Skip to main content
Log in

Recycle spent graphite to defect-engineered, high-power graphite anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphite is a dominant anode material for lithium-ion batteries (LIBs) due to its outstanding electrochemical performance. However, slow lithium ion (Li+) kinetics of graphite anode restricts its further application. Herein, we report that high-temperature shock (HTS) can drive spent graphite (SG) into defect-rich recycled graphite (DRG) which is ideal for high-rate anode. The DRG exhibits the charging specific capacity of 323 mAh/g at a high current density of 2 C, which outperforms commercial graphite (CG, 120 mAh/g). The eminent electrochemical performance of DRG can be attributed to the recovery of layered structure and partial remaining defects of SG during ultrafast heating and cooling process, which can effectively reduce total strain energy, accelerate the phase transition in thermodynamics and improve the Li+ diffusion. This study provides a facile strategy to guide the re-graphitization of SG and design high performance battery electrode materials by defect engineering from the atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2021, 15, 3178–3186.

    Google Scholar 

  2. Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

    CAS  Google Scholar 

  3. Wang, T. R.; Song, Z. Y.; Zhang, Y. N.; Gao, Y. L.; Huang, L. Q.; Lin, S. J.; Luo, W. Direct recycling of shorted solid-state electrolytes enabled by targeted recovery. Energy Storage Mater. 2022, 52, 365–370.

    Google Scholar 

  4. Zhao, Z. Q.; Wang, C. Y.; Wang, H. Z.; Shen, Y. H.; Wang, Q. Y.; Li, S. W.; Liu, B.; Zhao, N. Q.; Zhong, C.; Hu, W. B. A simple way to induce anode-electrolyte interface engineering through a functional composite separator for zinc-nickel batteries. Nano Energy 2022, 97, 107162.

    CAS  Google Scholar 

  5. Wu, W. Y.; Song, Z. Y.; Dai, Y. M.; Zheng, X. Y.; Chai, G. Y.; Yang, J. B.; Luo, W. Magnetic actuation enables programmable lithium metal engineering. Adv. Energy Mater. 2022, 12, 2200999.

    CAS  Google Scholar 

  6. Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C. X.; Zhang, J.; Chen, S. H.; Xu, L.; Yuan, H.; Zhang, Q. Fast charging lithium batteries: Recent progress and future prospects. Small 2019, 15, 1805389.

    Google Scholar 

  7. Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; Von Jouanne, A. Advanced electric vehicle fast-charging technologies. Energies 2019, 12, 1839.

    CAS  Google Scholar 

  8. Zhao, R.; Sun, N.; Xu, B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries. Small Struct. 2021, 2, 2100132.

    CAS  Google Scholar 

  9. Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243–1295.

    CAS  Google Scholar 

  10. Bresser, D.; Passerini, S.; Scrosati, B. Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy Environ. Sci. 2016, 9, 3348–3367.

    CAS  Google Scholar 

  11. Zhang, H.; Yang, Y.; Ren, D. S.; Wang, L.; He, X. M. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170.

    Google Scholar 

  12. Yang, X. G.; Liu, T.; Gao, Y.; Ge, S. H.; Leng, Y. J.; Wang, D. H.; Wang, C. Y. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries. Joule 2019, 3, 3002–3019.

    CAS  Google Scholar 

  13. Chen, K. H.; Goel, V.; Namkoong, M. J.; Wied, M.; Müller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N. P. Enabling 6 C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 2021, 11, 2003336.

    CAS  Google Scholar 

  14. Cheng, Q.; Yuge, R.; Nakahara, K.; Tamura, N.; Miyamoto, S. KOH etched graphite for fast chargeable lithium-ion batteries. J. Power Sources 2015, 284, 258–263.

    CAS  Google Scholar 

  15. Shim, J. H.; Lee, S. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries. J. Power Sources 2016, 324, 475–483.

    CAS  Google Scholar 

  16. Kim, T. H.; Jeon, E. K.; Ko, Y.; Jang, B. Y.; Kim, B. S.; Song, H. K. Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast. J. Mater. Chem. A 2014, 2, 7600–7605.

    CAS  Google Scholar 

  17. Park, M. S.; Kim, J. H.; Jo, Y. N.; Oh, S. H.; Kim, H.; Kim, Y. J. Incorporation of phosphorus into the surface of natural graphite anode for lithium ion batteries. J. Mater. Chem. 2011, 21, 17960–17966.

    CAS  Google Scholar 

  18. Yu, P.; Tang, W.; Wu, F. F.; Zhang, C.; Luo, H. Y.; Liu, H.; Wang, Z. G. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review. Rare Met. 2020, 39, 1019–1033.

    CAS  Google Scholar 

  19. Li, W. Q.; Yue, M. Y.; Guo, H. N.; Yuan, Z. X.; Liu, Y. F.; Chen, K.; Gu, J. M.; Wang, Y. J. Rational design of MnS nanoparticles anchored on N,S-codoped carbon matrix as anode for lithium-ion batteries. Prog. Natl. Sci. Mater. Int. 2021, 31, 649–655.

    CAS  Google Scholar 

  20. Wu, Y.; Wang, L. Y.; Li, Y. F.; Zhao, Z. Y.; Yin, L. W.; Li, H.; Bai, Y. J. KCl-modified graphite as high performance anode material for lithium-ion batteries with excellent rate performance. J. Phys. Chem. C 2017, 121, 13052–13058.

    CAS  Google Scholar 

  21. Dou, S. M.; Xu, J.; Cui, X. Y.; Liu, W. D.; Zhang, Z. C.; Deng, Y. D.; Hu, W. B.; Chen, Y. N. High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy Mater. 2020, 10, 2001331.

    CAS  Google Scholar 

  22. Liu, C.; Zhou, W.; Zhang, J. F.; Chen, Z. L.; Liu, S. L.; Zhang, Y.; Yang, J. X.; Xu, L. Y.; Hu, W. B.; Chen, Y. N. et al. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv. Energy Mater. 2020, 10, 2001397.

    CAS  Google Scholar 

  23. Chen, Y. N.; Egan, G. C.; Wan, J. Y.; Zhu, S. Z.; Jacob, R. J.; Zhou, W. B.; Dai, J. Q.; Wang, Y. B.; Danner, V. A.; Yao, Y. G. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 2016, 7, 12332.

    CAS  Google Scholar 

  24. Liu, Z. D.; Duan, C. P.; Dou, S. M.; Yuan, Q. Y.; Xu, J.; Liu, W. D.; Chen, Y. N. Ultrafast porous carbon activation promises high-energy density supercapacitors. Small 2022, 18, 2200954.

    CAS  Google Scholar 

  25. Liu, S. L.; Hu, Z.; Wu, Y. Z.; Zhang, J. F.; Zhang, Y.; Cui, B. H.; Liu, C.; Hu, S.; Zhao, N. Q.; Han, X. P. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2006034.

    CAS  Google Scholar 

  26. Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.

    CAS  Google Scholar 

  27. Zhang, J. C.; Liu, Z. D.; Zeng, C. H.; Luo, J. W.; Deng, Y. D.; Cui, X. Y.; Chen, Y. N. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery. Rare Met., in press, https://doi.org/10.1007/s12598-022-02070-6.

  28. Gao, Y.; Zhang, J. L.; Jin, H.; Liang, G. Q.; Ma, L. L.; Chen, Y. Q.; Wang, C. Y. Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment. Carbon 2022, 189, 493–502.

    CAS  Google Scholar 

  29. Liang, H. J.; Hou, B. H.; Li, W. H.; Ning, Q. L.; Yang, X.; Gu, Z. Y.; Nie, X. J.; Wang, G.; Wu, X. L. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ. Sci. 2019, 12, 3575–3584.

    CAS  Google Scholar 

  30. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    CAS  Google Scholar 

  31. Stanford, M. G.; Bets, K. V.; Luong, D. X.; Advincula, P. A.; Chen, W. Y.; Li, J. T.; Wang, Z.; McHugh, E. A.; Algozeeb, W. A.; Yakobson, B. I. et al. Flash graphene morphologies. ACS Nano 2020, 14, 13691–13699.

    CAS  Google Scholar 

  32. Zong, L. B.; Chen, X.; Dou, S. M.; Fan, K. C.; Wang, Z. M.; Zhang, W. J.; Du, Y. M.; Xu, J.; Jia, X. F.; Zhang, Q. et al. Stable confinement of Fe/Fe3C in Fe,N-codoped carbon nanotube towards robust zinc-air batteries. Chin. Chem. Lett. 2021, 32, 1121–1126.

    CAS  Google Scholar 

  33. Zhang, H. W.; Hu, M. X.; Huang, Z. H.; Kang, F. Y.; Lv, R. T. Sodium-ion capacitors with superior energy-power performance by using carbon-based materials in both electrodes. Prog. Natl. Sci.: Mater. Int. 2020, 30, 13–19.

    CAS  Google Scholar 

  34. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    CAS  Google Scholar 

  35. Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

    CAS  Google Scholar 

  36. Wang, M. M.; Wang, J. R.; Xiao, J. C.; Ren, N. Q.; Pan, B. C.; Chen, C. S.; Chen, C. H. Introducing a pseudocapacitive lithium storage mechanism into graphite by defect engineering for fast-charging lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 16279–16288.

    CAS  Google Scholar 

  37. Zhang, J. C.; Wen, J.; Liu, W. D.; Cui, X. Y.; Chen, Y. N. Cryo-EM for nanomaterials: Progress and perspective. Sci. China Mater. 2022, 65, 2613–2626.

    Google Scholar 

  38. Hytch, M. J.; Houdellier, F. Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron. Eng. 2007, 84, 460–463.

    CAS  Google Scholar 

  39. Weng, S. T.; Wu, S. Y.; Liu, Z. P.; Yang, G. J.; Liu, X. Z.; Zhang, X.; Zhang, C.; Liu, Q. Y.; Huang, Y.; Li, Y. J. et al. Localized-domains staging structure and evolution in lithiated graphite. Carbon Energy, in press, https://doi.org/10.1002/cey2.224.

  40. Liu, K.; Yang, S. L.; Luo, L. Q.; Pan, Q. C.; Zhang, P.; Huang, Y. G.; Zheng, F. H.; Wang, H. Q.; Li, Q. Y. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries. Electrochim. Acta 2020, 356, 136856.

    CAS  Google Scholar 

  41. Yi, C. X.; Yang, Y.; Zhang, T.; Wu, X. Q.; Sun, W.; Yi, L. S. A green and facile approach for regeneration of graphite from spent lithium ion battery. J. Cleaner Prod. 2020, 277, 123585.

    CAS  Google Scholar 

  42. Zhang, J.; Li, X. L.; Song, D. W.; Miao, Y. L.; Song, J. S.; Zhang, L. Q. Effective regeneration of anode material recycled from scrapped Li-ion batteries. J. Power Sources 2018, 390, 38–44.

    CAS  Google Scholar 

  43. Hou, D. H.; Guo, Z. Z.; Wang, Y.; Hou, X. H.; Yi, S. S.; Zhang, Z. T.; Hao, S. J.; Chen, D. L. Microwave-assisted reconstruction of spent graphite and its enhanced energy-storage performance as LIB anodes. Surf. Interfaces 2021, 24, 101098.

    CAS  Google Scholar 

  44. Cao, N.; Zhang, Y. L.; Chen, L. L.; Chu, W.; Huang, Y. G.; Jia, Y.; Wang, M. An innovative approach to recover anode from spent lithium-ion battery. J. Power Sources 2021, 483, 229163.

    CAS  Google Scholar 

  45. Chen, Q. H.; Huang, L. W.; Liu, J. B.; Luo, Y. T.; Chen, Y. G. A new approach to regenerate high-performance graphite from spent lithium-ion batteries. Carbon 2022, 189, 293–304.

    CAS  Google Scholar 

  46. Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Xu, R.; Jiang, L. L.; Huang, J. Q.; Zhang, Q. Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Struct. 2020, 1, 2000010.

    Google Scholar 

  47. Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol 2019, 14, 50–56.

    CAS  Google Scholar 

  48. Kim, H.; Son, Y.; Lee, J.; Lee, M.; Park, S.; Cho, J.; Choi, H. C. Nanocomb architecture design using germanium selenide as high-performance lithium storage material. Chem. Mater. 2016, 28, 6146–6151.

    CAS  Google Scholar 

  49. Park, J. H.; Yoon, H.; Cho, Y.; Yoo, C. Y. Investigation of lithium ion diffusion of graphite anode by the galvanostatic intermittent titration technique. Materials 2021, 14, 4683.

    CAS  Google Scholar 

  50. Sun, J.; Liu, H. M.; Chen, X.; Evans, D. G.; Yang, W. S.; Duan, X. Carbon nanorings and their enhanced lithium storage properties. Adv. Mater. 2013, 25, 1125–1130.

    CAS  Google Scholar 

  51. Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Topological defect dynamics in operando battery nanoparticles. Science 2015, 348, 1344–1347.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 52171219 and 91963113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Chen or Wenbin Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Zhang, J., Guo, Z. et al. Recycle spent graphite to defect-engineered, high-power graphite anode. Nano Res. 16, 4240–4245 (2023). https://doi.org/10.1007/s12274-022-5244-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5244-z

Keywords

Navigation