Skip to main content

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 6))

Peach (Prunus persica) belongs to the Prunus genus and is a member of the Rosaceae family. It has been selected as a model species for genomics studies in virtue of several features (Abbott et al., 2002): it has a short juvenile phase (2–3 years) if compared to many other tree species; it has a small genome, just about twice the size of Arabidopsis (5.9 x 108 bp; Baird et al., 1994); it is diploid with a base chromosome number of x = 8; it is the best characterized Prunus species, where a number of traits of agronomic interest are under the control of monogenic loci (recently reviewed in Dirlewanger et al., 2004) The recent development of genomics and functional genomics tools demonstrated throughout this volume is making possible to effectively implement comparative genomics strategies in Rosaceae, using peach as the “basic” genome (Abbott et al., 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A, Rajapaske S, Sosinski B, Lu ZX, Sossy-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, and Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort 465: 41–49

    CAS  Google Scholar 

  • Abbott AG, Lecouls AC, Wang Y, Georgi L, Scorza R, and Reigherd G (2002) Peach: the model genome for rosaceae genomics. Acta Hort 592: 199–209

    CAS  Google Scholar 

  • Abbott A, Zhebentyayeva T (2007) Physical Mapping of Peach, Department of Genetics& Biochemistry, Clemson University, Clemson, SC, 29634, USA http://www.bioinfo.wsu.edu/gdr/physical_map.sht

  • Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 11: 554–560

    Article  Google Scholar 

  • Aranzana MJ, Garcia-Mas, Carbo J, and Arus P (2002) Development and variability of microsatellite markers in peach. Plant Breed 121: 87–92

    Article  CAS  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Ascasibar J, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, and Arùs P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106: 819–825

    CAS  PubMed  Google Scholar 

  • Baird WV, Estager As, and Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hort Sci 119: 1312–1316

    Google Scholar 

  • Barale F, Lazzari B, Abbott A, Salamini F, and Pozzi C (2006) Steps towards the production of a function map in peach (Prunus persica). In PGEM Congress, Venice, Italy

    Google Scholar 

  • Bergougnoux V, Claverie M, Bosselut N, Lecouls AC, Esmenjaud D, Dirlewanger E, and Salesses G (2002) Marker assisted selection of the Ma gene from Myrobalan plum for a complete-spectrum root-knot nematode (RKN) resistance in Prunus rootstocks. Acta Hort 592: 223–228

    CAS  Google Scholar 

  • Bielenberg D, Wang Y, Fan S, Reighard G, Scorza R, and Abbott A (2004( A deletion affecting several gene candidates is present in the Evergrowing peach mutant. J Hered 95: 436–444

    Article  CAS  PubMed  Google Scholar 

  • Blenda AV, Reighard GL, Baird WV, Georgi LL, and Abbott AG (2002) Molecular markers and candidate resistance genes: a genetic study of tolerance to ring nematode in peach. Plant, Animal & Microbe Genomes X Conference. San Diego,USA

    Google Scholar 

  • Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Muñoz-Torres M, Baird WV, and Abbott A (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3: 341–350

    Article  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM,Kocsisne GM, and Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45: 520–529

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA, Dal Cin V, Lurie S, Crisosto CH, and Labavitch JM (2004) Cell wall metabolism during the development of mealiness in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. J Exp Bot 55: 2041–2052

    Article  CAS  PubMed  Google Scholar 

  • Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81: 68–71

    Google Scholar 

  • Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denance C, and Durel CE (2005) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110: 660–668

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JX, Werner DJ, O’Malley D, and Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isozyme, and RAPD markers in peach. Theor Appl Genet 87: 805–815

    Article  CAS  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, and Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99: 65–72

    Article  CAS  Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, and Esmenjaud D (2004a) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108: 765–773

    Google Scholar 

  • Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, and Esmenjaud D (2004b) High resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma form Myrobalan plum using a large -insert BAC DNA library. Theor Appl Genet 109: 1318–1327

    Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, and Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106: 912–922

    CAS  PubMed  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T, Shcurdi-Levraud V, and Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genom 272: 680–689

    Article  CAS  Google Scholar 

  • Dettori MT, Quarta R, and Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs and morphological markers. Genome 44: 783–790

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Pascal T, Zuger C, and Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L.) Batsch] x Prunus davidiana hybrids. Theor Appl Genet 93: 909–919

    Article  CAS  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guy A, and Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97: 888–895

    Article  CAS  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, and Monet C (1999) Mapping QTLs controlling fruit quality in peach. Theor Appl Genet 98: 18–31

    Article  CAS  Google Scholar 

  • Dirlewanger E, Crosson A, Tavaud P, Aranzana MJ, Poizat C, Zanetto A, Arus P, and Laigret L (2002) Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105: 127–138

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Poizat C, Cosson P, Lafargue B, Kleinhentz M, Claverie M, Bosselut N, Voisin R, Esmenjaud D, and Laigret F (2003) Genetic linkage maps of Myrobalan plum and of an almond-peach hybrid- Location of root-knot nematode resistance genes.7th International congress of plant molecular biology, ISPMB, Barcelona, Spain, 23–28 June 2003

    Google Scholar 

  • Dirlewanger E, Arùs P (2004) Molecular markers in plant breeding and crop improvement: markers in fruit tree breeding: improvement of peach. In Biotechnology in agriculture and forestry, vol. 55 (eds. L. Hoerst, Gerhard W.): Springer.

    Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, and Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theor Appl Genet 109: 827–838

    Google Scholar 

  • Dirlewanger E, Kleinhentz R, Voisin R, Claverie M, Lecouls AC, Esmenjaud JL, Poessel M, Faurobert M, Arús P, Gómez-Aparisi J, Xiloyannis C, and Di Vito M (2004b) Breeding for a new generation of Prunus rootstocks: an example of MAS. Acta Hort 658: 581–590

    Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, and Arus P (2004c) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA. 29: 9891–9896

    Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, and Moing A (2006) Development of a second-generation genetic linkage map for peach (Prunus persica) and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3: 1–3

    Article  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodnes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, and Dirlewanger E (2002) Candidate gene and QTLs for sugar and organic acid content in peach. Theor Appl Genet 105: 145–159

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Arulsekar S, Becerra V, and Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91: 262–269

    Article  CAS  Google Scholar 

  • Foulongne M, Pascal T, Arus P, and Kervella J (2003a) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107: 227–38

    Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, and Kervella J (2003b) QTLs for powdery mildew resistance in peach x Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12: 33–50

    Google Scholar 

  • Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, and Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach. Theor Appl Genet 105: 1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J Am Soc Hortic Sci 130: 24–33

    CAS  Google Scholar 

  • Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, and Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110: 1419–1428

    Article  PubMed  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, and Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171: 1305–1309

    Article  CAS  PubMed  Google Scholar 

  • Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, and Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102: 1169–1176

    Article  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, and Arús P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97: 1034–1041

    Article  CAS  Google Scholar 

  • Jun JH, Chung KH, Jeong SB, and Lee HJ (2003) Development of RAPD and SCAR markers linked to the flesh adhesion gene in peach. Acta Hort 625: 89–96

    CAS  Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, and Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 9(5):130

    Article  Google Scholar 

  • Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arus P, and Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 4:7:81

    Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, and Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res: D1034-40

    Google Scholar 

  • Ku HM, Liu J, Doganlar S, and Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovate containing region in tomato chromosome 2. Genome 44: 470–475

    Article  CAS  PubMed  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, and Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111: 1504–1513

    Article  CAS  PubMed  Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, and Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6: S16

    Article  PubMed  Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Merelli I, Barale F, Milanesi L, Stella A, and Pozzi C (2007) Version VI of the ESTree db: an improved tool for peach transcriptome analysis. BMC Bioinformatics 2:S9

    Google Scholar 

  • Lecouls AC, Reighard AC, Abbott AG, and Dirlewanger E (2002) Physical mapping and integration of QTL intervals involved in fruit quality on peach fruit variety and rootstock molecular maps. Acta Hort 592: 273–278

    CAS  Google Scholar 

  • Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ, Bosselut N, Voisin R, Poessel JL, Faurobert M, Bonnet A, Salesses G, Dirlewanger E, and Esmenjaud D (2004) Marker-assisted selection for the wide spectrum resistance to root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material. Mol Breed 13: 113–124

    Article  CAS  Google Scholar 

  • Lewers KS, Styan SMN, Hokanson SC, and Bassil NV (2005) Strawberry GenBank-derived and genomic simple sequence repeat (SSR) markers and their utility with strawberry, blackberry, and red and black raspberry. J Am Soc Hortic Sci 130: 102–115

    CAS  Google Scholar 

  • Liang FS, Zhang KC, Yu ZW, Yang JL, Zhabg XM, Jin DM, and Wang B (2004) Construction, characterization and screening of a transformation-competent artificial chromosome library of peach. Plant Mol Biol Rep 22: 37–48

    Article  CAS  Google Scholar 

  • Lu ZX, Sosinski B, Reighard GL, Baird WV, and Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41: 199–207

    Article  CAS  Google Scholar 

  • Lu ZX, Sossey-Alaoui K, Reighard GL, Baird WV, and Abbott AG (1999) Development and characterization of a codominant marker linked to root-knot nematode resistance, and its application to peach rootstock breeding. Theor Appl Genet 99: 115–122

    Article  CAS  Google Scholar 

  • Martinez-Gomez P, Sanchez-Perez R, Rubio M, Dicenta F, Gradziel TM, and Sozzi GO (2005) Application of recent biotechnologies to Prunus tree crop genetic improvement Cien Inv Agr 32: 73–96

    Google Scholar 

  • Moing A, Svanella L, Rolin D, Gaudillere M, Gaudillere JP, and Monet R (1998) Compositional changes during the fruit development of two peach cultivars differing in juice acidity. J Am Soc Hortic Sci 123: 770–775

    CAS  Google Scholar 

  • Monet R, Guye A, Roy M, and Dachary N (1996) Peach mendelian genetics: a short review of results. Agronomie 16: 321–329

    Article  Google Scholar 

  • Peace CP, Ahmad R, Gradziel TM, Dandekar AM, and Crisosto CH (2004) The use of molecular genetics to improve peach and nectarine post-storage quality. Acta Hort 682: 403–410

    Google Scholar 

  • Peace CP, Crisosto CH, and Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16: 21–31

    Article  CAS  Google Scholar 

  • Quarta R, Dettori MT, Sartori A, and Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hort 521: 233–241

    CAS  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Genard M, Foulogne M, and Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109: 884–897

    Article  CAS  PubMed  Google Scholar 

  • Sargent DJ, Rys A, Nier S, Simpson DW, and Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114: 373–384

    Article  CAS  PubMed  Google Scholar 

  • Scorza R, Mehlenbacher SA, and Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hort Sci 110: 547–552

    Google Scholar 

  • Scorza R., Ravelonandro M (2002) Gene silencing-based resistance to plum pox virus. Act Hort 622: 119–122

    Google Scholar 

  • Silva C, Garcia-Mas J, Sanchez AM, Arus P, and Oliveira M (2005) Looking into flowering time in almond (Prunus dulcis): the candidate gene approach. Theor Appl Genet 110: 959–968

    Article  CAS  PubMed  Google Scholar 

  • Sosinski B, Sossey-Alaoui K, Rajapakse S, Glassmoyer K, Ballard RE, Abbott AG, Lu ZX, Baird WV, Reighard G, Tabb A, and Scorza R (1998) Use of AFLP and RFLP markers to create a combined linkage map in peach [Prunus persica (L.) Batsch] for use in marker assisted selection. Acta Hort 465: 61–68

    CAS  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, and Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch] Theor Appl Genet 101: 421–428

    Article  CAS  Google Scholar 

  • Tani E, Polidoros AN, and Tsaftaris AS (2007) Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiol 27: 649–659

    CAS  PubMed  Google Scholar 

  • Verde I, Quarta R, Cedrola C, and Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592: 291–295

    CAS  Google Scholar 

  • Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, and Quarta R (2005) Microsatellite and AFLP markers in the Prunus persica x P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111: 1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Viruel MA, Messeguer R, de Vicente MC, Garcia-Mas J, Puigdomènech P, Vargas F, and Arús P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91: 964–971

    Article  CAS  Google Scholar 

  • Wang Q, Zhang K, Qu X, Jia J, Shi J, Jin D, and Wang B (2001) Construction and characterization of a bacterial artificial chromosome library of peach. Theor Appl Genet 103: 1174–1179

    Article  CAS  Google Scholar 

  • Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, and Abbott AG (2002a) High-throughput targeted SSR marker development in peach (Prunus persica). Genome 45: 319–328

    Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, and Abbott AG (2002b) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Hered 93: 352–358

    Google Scholar 

  • Wang Y, Garay L, Reighard GL, Georgi LL, Abbott AG, and Scorza R (2002c) Development of bacterial artificial chromosome contigs in the evergrowing gene region in peach. Acta Hort 592: 183–189

    Google Scholar 

  • Xu Q, Wen XP, and Deng XX (2005) Isolation of TIR and NonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Genet 111: 819–830

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wen X, and Deng X (2007) Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol Phylogenet Evol 44: 315–324

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, and Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51: 271–278

    Article  CAS  Google Scholar 

  • Yamamoto T, Hayashi T (2002) New root-knot nematode resistance genes and their STS markers in peach. Sci Hort 96: 81–90

    Article  CAS  Google Scholar 

  • Yamamoto T, Yamaguchi M, and Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Japan Soc Hort Sci 74: 204–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Pozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pozzi, C., Vecchietti, A. (2009). Peach Structural Genomics. In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_11

Download citation

Publish with us

Policies and ethics