Skip to main content

Advertisement

Log in

Mixed-phase cobalt-based nanosheets prepared by rapid thermal annealing for oxygen evolution catalysis

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The oxygen evolution reaction (OER), which is based on the geometric structure and interfacial site tailoring of catalysts, is a good technique for producing hydrogen via water electrolysis. Here, we present fluorine and sulfur co-doped cobalt oxide nanosheets (SFO-Co) generated using a quick thermal exfoliation technique as efficient and long-lasting OER electrocatalysts. The SFO-Co catalyst has an ultralow overpotential of 170 mV at 10 mA cm−2 and a large double-layer capacitance (Cdl) of 94.9 mF cm−2, thanks to the synergistic effect of numerous anions, high density of active sites, and increased charge transfer capabilities. During a 50-h chronoamperometry test in 1 M KOH solution, the catalyst retains good performance at a steady current of 10 mA cm−2. This research not only reveals a low-cost, high-efficiency OER electrocatalyst, but it also offers a strategic design for multi-component electrocatalytic material systems that takes electronic reconfiguration into account.

Graphical abstract

Schematic illustration of two-dimensional sulfur and fluorine co-doped cobalt oxide nanosheets (SFO-Co)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meng FL, Zhong HX, Bao D, Yan JM, Zhang XB (2016) In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn air-batteries. J Am Chem Soc 138:10226–10231

    Article  CAS  Google Scholar 

  2. Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I, Du W, Hou C (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5:1–21

    Article  Google Scholar 

  3. Gao K, Wang B, Tao L, Cunning BV, Zhang Z, Wang S, Ruoff RS, Qu L (2019) Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and Co-doping. Adv Mater 31:1805121

    Article  Google Scholar 

  4. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  5. Zhang JT, Zhao ZH, Xia ZH, Dai LM (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452

    Article  CAS  Google Scholar 

  6. Wang HF, Tang C, Li BQ, Zhang Q (2018) A review of anion regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorg Chem Front 5:521–534

    Article  Google Scholar 

  7. Bi MH, Hao YN, Zhang JM, Lei M, Bi K (2017) Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites. Nanoscale 9:16386–16395

    Article  CAS  Google Scholar 

  8. Huang K, Zhang L, Xu T, Wei HH, Zhang RY, Zhang XY, Ge BH, Lei M, Ma J-Y, Liu L-M, Wu H (2019) 60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nat Commun 10:606

    Article  CAS  Google Scholar 

  9. Culebras M, Collins GA, Beaucamp A, Geaney H, Collins MN (2022) Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng Sci 17:195–203

    CAS  Google Scholar 

  10. Li BQ, Zhang SY, Tang C, Cui X, Zhang Q (2017) Anionic regulated NiFe (oxy) sulfide electrocatalysts for water oxidation. Small 13:1700610

    Article  Google Scholar 

  11. Huang K, Wang RY, Zhao SJ, Du P, Wang H, Wei HH, Long YZ, Deng BH, Lei M, Ge BH, Gou HY, Zhang R, Wu H (2020) Atomic species derived CoOx clusters on nitrogen doped mesoporous carbon as advanced bifunctional electro-catalysts for Zn-air battery. Energy Storage Mater 29:156–162

    Article  Google Scholar 

  12. Hu XP, Wu H, Liu S, Gong S, Du Y, Li XL, Lu X, Qu JP (2022) Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng Sci 17:1–27

    CAS  Google Scholar 

  13. Yan ZQ, Sun ZH, Li AR, Liu HS, Guo ZH, Qian L (2021) Three-dimensional porous flower-like S-doped Fe2O3 for superior lithium storage. Adv Compos Hybrid Mater 4:716–724

    Article  CAS  Google Scholar 

  14. Ishihara T, Yokoe K, Miyano T, Kusaba H (2019) Mesoporous MnCo2O4 spinel oxide for a highly active and stable air electrode for Zn-air rechargeable battery. Electrochim Acta 300:455–460

    Article  CAS  Google Scholar 

  15. Yang CY, Li WY, Yu WT, Liu ML, Zhang YJ, Ma GL, Lei M, Liu WJ (2018) Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn 92:203–213

    Article  Google Scholar 

  16. Bai J, Mei J, Liao T, Sun Q, Chen ZG, Sun Z (2022) Molybdenum-promoted surface reconstruction in polymorphic cobalt for initiating rapid oxygen evolution. Adv Energy Mater 12:2103247

    Article  CAS  Google Scholar 

  17. Budiyanto E, Salamon S, Wang Y, Wende H, Tüysüz H (2022) Phase segregation in cobalt iron oxide nanowires toward enhanced oxygen evolution reaction activity. JACS Au 2:697–710

    Article  CAS  Google Scholar 

  18. Pei X, Zhang Y, Mu Y, Cui M, Tian F, Meng C (2022) Cobalt oxide decorated three-dimensional amorphous carbon/cobalt silicate composite derived from bamboo leaves enables the enhanced oxygen evolution reaction. Chem Eng Sci 251:117490

    Article  CAS  Google Scholar 

  19. Xue Y, Fang J, Wang X, Xu Z, Zhang Y, Lv Q, Liu M, Zhu W, Zhuang Z (2021) Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv Funct Mater 31:2101405

    Article  CAS  Google Scholar 

  20. Su J, Ge R, Jiang K, Dong Y, Hao F, Tian Z, Chen G, Chen L (2018) Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. Adv Mater 30:1801351

    Article  Google Scholar 

  21. Zhao ZL, Wang HX, Feng Q, Gu S, Zhang Z, Xu H, Zeng L, Gu M, Li H (2020) Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energ Environ Sci 13:5143–5151

    Article  CAS  Google Scholar 

  22. Li G, Tang Y, Fu T, Xiang Y, Xiong Z, Si Y, Guo C, Jiang Z (2022) S, N co-doped carbon nanotubes coupled with CoFe nanoparticles as an efficient bifunctional ORR/OER electrocatalyst for rechargeable Zn-air batteries. Chem Eng J 429:132174

    Article  CAS  Google Scholar 

  23. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  24. Zhai Y, Yang W, Xie X, Sun X, Wang J, Yang X, Naik N, Kimura H, Du W, Guo Z, Hou C (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium-oxygen batteries. Inorg Chem Front 9:1115–1124

    Article  CAS  Google Scholar 

  25. Li X, Yan J, Zhu KG (2021) Fabrication and characterization of Pt doped Ti/Sb-SnO2 electrode and its efficient electro-catalytic activity toward phenol. Eng Sci 15:38–46

    CAS  Google Scholar 

  26. Huang K, Xu YY, Song YP, Wang RY, Wei HH, Long YZ, Lei M, Tang HL, Guo JG, Wu H (2021) NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance. J Mater Sci Technol 65:1–6

    Article  CAS  Google Scholar 

  27. Singh AK, Ji S, Singh B, Das C, Choi H, Menezes PW, Indra A (2022) Alkaline oxygen evolution: exploring synergy between fcc and hcp cobalt nanoparticles entrapped in N-doped graphene. Mater Today Chem 23:100668

    Article  CAS  Google Scholar 

  28. Zheng H, Ma F, Yang H, Wu X, Wang R, Jia D, Wang Z, Lu N, Ran F, Peng S (2022) Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res 15:1942–1948

    Article  CAS  Google Scholar 

  29. Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765

    Article  CAS  Google Scholar 

  30. Huang K, Wang RY, Wu HB, Wang H, He X, Wei HH, Wang SP, Zhang R, Lei M, Guo W, Ge BH, Wu H (2019) Direct immobilization of an atomically dispersed Pt catalyst by suppressing heterogeneous nucleation at -40 °C. J Mater Chem A 7:25779–25784

    Article  CAS  Google Scholar 

  31. Lin Y, Zhang ML, Zhao LX, Wang LM, Cao DL, Gong YQ (2021) Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl Surf Sci 536:147952

    Article  CAS  Google Scholar 

  32. Huang K, Guo S, Wang RY, Lin S, Hussain N, Wei HH, Deng BH, Long YZ, Lei M, Tang HL, Wu H (2020) Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes. Chinese J Catal 41:1754–1760

    Article  CAS  Google Scholar 

  33. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122

    Article  CAS  Google Scholar 

  34. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160

    Article  Google Scholar 

  35. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal GAM, Ibrahim MM, El-Bahy ZM, Li Y, Huang M, Guo Z (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875

    Article  CAS  Google Scholar 

  36. Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1:e1400129

    Article  Google Scholar 

  37. Gong K, Feng D, Zhenhai X, Michael D, Liming D (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  CAS  Google Scholar 

  38. Xie W, Huang J, Huang L, Geng S, Song S, Tsiakaras P, Wang Y (2022) Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Appl Catal B 303:120871

    Article  CAS  Google Scholar 

  39. Shamloofard M, Shahrokhian S (2021) Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions. Nanoscale 13:17576–17591

    Article  CAS  Google Scholar 

  40. Li M, Liu H, Feng L (2021) Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: a mini review. Electrochem Commun 122:106901

    Article  CAS  Google Scholar 

  41. Liu Z, Huang Y-C, Wang Y, Cen J, Yang H, Chen X, Tong X, Su D, Dong C-L, Wang S (2019) Quinary defect-rich ultrathin bimetal hydroxide nanosheets for water oxidation. ACS Appl Mater Interfaces 11:44018–44025

    Article  CAS  Google Scholar 

  42. Li R, Wang H, Hu F, Chan KC, Liu X, Lu Z, Wang J, Li Z, Zeng L, Li Y, Wu X, Xiong Y (2021) IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm(-2) in acidic media. Nat Commun 12:3540

    Article  CAS  Google Scholar 

  43. Du HY, Ren XJ, Pan D, An YL, Wei YH, Liu XD, Hou LF, Liu BS, Liu MM, Guo ZH (2021) Effect of phosphating solution pH value on the formation of phosphate conversion coatings for corrosion behaviors on AZ91D. Adv Compos Hybrid Mater 4:401–414

    Article  CAS  Google Scholar 

  44. Omeir MY, Wadi VS, Alhassan SM (2020) Inverse vulcanized sulfure-cycloalkene copolymers: effect of ring size and unsaturation on thermal properties. Mater Lett 259:126887

    Article  Google Scholar 

  45. Bi K, Guo YS, Liu XM, Zhao Q, Xiao JH, Lei M, Zhou J (2014) Magnetically tunable Mie resonance-based dielectric metamaterials. Sci Rep 4:7001

    Article  CAS  Google Scholar 

  46. Dou YH, Liao T, Ma ZQ, Tian DL, Liu QN, Xiao F, Sun ZQ, Kim JH, Dou SX (2016) Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction. Nano Energy 30:267–275

    Article  CAS  Google Scholar 

  47. Kim M, Kim S, Song D, Oh S, Chang KJ, Cho E (2018) Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Appl Catal B 227:340–348

    Article  CAS  Google Scholar 

  48. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–715

    Article  CAS  Google Scholar 

  49. Chen P, Zhou T, Wang S, Zhang N, Tong Y, Ju H, Chu W, Wu C, Xie Y (2018) Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew Chem Int Ed 57:15471–15475

    Article  CAS  Google Scholar 

  50. Li X, Niu Z, Jiang J, Ai L (2016) Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. J Mater Chem A 4:3204–3209

    Article  CAS  Google Scholar 

  51. Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q (2016) Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Functional Mater 26:5590–5598

    Article  CAS  Google Scholar 

  52. Liu PF, Yang S, Zhang B, Yang HG (2016) Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting. ACS Appl Mater Interfaces 8:34474–34481

    Article  CAS  Google Scholar 

  53. Cai P, Huang J, Chen J, Wen Z (2017) Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew Chem Int Ed 129:4936–4939

    Article  Google Scholar 

  54. Detsi E, Cook JB, Lesel BK, Turner CL, Liang Y-L, Robbennolt S, Tolbert SH (2016) Mesoporous Ni60Fe30Mn10-alloy based metal/metal oxide composite thick films as highly active and robust oxygen evolution catalysts. Energy Environ Sci 9:540–549

    Article  CAS  Google Scholar 

  55. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987

    Article  CAS  Google Scholar 

  56. Wu D, Chen D, Zhu J, Mu S (2021) Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 17:2102777

    Article  CAS  Google Scholar 

  57. Luo Y, Wu Y, Wu D, Huang C, Xiao D, Chen H, Zheng S, Chu PK (2020) NiFe layered double hydroxide synchronously activated by heterojunctions and vacancies for the oxygen evolution reaction. ACS Appl Mater Interfaces 12:42850–42858

    Article  CAS  Google Scholar 

  58. Li X, Hao X, Wang Z, Abudula A, Guan G (2017) In-situ intercalation of NiFe LDH materials: an efficient approach to improve electrocatalytic activity and stability for water splitting. J Power Sources 347:193–200

    Article  CAS  Google Scholar 

  59. Long X (2015) Co intake mediated formation of ultrathin nanosheets of transition metal LDHdan advanced electrocatalyst for oxygen evolution reaction. Chem Commun 51:1120–1123

    Article  CAS  Google Scholar 

  60. Li Z, Cai L, Song M, Chen YC, Wang X, Li J, Wang J, Wang P, Tian L (2020) Ternary FeCoNi alloy nanoparticles embedded in N-doped carbon nanotubes for efficient oxygen evolution reaction electrocatalysis. Electrochim Acta 339:135886

    Article  CAS  Google Scholar 

  61. Zhan ZM, Liang XL, Li JF, Qian JM, Liu YG, Yang SL, Wang Y, Gao DQ, Xue DS (2020) Interfacial engineering of NiO/NiCo2O4 porous nanofibers as efficient bifunctional catalysts for rechargeable zinc-air batteries. ACS Appl Mater Interfaces 12:21661–21669

    Article  Google Scholar 

  62. Huang C, Ouyang T, Zou Y, Li N, Liu ZQ (2018) Ultrathin NiCo2Px nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting. J Mater Chem A 6:7420–7427

    Article  CAS  Google Scholar 

  63. Gu Y, Chen S, Ren J, Jia YA, Chen CM, Komarneni S, Yang DJ, Yao XD (2018) Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 12:245–253

    Article  CAS  Google Scholar 

  64. Xue ZQ, Li X, Li QL, Cai MK, Liu K, Liu M, Ke ZF, Liu XL, Li GQ (2019) Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv Mater 31:1900430

    Article  Google Scholar 

  65. Cao X, Johnson E, Nath M (2019) Identifying high-efficiency oxygen evolution electrocatalysts from Co-Ni-Cu based selenides through combinatorial electrodeposition. J Mater Chem A 7:9877–9889

    Article  CAS  Google Scholar 

  66. Nsanzimana JMV, Peng YC, Xu YY, Thia L, Wang C, Xia BY, Wang X (2018) An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv Energy Mater 8:1701475

    Article  Google Scholar 

  67. Zhang H, Li H, Akram B, Wang X (2019) Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res 12:1327–1331

    Article  CAS  Google Scholar 

  68. Tian T, Zheng M, Lin J, Meng X, Ding Y (2019) Amorphous Ni-Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts. Chem Commun 55:1044–1047

    Article  CAS  Google Scholar 

  69. Cui X, Ren P, Deng D, Deng J, Bao X (2016) Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ Sci 9:123–129

    Article  CAS  Google Scholar 

  70. Wang C, Yang H, Zhang Y, Wang Q (2019) NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew Chem Int Ed 58:6099

    Article  CAS  Google Scholar 

  71. Zhou Q, Chen Y, Zhao G, Lin Y, Yu Z, Xu X, Wang X, Liu HK, Sun W, Dou SX (2018) Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction. Acs Catal 8:5382–5390

    Article  CAS  Google Scholar 

  72. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068–15072

    Article  CAS  Google Scholar 

  73. Waag F, Gökce B, Kalapu C, Bendt G, Salamon S, Landers J, Hagemann U, Heidelmann M, Schulz S, Wende H, Hartmann N, Behrens M, Barcikowski S (2017) Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose. Sci rep 7:1–13

    Article  CAS  Google Scholar 

  74. Deng X, Öztürk S, Weidenthaler C, Tüysüz H (2017) Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction. ACS Appl Mater Interfaces 9:21225–21233

    Article  CAS  Google Scholar 

  75. Song F, Hu X (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 5:4477

    Article  CAS  Google Scholar 

  76. Zhong L, Bao Y, Yu X, Feng L (2019) An Fe-doped NiTe bulk crystal as a robust catalyst for the electrochemical oxygen evolution reaction. Chem Commun 55:9347–9350

    Article  CAS  Google Scholar 

  77. Zhu R, Ding J, Xu Y, Yang J, Xu Q, Pang H (2018) π-Conjugated molecule boosts metal-organic frameworks as efficient oxygen evolution reaction catalysts. Small 14:1803576

    Article  Google Scholar 

  78. Yang N, Tang C, Wang K, Du G, Asiri AM, Sun X (2016) Iron-doped nickel disulfide nanoarray: a highly efficient and stable electrocatalyst for water splitting. Nano Res 9:3346–3354

    Article  CAS  Google Scholar 

  79. Zhang Q, Yan D, Nie Z, Qiu X, Wang S, Yuan J, Su D, Wang G, Wu Z (2018) Iron-doped NiCoP porous nanosheet arrays as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl Energy Mater 1:571–579

    Article  CAS  Google Scholar 

  80. Wu Z, Zou Z, Huang J, Gao F (2018) Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J Catal 358:243–252

    Article  CAS  Google Scholar 

  81. Fan H, Yu H, Zhang Y, Zheng Y, Luo Y, Dai Z, Li B, Zong Y, Yan Q (2017) Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew Chem Int Ed 56:12566–12570

    Article  CAS  Google Scholar 

  82. Cao C, Ma D-D, Xu Q, Wu XT, Zhu QL (2019) Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv Functional Mater 29:1807418

    Article  Google Scholar 

  83. Song F, Busch MM, Lassalle-Kaiser B, Hsu CS, Petkucheva E, Bensimon M, Chen HM, Corminboeuf C, Hu X (2019) An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent Sci 5:558–568

    Article  CAS  Google Scholar 

  84. Lemoine K, Lhoste J, Hémon-Ribaud A, Heidary N, Maisonneuve V, Guiet A, Kornienko N (2019) Investigation of mixed-metal (oxy) fluorides as a new class of water oxidation electrocatalysts. Chem Sci 10:9209–9218

    Article  CAS  Google Scholar 

  85. Han H, Woo J, Hong YR, Chung YC, Mhin S (2019) Polarized electronic configuration in transition metal-fluoride oxide hollow nanoprism for highly efficient and robust water splitting. ACS Appl Energy Mater 2:3999–4007

    Article  CAS  Google Scholar 

  86. Liu Z, Liu H, Gu X, Feng L (2020) Oxygen evolution reaction efficiently catalyzed by a quasi-single-crystalline cobalt fluoride. Chem Eng J 397:125500

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported financially by the Zhejiang Province Public Welfare Technology Application Research Project (Grant No. LGG22E010003), the Fundamental Research Funds for the Central Universities (2021XD-A04-2), the National Natural Science Foundations of China (Grant Nos. 61974011, 12074408), the Youth Innovation Promotion Association CAS (Grant No. E2VB021), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, People’s Republic of China).

Author information

Authors and Affiliations

Authors

Contributions

ZB Zhao and Y Lin, data curation, investigation, methodology, roles/writing — original draft, and writing — review and editing. JB Wu, conceptualization, data curation, formal analysis, roles/writing — original draft, and writing — review and editing. J Li, methodology, funding acquisition, roles/writing — original draft, and writing — review and editing. M Lei, investigation, methodology, and validation. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Yan Lin, Jun Li or Ming Lei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 138 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Lin, Y., Wu, J. et al. Mixed-phase cobalt-based nanosheets prepared by rapid thermal annealing for oxygen evolution catalysis. Adv Compos Hybrid Mater 5, 2589–2600 (2022). https://doi.org/10.1007/s42114-022-00537-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00537-9

Keywords

Navigation