Skip to main content
Log in

High coercivity cobalt carbide nanoparticles as electrocatalysts for hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cobalt carbide nanoparticles (NPs), as a typical carbide material, have attracted extensive attention in the fields of magnetism and electrochemistry. Herein, we adopted a modified solution route by pyrolysis long-chain amines at high temperatures to obtain Co2C NPs, in which different forms of Co NPs were used as precursors. The results reveal that no matter what the structure of the precursor and the type of long-chain amine, single-phase Co2C NPs with good crystallinity are obtained. At the same time, carbonization of hexagonal close packed (hcp) cobalt as the precursor gives the materials high magnetic anisotropy, exhibiting a large coercivity (∼ 1,300 Oe) on the nanoscale. In terms of catalytic properties, benefiting from intrinsically high activity of Co2C NPs, the material demonstrates superior hydrogen evolution reaction (HER) performance, with optimal overpotential as low as 73 mV at the current density of 10 mA·cm−2. This provides new ideas for the further development of transition metal carbides (TMCs) and the improvement of their magnetic and electrocatalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, Y.; Sun, P. P.; Cao, M. H. Core-shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage. ACS Nano 2014, 8, 7846–7857.

    Article  CAS  Google Scholar 

  2. Yang, W. L.; Rehman, S.; Chu, X.; Hou, Y. L.; Gao, S. Transition metal (Fe, Co and Ni) carbide and nitride nanomaterials: Structure, chemical synthesis and applications. ChemNanoMat 2015, 1, 376–398.

    Article  CAS  Google Scholar 

  3. Harris, V. G.; Chen, Y.; Yang, A.; Yoon, S.; Chen, Z.; Geiler, A. L.; Gao, J.; Chinnasamy, C. N.; Lewis, L. H.; Vittoria, C. et al. High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material. J. Phys. D: Appl. Phys. 2010, 606, 598–604.

    Google Scholar 

  4. Zhao, Y. H.; Su, H. Y.; Sun, K. J.; Liu, J. X.; Li, W. X. Structural and electronic properties of cobalt carbide Co2C and its surface stability: Density functional theory study. Surf. Sci. 2012, 606, 598–604.

    Article  CAS  Google Scholar 

  5. Claeys, M.; Dry, M. E.; Van Steen, E.; du Plessis, E.; van Berge, P. J.; Saib, A. M.; Moodley, D. J. In situ magnetometer study on the formation and stability of cobalt carbide in Fischer-Tropsch synthesis. J. Catal. 2014, 318, 193–202.

    Article  CAS  Google Scholar 

  6. Lin, T. J.; Yu, F.; An, Y. L.; Qin, T. T.; Li, L. S.; Gong, K.; Zhong, L. S.; Sun, Y. H. Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Acc. Chem. Res. 2021, 54, 1961–1971.

    Article  CAS  Google Scholar 

  7. Guo, Q.; Xia, S. G.; Li, X. B.; Wang, Y.; Liang, F.; Lin, Z. S.; Tung, C. H.; Wu, L. Z. Flower-like cobalt carbide for efficient carbon dioxide conversion. Chem. Commun. 2020, 56, 7849–7852.

    Article  CAS  Google Scholar 

  8. Shen, X. F.; Zhang, T. F.; Suo, H. Y.; Yan, L.; Huang, L. C.; Ma, C. W.; Li, L. G.; Wen, X. D.; Li, Y. W.; Yang, Y. A facile one-pot method for synthesis of single phase Co2C with magnetic properties. Mater. Lett. 2020, 271, 127783.

    Article  CAS  Google Scholar 

  9. El-Gendy, A. A.; Almugaiteeb, T.; Carpenter, E. E. CoxC nanorod magnets: Highly magnetocrystalline anisotropy with lower curie temperature for potential applications. J. Magn. Magn. Mater. 2013, 348, 136–139.

    Article  CAS  Google Scholar 

  10. Zamanpour, M.; Bennett, S.; Taheri, P.; Chen, Y. J.; Harris, V. G. Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders. J. Appl. Phys. 2014, 115, 17A747.

    Article  Google Scholar 

  11. Zamanpour, M.; Bennett, S. P.; Majidi, L.; Chen, Y. J.; Harris, V. G. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method. J. Alloys Compd. 2011, 625, 138–143.

    Article  Google Scholar 

  12. Yang, C.; Zhao, H. B.; Hou, Y. L.; Ma, D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for fischer-tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 15814–15821.

    Article  CAS  Google Scholar 

  13. Ge, W. Y.; Gao, W. X.; Zhu, J. F.; Li, Y. X. In situ synthesis of hägg iron carbide (Fe5C2) nanoparticles with a high coercivity and saturation magnetization. J. Alloys Compd. 2019, 781, 1069–1073.

    Article  CAS  Google Scholar 

  14. Mohammed-Ibrahim, J.; Sun, X. M. Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting—A review. J. Energ. Chem. 2019, 34, 111–160.

    Article  Google Scholar 

  15. Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

    Article  CAS  Google Scholar 

  16. Han, C.; Li, W. J.; Liu, H. K.; Dou, S. X.; Wang, J. Z. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc-air batteries. Mater. Horiz. 2019, 6, 1812–1827.

    Article  CAS  Google Scholar 

  17. Li, S. W.; Yang, C.; Yin, Z.; Yang, H. J.; Chen, Y. F.; Lin, L. L.; Li, M. Z.; Li, W. Z.; Hu, G.; Ma, D. Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction. Nano Res. 2017, 10, 1322–1328.

    Article  CAS  Google Scholar 

  18. Kawashima, K.; Shin, K.; Wygant, B. R.; Kim, J. H.; Cao, C. L.; Lin, J.; Son, Y. J.; Liu, Y.; Henkelman, G.; Mullins, C. B. Cobalt metal-cobalt carbide composite microspheres for water reduction electrocatalysis. ACS Appl. Energy Mater. 2020, 3, 3909–3918.

    Article  CAS  Google Scholar 

  19. Wang, P. Y.; Zhu, J. W.; Pu, Z. H.; Qin, R.; Zhang, C. T.; Chen, D.; Liu, Q.; Wu, D. L.; Li, W. Q.; Liu, S. L. et al. Interfacial engineering of Co nanoparticles/Co2C nanowires boosts overall water splitting kinetics. Appl. Catal. B: Environ. 2021, 296, 120334.

    Article  CAS  Google Scholar 

  20. Gu, W. L.; Hu, L. Y.; Shang, C. S.; Li, J.; Wang, E. K. Enhancement of the hydrogen evolution performance by finely tuning the morphology of co-based catalyst without changing chemical composition. Nano Res. 2019, 12, 191–196.

    Article  CAS  Google Scholar 

  21. Xia, S. G.; Zhang, Z.; Wu, J. N.; Wang, Y.; Sun, M. J.; Cui, Y.; Zhao, C. L.; Zhong, J. Y.; Cao, W.; Wang, H. P. et al. Cobalt carbide nanosheets as effective catalysts toward photothermal degradation of mustard-gas simulants under solar light. Appl. Catal. B: Environ. 2021, 284, 119703.

    Article  CAS  Google Scholar 

  22. Carroll, K. J.; Huba, Z. J.; Spurgeon, S. R.; Qian, M. C.; Khanna, S. N.; Hudgins, D. M.; Taheri, M. L.; Carpenter, E. E. Magnetic properties of Co2C and Co3C nanoparticles and their assemblies. Appl. Phys. Lett. 2012, 101, 012409.

    Article  Google Scholar 

  23. Zhang, Y. J.; Zhu, Y.; Wang, K. J.; Li, D.; Wang, D. P.; Ding, F.; Meng, D.; Wang, X. L.; Choi, C.; Zhang, Z. D. Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties. J. Magn. Magn. Mater. 2018, 456, 71–77.

    Article  CAS  Google Scholar 

  24. Roy, N.; Ali, M. A.; Sen, A.; Adroja, D. T.; Sen, P.; Banerjee, S. S. Exploring a low temperature glassy state, exchange bias effect, and high magnetic anisotropy in Co2C nanoparticles. J. Phys.:Condens. Matter 2021, 33, 375804.

    CAS  Google Scholar 

  25. Ye, Z. T.; Qie, Y. Q.; Fan, Z. P.; Liu, Y. X.; Shi, Z.; Yang, H. Soft magnetic Fe5C2-Fe3C@C as an electrocatalyst for the hydrogen evolution reaction. Dalton Trans. 2019, 48, 4636–4642.

    Article  CAS  Google Scholar 

  26. Li, S. S.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured co-based bifunctional electrocatalysts for energy conversion and storage: Current status and perspectives. J. Mater. Chem. A 2019, 7, 18674–18707.

    Article  CAS  Google Scholar 

  27. Fan, X. J.; Peng, Z. W.; Ye, R. Q.; Zhou, H. Q.; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407–7418.

    Article  CAS  Google Scholar 

  28. Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.

    Article  Google Scholar 

  29. Ma, X. Z.; Li, K. Y.; Zhang, X.; Wei, B.; Yang, H.; Liu, L. N.; Zhang, M. Y.; Zhang, X. T.; Chen, Y. J. The surface engineering of cobalt carbide spheres through N, B Co-doping achieved by room-temperature in situ anchoring effects for active and durable multifunctional electrocatalysts. J. Mater. Chem. A 2019, 7, 14904–14915.

    Article  CAS  Google Scholar 

  30. Zhang, S. G.; Gao, G. H.; Hao, J. C.; Wang, M. M.; Zhu, H.; Lu, S. L.; Duan, F.; Dong, W. F.; Du, M. L.; Zhao, Y. L. Low-electronegativity vanadium substitution in cobalt carbide induced enhanced electron transfer for efficient overall water splitting. ACS Appl. Mater. Interfaces 2019, 11, 43261–43269.

    Article  CAS  Google Scholar 

  31. Guo, P.; Wu, Y. X.; Lau, W. M.; Liu, H.; Liu, L. M. Porous CoP nanosheet arrays grown on nickel foam as an excellent and stable catalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 26995–27003.

    Article  CAS  Google Scholar 

  32. Zheng, X. Z.; Chen, Y. Z.; Bao, X. B.; Mao, S. J.; Fan, R. X.; Wang, Y. In situ formed bimetallic carbide Ni6Mo6C nanodots and NiMoOx nanosheet array hybrids anchored on carbon cloth: Efficient and flexible self-supported catalysts for hydrogen evolution. ACS Catal. 2020, 10, 11634–11642.

    Article  CAS  Google Scholar 

  33. Wang, S. P.; Wang, J.; Zhu, M. L.; Bao, X. B.; Xiao, B. Y.; Su, D. F.; Li, H. R.; Wang, Y. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: A highly efficient, low-cost catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15753–15759.

    Article  CAS  Google Scholar 

  34. Chen, J. D.; Chen, C. H.; Chen, Y. Z.; Wang, H. Y.; Mao, S. J.; Wang, Y. Improving alkaline hydrogen evolution reaction kinetics on molybdenum carbide: Introducing Ru dopant. J. Catal. 2020, 392, 313–321.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51872111) and the Natural Science Foundation of Jilin Province (No. 20190201253JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qie, Y., Liu, Y., Kong, F. et al. High coercivity cobalt carbide nanoparticles as electrocatalysts for hydrogen evolution reaction. Nano Res. 15, 3901–3906 (2022). https://doi.org/10.1007/s12274-021-4036-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4036-1

Keywords

Navigation