Skip to main content
Log in

Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Blooming time is one of the most important agronomic traits in almond. Biochemical and molecular events underlying flowering regulation must be understood before methods to stimulate late flowering can be developed. Attempts to elucidate the genetic control of this process have led to the identification of a major gene (Lb) and quantitative trait loci (QTLs) linked to observed phenotypic differences, but although this gene and these QTLs have been placed on the Prunus reference genetic map, their sequences and specific functions remain unknown. The aim of our investigation was to associate these loci with known genes using a candidate gene approach. Two almond cDNAs and eight Prunus expressed sequence tags were selected as candidate genes (CGs) since their sequences were highly identical to those of flowering regulatory genes characterized in other species. The CGs were amplified from both parental lines of the mapping population using specific primers. Sequence comparison revealed DNA polymorphisms between the parental lines, mainly of the single nucleotide type. Polymorphisms were used to develop co-dominant cleaved amplified polymorphic sequence markers or length polymorphisms based on insertion/deletion events for mapping the candidate genes on the Prunus reference map. Ten candidate genes were assigned to six linkage groups in the Prunus genome. The positions of two of these were compatible with the regions where two QTLs for blooming time were detected. One additional candidate was localized close to the position of the Evergrowing gene, which determines a non-deciduous behaviour in peach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anderson JL, Seeley SD (1993) Bloom delay in deciduous fruits. Hortic Rev 15:97–144

    Google Scholar 

  • Ballester J, Socias I Company R, Arús P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270

    Article  CAS  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batch). Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101(26):9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  PubMed  CAS  Google Scholar 

  • Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845

    PubMed  CAS  Google Scholar 

  • Gévaudant F, Samson I, Guilliot A, Pétel G (1999) An improved method for isolating polyphenol-free RNA from woody plan tissues. J Trace Microprobe Tech 17:445–450

    Google Scholar 

  • Gilpin BJ, McCallum JA, Frew TJ, Timmerman-Vaughan GM (1997) A linkage map of the pea (Pisum sativum L) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet 95:1289–1299

    Article  CAS  Google Scholar 

  • Grassely C (1978) Observations sur l’utilisation d’un mutant d’amandier á floraison tardive dans un programme d’hybridation. Ann Amelior PLant 28:685–695

    Google Scholar 

  • Hudson M, Ringli C, Boylan MT, Quail PH (1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13:2017–2027

    Article  PubMed  CAS  Google Scholar 

  • Joobeur T (1998) Construccíon de un mapa de marcadores moleculares y análisis genético de caracteres agronónicos en Prunus. PhD thesis, Universtat de Lleida

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map in Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Kester DE (1965) Inheritance of time of bloom in certain progenies of almond. Proc Am Soc Hortic Sci 87:214–221

    Google Scholar 

  • Kester DE, Gradziel TM (1996) Almonds. In: Jarnick J, Moore JN (eds) Fruit breeding, vol. 3. Wiley, New York, pp 1–97

  • Kitahara K, Matsumoto S (2000) Rose MADS-box genes “MASAKO C1 and D1” homologous to class C floral identity genes. Plant Sci 151:121–134

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kusaba S, Honda C, Kano-Murakami Y (2001) Isolation and expression analysis of gibberellin 20-oxidase homologous gene in apple. J Exp Bot 52:375–637

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Levy YY, Dean C (1998) Control of flowering time. Curr Opin Plant Biol 1:49–54

    Article  PubMed  CAS  Google Scholar 

  • McCallum J, Leite D, Pither-Joyce M, Havey MJ (2001) Expressed sequence markers for genetic analysis of bulb onion (Allium cepa L). Theor Appl Genet 103:979–991

    Article  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–s130

    PubMed  CAS  Google Scholar 

  • Peña L, Martin-Trillo M, Juárez J, Pina JA, Navarro L, Martínez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19: 263–267

    Article  PubMed  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Plomion C, Hurme P, Frigerio JM, Ridolfi M, Pot D, Pionneau C, Avila C, Gallardo F, David H, Neutelings G, Campbell M, Canovas FM, Savolainen O, Kremer A (1999) Developing SSCP markers in two Pinus species. Mol Breed 5:21–31

    Article  CAS  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sócias I Company R, Felipe AJ, Gómez Aparisi J (1998) Genetics of late blooming in almond. Acta Hortic 484:261–266

    Google Scholar 

  • Sung SK, Yu GH, An G (1999) Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120:969–978

    Article  PubMed  CAS  Google Scholar 

  • Tabuenca MC (1972) Necessidades de frío invernal en almendro. An Estac Esper Aula Dei 11:325–329

    Google Scholar 

  • Tabuenca MC, Mut M, Herrero J (1972) Influencia de la temperatura en la época de floracion de almendro. An Estac Esper Aula Dei 11:378–395

    Google Scholar 

  • Tanksley SD (1993) Mapping Polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gaps penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tragoonrung S, Kanazin V, Hayes PM, Blake TK (1992) Sequence-tagged-site-facilitated PCR for barley genome mapping. Theor Appl Genet 84:1002–1008

    PubMed  CAS  Google Scholar 

  • Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297

    CAS  Google Scholar 

  • Viruel MA, Messeguer R, de Vicente MC, Garcia-Mas J, Puigdomènech P, Vargas F, Arús P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91:964–971

    PubMed  CAS  Google Scholar 

  • Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Georgi L, Reighard GL, Scorza R, Abbott AG (2002a) Genetic Mapping of the evergrowing gene in peach [ Prunus persica (L) Batsch]. J Hered 93:352–358

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Georgi L, Zhebentyayeva N, Reighard GL, Scorza R, Abbott AG (2002b) High throughput targeted SSR marker development in peach (Prunus persica). Genome 45:319–328

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowits EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Dong Y, Kvarnheden A, Morris B (1999) Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124:8–13

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to W. Howard for access to unpublished information on the position of pchgms12 and to A. Monfort and W. Howard for fruitful discussions. We also acknowledge the financial support from Fundação para a Ciência e a Tecnologia (Portugal) and Fundo Social Europeu, in the framework III Quadro Comunitário de Apoio for fellowship BD1187/00 awarded to C. Silva and for the research project Sapiens 33499/99.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Oliveira.

Additional information

Communicated by E. Guiderdoni

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, C., Garcia-Mas, J., Sánchez, A.M. et al. Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet 110, 959–968 (2005). https://doi.org/10.1007/s00122-004-1918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1918-z

Keywords

Navigation