Skip to main content
Log in

Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Peach tree short life (PTSL) is a devastating disease syndrome of peach [Prunus persica (L.) Batsch] caused by multiple factors; the molecular biology of its tolerance/susceptibility is unknown. The difficulty of studying PTSL is that tree survival or death is not obvious until 3 to 5 years after planting when the symptoms of PTSL first appear. Tolerance to PTSL was unknown in Prunus until the rootstock Guardian® ‘BY520-9’ was introduced into commercial orchards in 1994. To study the genetics of the response to PTSL, a controlled F2 cross was made between Guardian® ‘BY520-9’ selection 3-17-7 (PTSL-tolerant) and Nemaguard (PTSL-susceptible). An F1 hybrid was then selfed to generate an F2 population expected to segregate for PTSL response. One hundred fifty-one AFLPs and 21 SSRs, including anchor loci from the Prunus reference genetic map, were used to construct a molecular genetic map based on 100 F2 seedlings. This map covers a genetic distance of 737 cM with an average marker spacing of 4.7 cM and will be used as a framework to construct a highly saturated molecular genetic map. Of the 140 mapped AFLP markers, 38 were associated with PTSL response, as identified previously by bulked segregant analysis. The distribution of the markers associated with PTSL response on the newly constructed genetic map was compared with the recently published Prunus resistance map. This comparison revealed that some resistance gene analogs and several PTSL-associated AFLP markers were located in the same regions in several Prunus linkage groups: G1, G2, G4, G5, and G6. This peach rootstock map can also be viewed and compared with other Prunus maps in comparative map viewer CMap in the Genome Database for Rosaceae (GDR) at http://www.rosaceae.org

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort 465:41–49

    CAS  Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Arus P, Messeguer R, Viruel M, Tobutt K, Dirlewanger E, Santi F, Quarta R, Ritter E (1994) The European Prunus mapping project—progress in the almond linkage map. Euphytica 77:97–100

    Article  Google Scholar 

  • Baird WV, Ballard RE, Rajapakse S, Abbott AG (1996) Progress in Prunus mapping and application of molecular markers to germplasm improvement. HortScience 31:1099–1106

    CAS  Google Scholar 

  • Blenda AV, Wechter WP, Reighard GL, Baird WV, Abbott AG (2006) Development and characterisation of diagnostic AFLP markers in Prunus persica for its response to peach tree short life syndrome. J Hort Sci Biotech 81:281–288

    CAS  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigert F, Dirlewanger E, Esmenjaud D (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    Article  PubMed  CAS  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Gen Genet 272:680–689

    CAS  Google Scholar 

  • Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L.) Batsch] × Prunus davidiana hybrids. Theor Appl Genet 93:909–919

    Article  CAS  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of Myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    Article  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere, Cosson P, Howad W, Arus P (2004b) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  CAS  Google Scholar 

  • Eldredge L, Ballard R, Baird V, Abbott A, Morgens P, Callahan A, Scorza R, Monet R (1992) Application of RFLP analysis to genetic linkage mapping in peaches. HortScience 27:160–163

    CAS  Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Bonnet A, Salesses G (1996) Inheritance of resistance to the root-knot nematode Meloidogine arenaria in Myrobalan plum. Theor Appl Genet 92:873–879

    Article  Google Scholar 

  • Foulongne M, Pascal T, Arus P, Kervella J (2003a) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107:227–238

    Article  CAS  Google Scholar 

  • Foulongne M, Thierry P, Pfeiffer F, Kervella J (2003b) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    Article  CAS  Google Scholar 

  • Georgi LL, Wang E, Yvergniaux D, Blenda A, Inigo M, Sosinski B, Reighard G, Abbott AG (2002a) Peach: the model genome for Rosaceae. Acta Hort 575:145–156

    Google Scholar 

  • Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, Abbott AG (2002b) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158

    Article  CAS  Google Scholar 

  • Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J Amer Soc Hort Sci 130:24–33

    CAS  Google Scholar 

  • Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6558

    Article  PubMed  CAS  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F-2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Lambert P, Hagen LS, Arus P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas × peach Earlygold reference map for Prunus. Theor Appl Genet 108:1120–1130

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199–207

    Article  CAS  Google Scholar 

  • Lu ZX, Reighard GL, Nyczepir AP, Beckman TG, Ramming DW (2000) Inheritance of resistance to root-knot nematodes (Meloidogyne sp.) in Prunus rootstocks. HortScience 35:1344–1346

    Google Scholar 

  • Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM (2003) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131:313–322

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miller RW (1992) Estimated peach tree losses 1980 to 1992 in South Carolina—causes and economic impact. Sixth Stone Fruit Decline Workshop, Fort Valley, GA, pp 121–127, 26–28 (October)

    Google Scholar 

  • Nyczepir AP, Zehr EI, Lewis SA, Harshman DC (1983) Short life of peach trees induced by Criconemella xenoplax. Plant Dis 67:507–508

    Google Scholar 

  • Nyczepir AP, Reilly CC, Motsinger RE, Okie WR (1988) Behavior, parasitism, morphology, and biochemistry of Criconemella xenoplax and C. ornata on peach. J Nematol 20:40–46

    Google Scholar 

  • Okie WR (1998) Handbook of peach and nectarine varieties. USDA-ARS Agriculture Handbook, Washington, DC

    Google Scholar 

  • Okie WR, Nyczepir AP, Reilly CC (1987) Screening of peach and other Prunus species for resistance to ring nematode in the greenhouse. J Amer Soc Hort Sci 112:67–70

    Google Scholar 

  • Okie WR, Beckman TG, Nyczepir AP, Reighard GL, Newall WCJ, Zehr EI (1994) BY520-9, a peach rootstock for the southeastern United States that increases scion longevity. HortScience 29:705–706

    Google Scholar 

  • Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503–510

    Article  CAS  Google Scholar 

  • Silva C, Garcia-Mas J, Sanchez AM, Arus P, Oliveira M (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet 110:959–996

    Article  PubMed  CAS  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Tanksley SD (1997) Identification, manipulation and cloning of economically valuable QTLs in crop plants. FASEB J 11:915

    Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen J, Voorrips RE (2001) JoinMap® 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592:291–297

    CAS  Google Scholar 

  • Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the [Prunus persica L. (Batsch)] × P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort 465:79–87

    CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG (2002a) High-throughput targeted SSR marker development in peach (Prunus persica). Genome 45:319–328

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002b) Genetic mapping of the evergrowing gene in peach Prunus persica (L.) Batsch. J Heredity 93:352–358

    Article  CAS  Google Scholar 

  • Westman A, Miller B, Spira T, Tonkyn D, Abbott A (2002) Molecular genetic assessment of the risk of gene escape in strawberry, a model perennial study crop. Proceedings of the Gene Flow Workshop. Ohio State University Press, Columbus, OH, pp 6–24 (March 5–6)

    Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Bryon Sosinski (NC State University, USA) and Dr. Zhen-Xiang Lu (Lethbridge Research Centre, Agriculture and Agri-Food Canada) who made the original four F2 crosses designed to segregate for PTSL response (PTSL-tolerant Guardian® selections 3-17-7, 4-26-2, 6-39-7, and SL1089 crossed with the highly PTSL-susceptible Nemaguard). Dr. Marisa Badenes (Instituto Valenciano de Investigaciones Agrarias, Spain), Dr. Renate Horn (University of Rostock, Germany), Dr. Alexander Kozik (UC Davis, USA), and Dr. Tatyana Zhebentyayeva (Clemson University, USA) are acknowledged for reviewing the manuscript and/or useful comments. This article is technical contribution no. 5098 of the Clemson University Agricultural Experiment Station. The work was supported by the Cooperative State Research, Education, and Extension Service (CSREES)/USDA under project SC-1700005, CSREES special research grant “Peach Tree Short Life in South Carolina”, and Natural Resources Institute grant 98-35311-6719 “Molecular Genetic Studies of Ring Nematode Tolerance/Peach Tree Short Life Tolerance.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Blenda.

Additional information

Communicated by Peré Arús

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blenda, A.V., Verde, I., Georgi, L.L. et al. Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genetics & Genomes 3, 341–350 (2007). https://doi.org/10.1007/s11295-006-0074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-006-0074-9

Keywords

Navigation