Skip to main content

Utilization of Exotic Germplasm

  • Chapter
  • First Online:
Genetics and Genomics of Rice

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 5))

Abstract

The worldwide rice genebanks are maintaining ~225,000 rice germplasm accessions, but only a very small portion (<5 %) of this rich source of rice germplasm has been utilized in rice improvement because most of them are considered exotic. To breeders, exotic rice germplasm consists of wild rice species, different subspecies, traditional landraces, and unadapted modern varieties. Although wild rice species are known to have some valuable genes/traits, they are difficult to use in breeding because of the severe reproductive barriers and genetic drags in interspecific crosses. Recent large scale backcross (BC) breeding efforts have revealed tremendous amounts of useful genetic variation for almost any traits of agronomic importance in the primary gene pool of rice, particularly in the exotic germplasm accessions within O. sativa. This rich source of naturally occurring diversity is largely hidden at the phenotypic levels and remains poorly understood at the genomic and molecular levels. Thus, huge efforts are needed to systematically characterize this hidden genetic diversity in the core germplasm collection of O. sativa in future genetic, genomic, and breeding research. Furthermore, it is proposed that understanding how directional phenotypic selection is operating on this hidden genetic diversity in breeding populations may hold the key to fully integrate that future rice genetic/functional genomic research with breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali AJ, Xu JL, Ismail AM, Fu BY, Vijaykumar CHM, Gao YM, Domingo J, Maghirang R, Yu SB, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li ZK (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crop Res 97(1):66–76

    Article  Google Scholar 

  2. Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84(3–4):345–354

    Google Scholar 

  3. Brar DS, Singh K, Kole C (2011) Oryza. In: Kole C (ed) Wild crop relatives: genomic and breeding resources cereals. Springer, Berlin, pp 321–365

    Chapter  Google Scholar 

  4. Brondani C, Rangel N, Brondani V, Ferreira E (2002) QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104(6–7):1192–1203

    PubMed  CAS  Google Scholar 

  5. Buang A (2000) Introgression of biotic resistance genes from Oryza minuta J.S. Presl. ex C.B. Presl. into new plant type of rice (O. sativa L.). University of the Philippines at Los Banos, Los Banos

    Google Scholar 

  6. Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci 96(11):5952–5959. doi:10.1073/pnas.96.11.5952

    Article  PubMed  CAS  Google Scholar 

  7. Chang T-T (1976) The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25(1):425–441

    Article  Google Scholar 

  8. Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Gao YM, Xu JL, Fan LM, Li Y, Li ZK, Deng XW (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet 123(6):869–879

    Article  PubMed  Google Scholar 

  9. Cheng L, Wang Y, Meng L, Hu X, Cui Y, Sun Y, Zhu L, Ali J, Xu J, Li Z (2012) Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice. Genome 55(1):45–55

    Article  PubMed  CAS  Google Scholar 

  10. Chung GS, Heu MH (1980) Status of japonica-indica hybridization in Korea. In: Innovative approaches to rice breeding. International Rice Research Institute, Manila, pp 35–152

    Google Scholar 

  11. Dalmacio R, Brar DS, Ishii T, Sitch LA, Virmani SS, Khush GS (1995) Identification and transfer of a new cytoplasmic male sterility source from Oryza perennis into indica rice (O. sativa). Euphytica 82(3):221–225

    Article  Google Scholar 

  12. Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics 12(2):215–228

    Article  PubMed  CAS  Google Scholar 

  13. Deen R, Ramesh K, Gautam SK, Rao YK, Lakshmi VJ, Viraktamath BC, Brar DS, Ram T (2010) Identification of new gene for BPH resistance introgressed from O. rufipogon. Rice Genet Newsl 25:70–71

    Google Scholar 

  14. Duvick D (1984) Genetic diversity in major farm crops on the farm and in reserve. Econ Bot 38(2):161–178

    Article  Google Scholar 

  15. Eiguchi M, Hirano HY, Sano Y, Morishima H (1993) Effects of water depth on internodal elongation and floral induction in a deepwater-tolerant rice line carrying the dw3 gene. Jpn J Breed 43(1):135–139

    Google Scholar 

  16. Everson RE, Gollin D, Santaniello V (1998) Introduction and overview: agricultural values of plant genetic resources. In: Everson RE, Gollin D, Santaniello V (eds) Agricultural values of plant genetic resources. CABI Publishing, Wallingford, pp 1–29

    Google Scholar 

  17. Frey KJ (1998) National plant breeding study III. National plan for gene pool enrichment of U.S. crops. Special Report Iowa Agricultural and Home Economics Experiment Station. Iowa State University, Ames, IA

    Google Scholar 

  18. Guo SB, Zhang DP, Lin XH (2010) Identification and mapping of a novel bacterial blight resistance gene Xa35(t) originated from Oryza minuta. Sci Agric Sin 43(13):2611–2618

    CAS  Google Scholar 

  19. Harini AS, Lakshmi SS, Kumar SS, Sivaramakrishnan S, Kadirvel P (2010) Validation and fine-mapping of genetic locus associated with resistance to brown plant hopper [Nilaparvata lugens (Stal.)] in rice (Oryza sativa L.). Asian J BioSci 1(5):32–37

    Google Scholar 

  20. He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16(5):618–626

    Article  PubMed  CAS  Google Scholar 

  21. He YX, Zheng TQ, Hao XB, Wang LF, Gao YM, Hua ZT, Zhai HQ, Xu JL, Xu ZJ, Zhu LH, Li ZK (2010) Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. Plant Breed 129(2):167–175

    Article  Google Scholar 

  22. Hirabayashi H, Angeles ER, Kaji R, Ogawa T, Brar DS, Khush GS (1998) Identification of brown planthopper resistance gene derived from O. officinalis using molecular markers in rice. Breed Sci 48(suppl):82

    Google Scholar 

  23. Hirabayashi H, Kaji R, Angeles ER, Ogawa T, Brar DS, Khush GS (1999) Analyses of a new gene for resistance to brown planthopper derived from O. officinalis on rice chromosome 4. Breed Res 1(suppl 1):48

    Google Scholar 

  24. Hou LY, Yu P, Xu Q, Yuan XP, Yu HY, Wang YP, Wang CH, Wan G, Peng ST, Wei XH (2010) Genetic analysis and preliminary mapping of two recessive resistance genes in rice to brown planthopper, Nilaparvata lugens. Chinese J Rice Sci 24(4):367–371. doi:10.3969/j.issn.1001-7216.2010.04.006

    CAS  Google Scholar 

  25. Huang D, Qiu Y, Zhang Y, Huang F, Meng J, Wei S, Li R, Chen B (2012) Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 126(1):219–229

    Article  PubMed  Google Scholar 

  26. Huang Z, He G, Shu L, Li X, Zhang Q (2001) Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet 102(6):929–934

    Article  CAS  Google Scholar 

  27. Ikeda R, Khush GS, Tabien R (1990) A new resistance gene to bacterial blight derived from O. longistaminata. Jpn J Breed 40(suppl 1):280–281

    Google Scholar 

  28. Ishii T, Brar DS, Multani DS, Khush GS (1994) Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome 37(2):217–221

    Article  PubMed  CAS  Google Scholar 

  29. Iwata N, Fujino K (2010) Genetic effects of major QTLs controlling low-temperature germinability in different genetic backgrounds in rice (Oryza sativa L.). Genome 53(10):763–768

    Article  PubMed  Google Scholar 

  30. James GC (2007) Breeding: recurrent selection and gain from selection. In: Goodman RM (ed) Encyclopedia of plant and crop science. Taylor & Francis, Boca Raton, FL, pp 232–236

    Google Scholar 

  31. Jena K, Jeung J, Lee J, Choi H, Brar D (2006) High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet 112(2):288–297

    Article  PubMed  CAS  Google Scholar 

  32. Jeung J, Kim B, Cho Y, Han S, Moon H, Lee Y, Jena K (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115(8):1163–1177

    Article  PubMed  CAS  Google Scholar 

  33. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2(10):815–822

    Article  PubMed  CAS  Google Scholar 

  34. Khush GS, Brar DS (2002) Biotechnology for rice breeding: progress and potential impact. In: International Rice Commission twentieth session, Bangkok, Thailand, 23–26 July 2002

    Google Scholar 

  35. Khush GS, Ling KC (1974) Inheritance of resistance to grassy stunt virus and its vector in rice. J Hered 65(3):135–136

    Google Scholar 

  36. Kobayasi N, Ikeda R, Isaias TD, Duncan AV (1993) Resistance to infection of rice tungro viruses and vector resistance in wild species of rice (Oryza spp.). Jpn J Breed 43(3):377–387

    Google Scholar 

  37. Lafitte HR, Vijayakumar CHM, Gao YM, Shi Y, Xu JL, Fu BY, Yu SB, Ali AJ, Domingo J, Maghirang R, Torres R, Mackill DJ, Li ZK (2006) Improvement of rice drought tolerance through backcross breeding: evaluation of donors and results from drought nurseries. Field Crops Res 97:77–86

    Article  Google Scholar 

  38. Li RB, Li LS, Wei SM, Wei YP, Chen YZ, Bai DL, Yang L, Huang FK, Lu WL, Zhang XJ, Li XY, Yang XQ, Wei YW (2006) The evaluation and utilization of new genes for brown planthopper resistance in common wild rice (Oryza rufipogon Griff.). Mol Plant Breed 4(3):365–371

    CAS  Google Scholar 

  39. Li Z, Pinson SR, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145(2):453–465

    PubMed  CAS  Google Scholar 

  40. Li Z, Pinson SR, Paterson AH, Park WD, Stansel JW (1997) Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145(4):1139–1148

    PubMed  CAS  Google Scholar 

  41. Li Z, Rutger JN (2000) Geographic distribution and multilocus organization of isozyme variation of rice (Oryza sativa L.). Theor Appl Genet 101(3):379–387

    Article  CAS  Google Scholar 

  42. Li ZK Fu BY, Gao YM, Xu JL, Ali J, Lafitte HR, Jiang YZ, Rey JD, Vijayakumar CH, Maghirang R, Zheng TQ, Zhu LH (2005) Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol 59(1):33–52

    Article  PubMed  CAS  Google Scholar 

  43. Li ZK (2001) QTL mapping in rice: a few critical considerations. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV. Science Publishers, New Delhi, pp 153–172

    Google Scholar 

  44. Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158(4):1737–1753

    PubMed  CAS  Google Scholar 

  45. Li ZK, Pinson SRM, Marchetti MA, Stansel JW, Park WD (1995) Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field-resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet 91(2):382–388

    CAS  Google Scholar 

  46. Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CH, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL x environment interactions in rice. I. heading date and plant height. Theor Appl Genet 108(1):141–153

    Article  PubMed  CAS  Google Scholar 

  47. Lin SC, Yuan LP (1980) Hybrid rice breeding in China. In: Innovative approaches to rice breeding. International Rice Research Institute, Manila, pp 35–51

    Google Scholar 

  48. Liu GQ, Yan HH, Fu Q, Qian Q, Zhang ZT, Zhai WX, Zhu LH (2001) Mapping of a new gene for brown planthopper resistance in cultivated rice introgressed from Oryza eichingeri. Chin Sci Bull 46(17):1459–1462

    Article  CAS  Google Scholar 

  49. Lorieux M, Reversat G, Garcia Diaz SX, Denance C, Jouvenet N, Orieux Y, Bourger N, Pando-Bahuon A, Ghesquière A (2003) Linkage mapping of Hsa-1Og, a resistance gene of African rice to the cyst nematode, Heterodera sacchari. Theor Appl Genet 107(4):691–696

    Article  PubMed  CAS  Google Scholar 

  50. Lu C, Shen L, He P, Chen Y, Zhu L, Tan Z, Xu Y (1997) Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population. Theor Appl Genet 94(1):145–150

    Article  PubMed  CAS  Google Scholar 

  51. Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158(4):1755–1771

    PubMed  CAS  Google Scholar 

  52. Luo X, Wu S, Tian F, Xin X, Zha X, Dong X, Fu Y, Wang X, Yang J, Sun C (2011) Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.). Plant Sci 181(1):14–22

    Article  PubMed  CAS  Google Scholar 

  53. Madurangi SAP, Samarasinghe WLG, Senanayake SGJN, Hemachandra PV, Ratnasekera D (2011) Resistance of Oryza nivara and Oryza eichingeri derived lines to brown planthopper, Nilaparvata lugens (Stal). J Natl Sci Found Sri Lanka 39(2):175–181

    Google Scholar 

  54. Marri P, Sarla N, Reddy L, Siddiq EA (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6(1):33

    Article  PubMed  Google Scholar 

  55. McCouch SR, Doerge RW (1995) QTL mapping in rice. Trends Genet 11(12):482–487

    Article  PubMed  CAS  Google Scholar 

  56. Mei HW, Xu JL, Li ZK, Yu XQ, Guo LB, Wang YP, Ying CS, Luo LJ (2006) QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet 112(4):648–656

    Article  PubMed  CAS  Google Scholar 

  57. Meng LJ, Lin XY, Wang LM, Chen K, Cui YR, Xu JL, Li ZK (2012) Simultaneous improvement of cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding. Plant Breed (in press)

    Google Scholar 

  58. Meng LJ, Ma XF, Tang ZQ, Shen F, Cui YR, Chai L, Chen K, Xu JL, Li ZK (2012) Screening and evaluation of heat tolerance of introgression lines with japonica Chaoyou 1 background. Acta Agron Sin 38:1949–1959

    Article  Google Scholar 

  59. Moncada P, Martinez CP, Borrero J, Châtel M, Gauch H, Guimaraes EP, Tohmé J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 201:41–52

    Article  Google Scholar 

  60. Multani DS, Khush GS, delos Reyes BG, Brar DS (2003) Alien genes introgression and development of monosomic alien addition lines from Oryza latifolia Desv. to rice, Oryza sativa L. Theor Appl Genet 107(3):395–405

    Article  PubMed  CAS  Google Scholar 

  61. Ndjiondjop MN, Albar L, Fargette D, Fauquet C, Ghesquière A (1999) The genetic basis of high resistance to rice yellow mottle virus (RYMV) in cultivars of two cultivated rice species. Plant Dis 83(10):931–935

    Article  Google Scholar 

  62. Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106(4):583–593

    PubMed  CAS  Google Scholar 

  63. Oka HI (1988) Origin of cultivated rice. Elsevier, New York, NY

    Google Scholar 

  64. Peng S, Cassman KG, Virmani SS, Sheehy J, Khush GS (1999) Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci 39(6):1552–1559. doi:10.2135/cropsci1999.3961552x

    Article  Google Scholar 

  65. Peng X, Wang K, Hu C, Zhu Y, Wang T, Yang J, Tong J, Li S, Zhu Y (2010) The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biol 10(1):125

    Article  PubMed  Google Scholar 

  66. Rahman M, Jiang W, Chu S, Qiao Y, Ham T-H, Woo M-O, Lee J, Khanam MS, Chin J-H, Jeung J-U, Brar DS, Jena KK, Koh H-J (2009) High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theor Appl Genet 119(7):1237–1246

    Article  PubMed  Google Scholar 

  67. Ram T, Deen R, Gautam SK, Ramesh K, Rao YK, Brar DS (2010) Identification of new genes for brown planthopper resistance in rice introgressed from O. glaberrima and O. minuta. Rice Genet Newsl 25:67–69

    Google Scholar 

  68. Renganayaki K, Fritz AK, Sadasivam S, Pammi S, Harrington SE, McCouch SR, Kumar SM, Reddy AS (2002) Mapping and progress toward map-based cloning of brown planthopper biotype-4 resistance gene introgressed from Oryza officinalis into cultivated rice, O. sativa. Crop Sci 42(6):2112–2117. doi:10.2135/cropsci2002.2112

    Article  CAS  Google Scholar 

  69. Ronald PC, Albano B, Tabien R, Abenes L, Wu KS, McCouch S, Tanksley SD (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet 236(1):113–120

    PubMed  CAS  Google Scholar 

  70. Ruan HH, Yan CQ, An DR, Liu RH, Chen JP (2008) Identifying and mapping new gene xa32(t) for resistance to bacterial blight (Xanthomonas oryzae pv oryzae, Xoo) from Oryza meyeriana L. Acta Agric Boreali Occidentalis Sin 17(6):170–174

    Google Scholar 

  71. Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432

    Article  PubMed  CAS  Google Scholar 

  72. Simmonds NW (1993) Introgression and incorporation. Strategies for the use of crop genetic resources. Biol Rev 68(4):539–562

    Article  Google Scholar 

  73. Tabien E, Li Z, Paterson H, Marchetti A, Stansel W, Pinson M (2002) Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet 105(2–3):313–324

    PubMed  CAS  Google Scholar 

  74. Tan GX, Ren X, Weng QM, Shi ZY, Zhu LL, He GC (2004) Mapping of a new resistance gene to bacterial blight in rice line introgressed from Oryza officinalis. Acta Genet Sin 31(7):724–729

    PubMed  CAS  Google Scholar 

  75. Tan GX, Weng QM, Ren X, Huang Z, Zhu LL, He GC (2003) Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 92(3):212–217

    Article  Google Scholar 

  76. Tan YJ, Zhang Y, Pan Y, Huang BC (1993) Study on the resistance to yellow stem borer and brown planthopper in a common wild rice SB1. Chinese J Rice Sci 7(4):246

    Google Scholar 

  77. Thiemele D, Boisnard A, Ndjiondjop MN, Cheron S, Sere Y, Ake S, Ghesquiere A, Albar L (2010) Identification of a second major resistance gene to rice yellow mottle virus, RYMV2, in the African cultivated rice species, O. glaberrima. Theor Appl Genet 121(1):169–179

    Article  PubMed  CAS  Google Scholar 

  78. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107(3):479–493

    Article  PubMed  CAS  Google Scholar 

  79. Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 113(4):619–629

    Article  PubMed  CAS  Google Scholar 

  80. Wang CL, Zhao BY, Zhang Q, Zhao KJ, Xing QD (2004) Identification of a new rice germplasm with resistance to bacterial blight and the breeding of a near-isogenic line. J Plant Genet Resour 5(1):26–30

    CAS  Google Scholar 

  81. Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136(4):1421–1434

    PubMed  CAS  Google Scholar 

  82. Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011) Drought induced site specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62(6):1951–1960

    Article  PubMed  CAS  Google Scholar 

  83. Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li J, Yuan L (1996) Genes from wild rice improve yield. Nature 384(6606):223–224

    Article  CAS  Google Scholar 

  84. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150(2):899–909

    PubMed  CAS  Google Scholar 

  85. Xiao J, Li J, Yuan L, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140(2):745–754

    PubMed  CAS  Google Scholar 

  86. Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253(5):535–545

    Article  PubMed  CAS  Google Scholar 

  87. Yang H, Ren X, Weng Q, Zhu L, He G (2002) Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene. Hereditas 136(1):39–43

    Article  PubMed  Google Scholar 

  88. Yang J, Sun Y, Cheng LR, Zhou Z, Wang Y, Zhu LH, Cang J (2009) Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line populations in rice. Acta Agron Sin 35(6):974–982

    Article  CAS  Google Scholar 

  89. Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35(1–2):145–153

    Article  PubMed  CAS  Google Scholar 

  90. Yu SB, Xu WJ, Vijayakumar CH, Ali J, Fu BY, Xu JL, Jiang YZ, Marghirang R, Domingo J, Aquino C, Virmani SS, Li ZK (2003) Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theor Appl Genet 108(1):131–140

    Article  PubMed  CAS  Google Scholar 

  91. Zhang F, Zhai HQ, Paterson AH, Xu JL, Gao YM, Zheng TQ, Wu RL, Fu BY, Ali J, Li ZK (2011) Dissecting genetic networks underlying complex phenotypes: the theoretical framework. PLoS One 6(1):e14541

    Article  PubMed  CAS  Google Scholar 

  92. Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A 104(42):16402–16409

    Article  PubMed  CAS  Google Scholar 

  93. Zhang Q, Zhao BY, Zhao KJ, Wang CL, Yang WC, Lin SC, Que GS, Zhou YL, Li DY, Chen WB, Zhu LH (2000) Identifying and mapping a new gene Xa-23(t) for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon. Acta Agron Sin 26(5):536–542

    Google Scholar 

  94. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed  Google Scholar 

  95. Zheng C-K, Wang C-L, Yu Y-J, Liang Y-T, Zhao K-J (2009) Identification and molecular mapping of Xa32(t), a novel resistance gene for bacterial blight (Xanthomonas oryzae pv. oryzae) in rice. Acta Agron Sin 35(7):1173–1180

    Article  CAS  Google Scholar 

  96. Zheng TQ, Wang Y, Ali AJ, Zhu LH, Sun Y, Zhai HQ, Mei HW, Xu ZJ, Xu JL, Li ZK (2011) Genetic effects of background-independent loci for grain weight and shape identified using advanced reciprocal introgression lines from lemont × teqing in rice. Crop Sci 51(6):2525–2534. doi:10.2135/cropsci2011.05.0259

    Article  Google Scholar 

  97. Zhou SX, Tian F, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Identification of quantitative trait loci controlling drought tolerance at seedling stage in Chinese Dongxiang common wild rice (Oryza rufipogon Griff.). Yi Chuan Xue Bao 33(6):551–558

    PubMed  Google Scholar 

  98. Zhou YL, Xie XW, Zhang F, Wang S, Liu XZ, Zhu LH, Xu JL, Li ZK (2013) Identifying quantitative traits loci (QRLs) associated with improved resistance to rice false smut caused by Ustilaginoidea virens (Accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Kang Li Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, ZK., Zheng, TQ. (2013). Utilization of Exotic Germplasm. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_23

Download citation

Publish with us

Policies and ethics