Skip to main content
Log in

Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High entropy alloys (HEA) are frequently employed as catalysts in electrocatalytic hydrogen evolution. However, the traditional high entropy alloy synthesis methods are time-consuming, energy-intensive, and environmentally polluting, which limits their application in the hydrogen evolution reaction (HER). This study leveraged the capabilities of flash Joule heating (FJH) to synthesize carbon-supported high-entropy alloy sulfide nanoparticles (CC-S-HEA) on carbon cloth (CC) with good self-standing properties within 300 ms. The carbon thermal shock generated by the Joule heating could pyrolyze the sulfur source into gas, resulting in numerous pore structures and defects on CC, forming an S-doped carbon substrate (CC-S). Then the S atoms were used to stably anchor the metal atoms on CC-S to form high-density uniformly dispersed HEA particles. The electrochemical test results demonstrated that CC-S-HEA prepared at 60 V flash voltage had HER performance comparable to Pt/C. The density functional theory (DFT) calculation indicated that the S atoms on CC-S accelerated the electron transfer between the carbon substrate and HEA particles. Moreover, the unique electronic structure of CC-S-HEA was beneficial to H* adsorption and promoted catalytic kinetics. The simplicity and versatility of FJH synthesis are of great significance for optimizing the synthesis of HEA and improving the quality of HEA products, which provides a broad application prospect for the synthesis of nanocatalysts with efficient HER performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, W.; Wu, Y. X.; Lin, Y. X.; Yao, J. X.; Wu, X. S.; Wu, C. Q.; Zuo, X. Q.; Yang, Q.; Ge, B. H. et al. Confining zero-valent platinum single atoms in α-MoC1-x for pH-Universal hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2108464.

    Article  CAS  Google Scholar 

  2. Zhang, L. L.; Lei, Y. T.; Xu, W. J.; Wang, D.; Zhao, Y. F.; Chen, W. X.; Xiang, X.; Pang, X. C.; Zhang, B.; Shang, H. S. Highly active and durable nitrogen-doped CoP/CeO2 nanowire heterostructures for overall water splitting. Chem. Eng. J. 2023, 460, 141119.

    Article  CAS  Google Scholar 

  3. Ou, G.; Fan, P. X.; Ke, X. X.; Xu, Y. S.; Huang, K.; Wei, H. H.; Yu, W.; Zhang, H. J.; Zhong, M. L.; Wu, H. et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res. 2018, 11, 751–761.

    Article  CAS  Google Scholar 

  4. Qie, Y. Q.; Liu, Y. X.; Kong, F. Q.; Yang, Z. L.; Yang, H. High coercivity cobalt carbide nanoparticles as electrocatalysts for hydrogen evolution reaction. Nano Res. 2022, 15, 3901–3906.

    Article  ADS  CAS  Google Scholar 

  5. Xu, J. S.; Li, R.; Yan, X. Y.; Zhao, Q. K.; Zeng, R. G.; Ba, J. W.; Pan, Q. F.; Xiang, X.; Meng, D. Q. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022, 15, 3952–3958.

    Article  ADS  CAS  Google Scholar 

  6. Khan, M.; Yousaf, A. B.; Chen, M. M.; Wei, C. S.; Wu, X. B.; Huang, N. D.; Qi, Z. M.; Li, L. B. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 2016, 9, 837–848.

    Article  CAS  Google Scholar 

  7. Wu, W. Z.; Huang, Y. J.; Wang, X. Q.; Shen, P. K.; Zhu, J. L. Composition-optimized manganese phosphide nanoparticles anchored on porous carbon network for efficiently electrocatalytic hydrogen evolution. Chem. Eng. J. 2023, 469, 143879.

    Article  CAS  Google Scholar 

  8. Liu, H.; Qin, H. Y.; Kang, J. L.; Ma, L. Y.; Chen, G. X.; Huang, Q.; Zhang, Z. J.; Liu, E. Z.; Lu, H. M.; Li, J. X. et al. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting. Chem. Eng. J. 2022, 435, 134898.

    Article  CAS  Google Scholar 

  9. Salah, A.; Ren, H. D.; Al-Ansi, N.; Tan, H. Q.; Yu, F. Y.; Liu, Y. C.; Thamer, B. M.; Al-Salihy, A.; Zhao, L.; Li, Y. G. Dispersing small Ru nanoparticles into boron nitride remodified by reduced graphene oxide for high-efficient electrocatalytic hydrogen evolution reaction. J. Colloid Interface Sci. 2023, 644, 378–387.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Xu, L.; Gu, Y.; Li, Y. Y.; Liu, H. Z.; Shang, Y. Y.; Zhu, Y. Y.; Zhou, B.; Zhu, L. H.; Jiang, X. Q. One-step preparation of molybdenum disulfide/graphene nano-catalysts through a simple Co-exfoliation method for high-performance electrocatalytic hydrogen evolution reaction. J. Colloid Interface Sci. 2019, 542, 355–362.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Z. L.; Qing, H. L.; Zhou, K.; Sun, D. L.; Wu, R. B. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 2020, 108, 100618.

    Article  CAS  Google Scholar 

  13. Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

    Article  ADS  CAS  Google Scholar 

  14. Nemiwal, M.; Gosu, V.; Zhang, T. C.; Kumar, D. Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrogen Energy 2021, 46, 10216–10238.

    Article  CAS  Google Scholar 

  15. Shan, A. X.; Teng, X. A.; Zhang, Y.; Zhang, P. F.; Xu, Y. Y.; Liu, C. R.; Li, H.; Ye, H. Y.; Wang, R. M. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy 2022, 94, 106913.

    Article  CAS  Google Scholar 

  16. Ji, J. P.; Zhang, Y. Q.; Tang, L. B.; Liu, C. Y.; Gao, X. H.; Sun, M. H.; Zheng, J. C.; Ling, M.; Liang, C. D.; Lin, Z. Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution. Nano Energy 2019, 63, 103849.

    Article  CAS  Google Scholar 

  17. Zhou, D.; Jiang, B.; Yang, R.; Hou, X. D.; Zheng, C. B. One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution. Chin. Chem. Lett. 2020, 31, 1540–1544.

    Article  CAS  Google Scholar 

  18. Gao, D. D.; Liu, R. J.; Biskupek, J.; Kaiser, U.; Song, Y. F.; Streb, C. Modular design of noble-metal-free mixed metal oxide electrocatalysts for complete water splitting. Angew. Chem., Int. Ed. 2019, 58, 4644–4648.

    Article  CAS  Google Scholar 

  19. Sun, J. S.; Wen, Z.; Han, L. P.; Chen, Z. W.; Lang, X. Y.; Jiang, Q. Nonprecious intermetallic Al7Cu4Ni nanocrystals seamlessly integrated in freestanding bimodal nanoporous copper for efficient hydrogen evolution catalysis. Adv. Funct. Mater. 2018, 28, 1706127.

    Article  Google Scholar 

  20. Feng, D. Y.; Dong, Y. B.; Nie, P.; Zhang, L.; Qiao, Z. A. CoNiCuMgZn high entropy alloy nanoparticles embedded onto graphene sheets via anchoring and alloying strategy as efficient electrocatalysts for hydrogen evolution reaction. Chem. Eng. J. 2022, 430, 132883.

    Article  CAS  Google Scholar 

  21. Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. Highentropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

    Article  CAS  Google Scholar 

  22. Peng, H. L.; Xie, Y. C. Z.; Xie, Z. C.; Wu, Y. F.; Zhu, W. K.; Liang, S. Q.; Wang, L. B. Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. J. Mater. Chem. A 2020, 8, 18318–18326.

    Article  CAS  Google Scholar 

  23. Li, K.; Chen, W. Recent progress in high-entropy alloys for catalysts: Synthesis, applications, and prospects. Mater. Today Energy 2021, 20, 100638.

    Article  CAS  Google Scholar 

  24. Chen, Z. Q.; Wen, J. B.; Wang, C. H.; Kang, X. W. Convex cubeshaped Pt34Fe5Ni20Cu31Mo9Ru high entropy alloy catalysts toward high-performance multifunctional electrocatalysis. Small 2022, 18, 2204255.

    Article  CAS  Google Scholar 

  25. Lei, Y. T.; Zhang, L. L.; Xu, W. J.; Xiong, C. L.; Chen, W. X.; Xiang, X.; Zhang, B.; Shang, H. S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 2022, 15, 6054–6061.

    Article  ADS  CAS  Google Scholar 

  26. Ma, P. Y.; Zhao, M. M.; Zhang, L.; Wang, H.; Gu, J. F.; Sun, Y. C.; Ji, W.; Fu, Z. Y. Self-supported high-entropy alloy electrocatalyst for highly efficient H2 evolution in acid condition. J. Materiomics 2020, 6, 736–742.

    Article  Google Scholar 

  27. Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Al Bacha, S.; Pighin, S. A.; Urretavizcaya, G.; Zakhour, M.; Nakhl, M.; Castro, F. J.; Bobet, J. L. Effect of ball milling strategy (milling device for scaling-up) on the hydrolysis performance of Mg alloy waste. Int. J. Hydrogen Energy 2020, 45, 20883–20893.

    Article  CAS  Google Scholar 

  29. Dong, Y.; Duan, S. G.; Huang, X.; Li, C. Q.; Zhang, Z. R. Excellent strength-ductility synergy in as-cast Al0.6CoCrFeNi2Mo0.08V0.04 highentropy alloy at room and cryogenic temperatures. Mater. Lett. 2021, 294, 129778.

    Article  CAS  Google Scholar 

  30. Zhang, N.; Feng, X. B.; Rao, D. W.; Deng, X.; Cai, L. J.; Qiu, B. C.; Long, R.; Xiong, Y. J.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ud Din, M. A.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.

    Article  Google Scholar 

  32. Dai, W. J.; Lu, T.; Pan, Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power Sources 2019, 430, 104–111.

    Article  ADS  CAS  Google Scholar 

  33. Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M. V.; Cadavid, D.; Cabot, A. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 2017, 46, 3510–3528.

    Article  CAS  PubMed  Google Scholar 

  34. Wyss, K. M.; Chen, W. Y.; Beckham, J. L.; Savas, P. E.; Tour, J. M. Holey and wrinkled flash graphene from mixed plastic waste. ACS Nano 2022, 16, 7804–7815.

    Article  CAS  PubMed  Google Scholar 

  35. Algozeeb, W. A.; Savas, P. E.; Yuan, Z.; Wang, Z.; Kittrell, C.; Hall, J. N.; Chen, W. Y.; Bollini, P.; Tour, J. M. Plastic waste product captures carbon dioxide in nanometer pores. ACS Nano 2022, 16, 7284–7290.

    Article  CAS  PubMed  Google Scholar 

  36. Huang, P. F.; Zhu, R. T.; Zhang, X. X.; Zhang, W. J. Effect of free radicals and electric field on preparation of coal pitch-derived graphene using flash joule heating. Chem. Eng. J. 2022, 450, 137999.

    Article  CAS  Google Scholar 

  37. Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.

    Article  CAS  Google Scholar 

  38. Liu, C.; Shen, Y.; Zhang, J. F.; Li, G.; Zheng, X. R.; Han, X. P.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 2022, 12, 2103505.

    Article  CAS  Google Scholar 

  39. Luo, J. W.; Zhang, J. C.; Guo, Z. X.; Liu, Z. D.; Dou, S. M.; Liu, W. D.; Chen, Y. N.; Hu, W. B. Recycle spent graphite to defect-engineered, high-power graphite anode. Nano Res. 2023, 16, 4240–4245.

    Article  ADS  CAS  Google Scholar 

  40. Zeng, C. H.; Duan, C. P.; Guo, Z. X.; Liu, Z. D.; Dou, S. M.; Yuan, Q. Y.; Liu, P.; Zhang, J. C.; Luo, J. W.; Liu, W. D. et al. Ultrafastly activated needle coke as electrode material for supercapacitors. Prog. Nat. Sci. 2022, 32, 786–792.

    Article  CAS  Google Scholar 

  41. Chen, Y. N.; Egan, G. C.; Wan, J. Y.; Zhu, S. Z.; Jacob, R. J.; Zhou, W. B.; Dai, J. Q.; Wang, Y. B.; Danner, V. A.; Yao, Y. G. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 2016, 7, 12332.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, J. H.; Wang, Z. Y.; Fang, X. Y.; Yang, L.; Wu, C. Q.; Gan, W.; Zhou, Y.; Shan, L.; Lin, Y. X. Fast joule heating synthesis of NiCoFeCrMo high-entropy alloy embedded in graphene for water oxidation. J. Alloys Compd. 2023, 966, 171535.

    Article  CAS  Google Scholar 

  43. Laidler, K. J. The development of the arrhenius equation. J. Chem. Educ. 1984, 61, 494.

    Article  CAS  Google Scholar 

  44. Welch, G. R. Some problems in the usage of gibbs free energy in biochemistry. J. Theor. Biol. 1985, 114, 433–446.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Wei, S.; Wan, C. C.; Li, X. G.; Su, J. H.; Cheng, W. J.; Chai, H. Y.; Wu, Y. Q. Constructing N-doped and 3D hierarchical porous graphene nanofoam by plasma activation for supercapacitor and Zn ion capacitor. iScience 2023, 26, 105964.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wahab, H.; Jain, V.; Tyrrell, A. S.; Seas, M. A.; Kotthoff, L.; Johnson, P. A. Machine-learning-assisted fabrication: Bayesian optimization of laser-induced graphene patterning using in-situ Raman analysis. Carbon 2020, 167, 609–619.

    Article  CAS  Google Scholar 

  47. Xu, X.; Du, Y. K.; Wang, C. H.; Guo, Y.; Zou, J. W.; Zhou, K.; Zeng, Z.; Liu, Y. Y.; Li, L. Q. High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors. J. Alloys Compd. 2020, 822, 153642.

    Article  CAS  Google Scholar 

  48. Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.

    Article  CAS  Google Scholar 

  49. Liu, C.; Zhu, H.; Lu, S. L.; Duan, F.; Du, M. L. High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions. New J. Chem. 2021, 45, 22255–22260.

    Article  CAS  Google Scholar 

  50. Moradi, M.; Hasanvandian, F.; Bahadoran, A.; Shokri, A.; Zerangnasrabad, S.; Kakavandi, B. New high-entropy transitionmetal sulfide nanoparticles for electrochemical oxygen evolution reaction. Electrochim. Acta 2022, 436, 141444.

    Article  CAS  Google Scholar 

  51. Paulraj, G.; Venkatesh, P. S.; Dharmaraj, P.; Gopalakrishnan, S.; Jeganathan, K. Stable and highly efficient MoS2/Si NWs hybrid heterostructure for photoelectrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 1793–1801.

    Article  CAS  Google Scholar 

  52. Chandrasekaran, P.; Edison, T. N. J. I.; Sethuraman, M. G. Electrocatalytic performance of carbon dots/palladium nanoparticles composite towards hydrogen evolution reaction in acid medium. Int. J. Hydrogen Energy 2020, 45, 28800–28811.

    Article  CAS  Google Scholar 

  53. Tan, Y.; Wei, Y. K.; Liang, K. X.; Wang, L. Y.; Zhang, S. H. Facile in-situ deposition of Pt nanoparticles on nano-pore stainless steel composite electrodes for high active hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 26340–26346.

    Article  CAS  Google Scholar 

  54. Lu, Y.; Geng, S. H.; Wang, S. J.; Rao, S. C.; Huang, Y.; Zou, X. L.; Zhang, Y. W.; Xu, Q.; Lu, X. G. Electrodeposition of Ni-Mo-Cu coatings from roasted nickel matte in deep eutectic solvent for hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 5704–5716.

    Article  CAS  Google Scholar 

  55. Wang, S. Q.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thinfilm electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B: Environ. 2022, 313, 121472.

    Article  CAS  Google Scholar 

  56. Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062

    Article  Google Scholar 

  57. Jin, J.; Yin, J.; Liu, H. B.; Huang, B. L.; Hu, Y.; Zhang, H.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 133, 14236–14242.

    Article  ADS  Google Scholar 

  58. Zhao, X.; Li, X. Y.; Xiao, D. D.; Gong, M. X.; An, L. L.; Gao, P. F.; Yang, J. L.; Wang, D. L. Isolated Pd atom anchoring endows cobalt diselenides with regulated water-reduction kinetics for alkaline hydrogen evolution. Appl. Catal. B: Environ. 2021, 295, 120280.

    Article  CAS  Google Scholar 

  59. Shaker, T.; Mehdipour, H.; Moshfegh, A. Z. Low loaded MoS2/carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 1579–1588.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Research and Development Project of Xuzhou City (No. KC21287) and the National Natural Science Foundation of China (No. 51974307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongtao Zhu.

Electronic Supplementary Material

12274_2023_6215_MOESM1_ESM.pdf

Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Zhu, R., Zhang, W. et al. Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution. Nano Res. 17, 3379–3389 (2024). https://doi.org/10.1007/s12274-023-6215-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6215-8

Keywords

Navigation