980, ATP-dependent Ca2+ accumulation by microvesicles isolated from bovine neurohypophyses, J. Neurochem. 35: 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Treiman, M., Podenphant, J., Saermark, T., and Bock, E., 1979, Inhibition by Ca2+ of the adenosine 3′-5′-cyclic monophosphate stimulated phosphorylation of proteins in membranes from ox neurohypophyseal secretosomes, FEBS Lett. 97: 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Tribollet, E., and Dreifuss, J. J., 1981, Localization of neurons to the hypothalamic paraventricular nucleus area of the rat: A horseradish peroxidase study, Neuroscience 6: 1315–1328.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C. D., 1983, Ultrastructural manifestations of increased hormone release in the neurohypophysis, Prog. Brain Res. 60: 259–272.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C. D., and Hatton, G. I., 1976, Ultrastructural comparisons of neurons of supraoptic and circularis nuclei in normal and dehydrated rats, Brain Res. Bull. 1: 103–121.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C. D., and Hatton, G. I., 1977, Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration, Cell Tissue Res. 181: 59–72.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C. D., and Hatton, G. I., 1984, Synapse formation and disappearance in adult rat supraoptic nucleus during different hydration states, Brain Res. 309: 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C. D., and Hatton, G. I., 1980a, Evidence for dynamic interactions between pituicytes and neurosecretory axons in the rat, Neuroscience 5: 661–667.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C. D., and Hatton, G. I., 1980b, Glial cell enclosure of neurosecretory endings in the neurohypophysis of the rat, Brain Res. 192: 555–559.

    Article  Google Scholar 

  • Tweedle, C. D., and Hatton, G. I., 1982, Magnocellular neuropeptidergic terminals in neurohypophysis: Rapid glial release of enclosed axons during parturition, Brain Res. Bull. 8: 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, G. R., Zingg, H. H., Habener, F., 1985, Vasopressin mRNA in situ hybridization: localization and regulation studied with digonucleotide cDNA probes in normal and Brattleboro rat hypothalamus, Proc. Natl. Acad. Sci USA 82: 5555–5559.

    Article  PubMed  CAS  Google Scholar 

  • Vale, M. R., and Hope, D. B., 1982, Cyclic nucleotide and the release of vasopressin from the rat posterior pituitary, J. Neurochem. 39: 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Valtin, H., 1968, Hereditary diabetes insipidus. Lessons learned from animal models, Excerpta Medicalnt. Cong. Ser. 184: 321–327.

    Google Scholar 

  • Valtin, H., 1982, The discovery of the Brattleboro rat, recommended nomenclature, and the question of proper controls, Ann. N.Y. Acad. Sci. 294: 1–9.

    Article  Google Scholar 

  • Valtin, H., Sawyer, W. H., and Sokol, H. W., 1965, Neurohypophysial principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain), Endocrinology 77: 701–705.

    Article  PubMed  CAS  Google Scholar 

  • Valtin, H., Stewart, J., and Sokol, H. W., 1974, Genetic control of the production of posterior pituitary principles, in: Handbook of Physiology, Section 7, Endocrinology, Vol. IV, The Pituitary Gland and its Neuroendocrine Control, Part 1, (Knobil, E., and Sawyer, W. H. M, eds.), Am. Physiol. Soc, Washington D.C., pp. 131–171.

    Google Scholar 

  • Van den Pol, A., 1982, The magnocellular and parvocellular nucleus of the rat: Intrinsic organisation, J. Comp. Neurol. 206: 317–345.

    Article  PubMed  Google Scholar 

  • Van den Pol, A., 1985a, Silver-intensified gold and peroxidase as dual ultrastructural immunolabels for pre-and post-synaptic neurotransmitters, Science 228: 332–335.

    Article  PubMed  Google Scholar 

  • Van den Pol, A., 1985b, Dual ultrastructural localization of two neurotransmitter-related antigens: colloidal gold-labeled neurophysinimmunoreactive supraoptic neurons receive peroxidaselabeled glutamate decarboxylase-or gold-labeled GABA-immunoreactive synapses, J. Neuroscience 5: 2940–2954.

    Google Scholar 

  • Vandesande, F., and Dierickx, K., 1975, Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of rat, Cell Tissue Res. 164: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Vandesande, F., Dierickx, K., and De Mey, J., 1975, Identification of the vasopressin-neurophysin II and oxytocin-neurophysin I producing neurons in the bovine hypothalamus, Cell Tissue Res. 156: 189–200.

    PubMed  CAS  Google Scholar 

  • Van Leeuwen, F., and Swaab, D. F., 1977, Specific immunoelectron microscopic localization of oxytocin in the neurohypophysis of the rat, Cell Tissue Res. 177: 495–501.

    Article  Google Scholar 

  • Van Leeuwen, F. W., de Raay, C., Swaab, D. F., and Fisser, B., 1979, The localization of oxytocin, vasopressin, somatostatin and luteinizing hormone releasing hormone in the rat neurohypophysis, Cell Tissue Res. 202: 189–201.

    Article  PubMed  Google Scholar 

  • Van Leeuwen, F. W., Pool, C. W., and Sluiter, A. A., 1983, Enkephalin immunoreactivity in synaptoid elements on glial cells in the rat neural lobe, Neuroscience 8: 229–241.

    Article  PubMed  Google Scholar 

  • Verney, E. B., 1947, The antidiuretic hormone and the factors which determine its release, Proc. R. Soc. Lond. 135: 25–106.

    Article  PubMed  CAS  Google Scholar 

  • Wade, C. E., Keil, L. G, and Ramsay, D. J., 1983, The role of volume and osmolality in the control of plasma vasopressin in dehydrated dogs, Neuroendocrinology 37: 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Wathes, D. C., Swann, R. W., Birkett, S. D., Porter, D. G., and Pickering, B. T., 1983, Characterization of oxytocin, vasopressin, and neurophysin from the bovine corpus luteum, Endocrinology 113: 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. J., Akil, H., Ghazarossian. V., and Goldstein, A., 1981, Dynorphin immunocytochemical localization in brain and peripheral nervous system: Preliminary studies, Proc. Natl. Acad. Sci. USA 78: 1260–1263.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. J., Akil, H., Fischli, W., Goldstein, A., Zimmerman, E., Nilaver, G., and van Wimersa Greidanus, T. B., 1982, Dynorphin and vasopressin: Common localization in magnocellular neurons, Science 216: 85–87.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. J., Seidah, N. G., and Chrétien, M., 1982, The carboxyterminus of the precursor to vasopressin and neurophysin; immunocytochemistry in rat brain, Science 217: 853–855.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. J., Khachaturian, H., Seidah, N. G., and Chrétien, M., Zimmerman, E. A., Nilaver, G., and Van Wimersa Greidanus, T. B., 1982, Immunocytochemistry of the C-terminal peptide of propressophysin (CPP): Relationship to vasopressin, oxytocin and neurophysin, Neuropeptides 3: 321–336.

    Article  Google Scholar 

  • Weber, E., and Barchas, J. D., 1983, Immunohistochemical distribution of dynorphin B in rat brain: relation to dynorphin A and alpha-neo-endorphin systems, Proc. Natl. Acad. Sci. USA 80: 1125–1129.

    Article  PubMed  CAS  Google Scholar 

  • Weber, E., Roth, K. A., and Barchas, J. D., 1981, Colocalization of ±-neoendorphin and dynorphin immunoreactivity in hypothalamic neurons, Biochem. Biophys. Res. Commun. 103: 951–958.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, M., Berne, R. M., and Sachs, H., 1960, Vasopressin in blood: effect of haemorrhage, Endocrinology 66: 712–718.

    Article  PubMed  CAS  Google Scholar 

  • Weitzman, M., 1969, Ultrastructural study on the release of neurosecretion. Material from the sinus gland of the land crab, Z. Zeilforsch. 94: 147–154.

    Article  CAS  Google Scholar 

  • Whitaker, J. N., and Crowley, W. R., 1983, Increased concentrations of immunoreactive cathepsin D in supraoptic nucleus of the Brattleboro rat, Brain Res. 277: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, S., and LaBella, F. S., 1972, Ultrastructural localisation of the acid phosphatase in the posterior pituitary of the dehydrated rat, Z. Zellforsch. 125: 1–15.

    Article  PubMed  Google Scholar 

  • Whitaker, S., LaBella, F. S., and Sanwal, M., 1970, Electron microscopic histochemistry of lysosomes in neurosecretory nerve endings and pituicytes of rat posterior pituitary, Z. Zellforsch. 111: 493–504.

    Article  PubMed  CAS  Google Scholar 

  • Whitnall, M. H., and Gainer, H., 1985, Ultrastructural immunolocalization of vasopressin and neurophysin in neurosecretory cells of dehydrated rats, Brain Res. 361: 400–404.

    Article  PubMed  CAS  Google Scholar 

  • Whitnall, M. H., Gainer, H., Cox, B. M., and Molineaux, C. J., 1983, Dynorphin-A-(1–8) is contained within vasopressin vesicles in rat pituitary, Science 222: 1137–1139.

    Article  PubMed  CAS  Google Scholar 

  • Whitnall, M. H., Castel, M., Key, S., and Gainer, H., 1985, Immunocytochemical identification of dynorphin-containing vesicles in Brattleboro rats, Peptides 6: 241–247.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, H., Kannan, H., Inenaga, K., and Koizumi, K., 1983, Electrophysiological and immunocytochemical studies on neurons in the supraoptic and paraventricular nuclei of the hypothalamus, Biomed. Res. 4 (Suppl): 217–222.

    Google Scholar 

  • Yamashita, H., Inenaga, K., Kawata, M., Sano, Y., and Kannan, H., 1984, Lucifer yellow-filled neurosecretory cells in the supraoptic and paraventricular nuclei, Biomed Res. 5 (Suppl.):105-114.

    Google Scholar 

  • Young, T. K., and Van Dyke, H. B., 1968, Repletion of vasopressin and oxytocin in the posterior lobe of the pituitary gland of the rat, J. Endocrinol. 40: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Yulis, C. R., Peruzzo, B., and Rodriguez, E. M., 1984, Immunocytochemistry and ultrastructure of the neuropil located ventral to the rat supraoptic nucleus, Cell Tissue Res. 236: 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Zaborsky, L., Leranth, C. S., Makara, G. B., and Palkovits, M, 1975, Quantitative studies on the supraoptic nucleus in the rat. II. Afferent fiber connections, Exp. Brain Res. 22: 525–540.

    Google Scholar 

  • Zambrano, D., and De Robertis, E., 1966, The secretory cycle of supraoptic neurons in the rat. A structural-functional correlation, Z. Zellforsch. Mikrosk. Anat. 73: 414–431.

    Article  PubMed  CAS  Google Scholar 

  • Zambrano, D., and De Robertis, E., 1967, Ultrastructural aspects of the inhibition of neurosecretion by puromycin, Z. Zellforsch. 76: 458–470.

    Article  PubMed  CAS  Google Scholar 

  • Zamir, N., Zamir, D., Eiden, L. E., Palkovits, M., Brownstein, M. J., Eskay, R. L., Weber, E., Faden, A. I., and Feuerstein, G., 1985, Methionine and leuueine enkephalin in rat neurohypophysis: Different responses to osmotic stimuli and T2 toxin, Science 228: 606–608.

    Article  PubMed  CAS  Google Scholar 

  • Al Zein, M., Lutz-Bucher, B., and Koch, B., 1984, Modulation by leu-enkephalin of peptide release from perfused neurointermediate pituitary. I. Selective effect on potassium-, veratridine-and isoproterenol-stimulated secretion of vasopressin, Neuroendocrinology 39: 392–396.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Morris, J.F., Chapman, D.B., Sokol, H.W. (1987). Anatomy and Function of the Classic Vasopressin-Secreting Hypothalamus-Neurohypophysial System. In: Gash, D.M., Boer, G.J. (eds) Vasopressin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8129-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8129-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8131-4

  • Online ISBN: 978-1-4615-8129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics