Skip to main content
Log in

Synthetic strategy of biomimetic sea urchin-like Co-NC@PANI modified MXene-based magnetic aerogels with enhanced electromagnetic wave absorption properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rational and effective combination of multicomponent materials and ingenious microstructure design for efficient electromagnetic wave (EMW) absorption are still challenging. In this paper, MXene was used as the aerogel matrix, modified with sea urchin-like magnetic Co/N-doped carbon@polyaniline (Co-NC@PANI), gelatin was introduced as the reinforcement phase of the aerogel backbone, and a microwave absorber with high efficiency and excellent performance was successfully prepared. The sea urchin-like Co-NC@PANI not only adjusted the impedance matching of the MXene but also introduced a magnetic loss mode into the composite. The multicomponent interfacial polarization, heterostructure, three-dimensional (3D) lightweight porous structure, and electromagnetic synergy strategy enabled the MXene-based aerogel modified by Co-NC@PANI (MCoP) to exhibit surprising EMW absorption properties. The maximum reflection loss (RLmax) of the aerogel composite reached -62.4 dB, and the effective absorption bandwidth (EAB) reached 6.56 GHz when the loading was only 12%. In addition, through electromagnetic simulation experiments, the change in the electromagnetic field before and after EMW passed through the materials and the distribution of the volume loss density of EMW by the coaxial ring were observed. The coordinated electromagnetic balance strategy in the 3D network provides inspiration for the construction of materials and expands the research direction of lightweight and outstanding microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, F.; Jia, Z. R.; Zhou, J. X.; Liu, J. K.; Wu, G. L.; Yin, P. F. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 450, 138205.

    Article  CAS  Google Scholar 

  2. Wu, Y.; Tan, S. J.; Zhao, Y.; Liang, L. L.; Zhou, M.; Ji, G. B. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 2023, 135, 101088.

    Article  Google Scholar 

  3. Bi, Y. X.; Ma, M. L.; Liao, Z. J.; Tong, Z. Y.; Chen, Y.; Wang, R. Z.; Ma, Y.; Wu, G. L. One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 605, 483–492.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

    Article  CAS  Google Scholar 

  5. Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

    Article  ADS  CAS  Google Scholar 

  6. Guo, Y. Y.; Zhang, M.; Cheng, T. T.; Xie, Y. X.; Zhao, L. B.; Jiang, L.; Zhao, W. X.; Yuan, L. Y.; Meng, A. L.; Zhang, J. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 2023, 16, 9591–9601.

    Article  ADS  CAS  Google Scholar 

  7. Zhang, M.; Zhao, L. B.; Zhao, W. X.; Wang, T.; Yuan, L. Y.; Guo, Y. Y.; Xie, Y. X.; Cheng, T. T.; Meng, A. L.; Li, Z. J. Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano Res. 2023, 16, 3558–3569.

    ADS  CAS  Google Scholar 

  8. Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

    Article  CAS  Google Scholar 

  9. Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

    Article  ADS  Google Scholar 

  10. Guan, X. M.; Yang, Z. H.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 2022, 3, 2200102.

    Article  CAS  Google Scholar 

  11. Gao, X. R.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Sun, T.; Liu, X. H.; Chi, Q. G.; Wu, G. L. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem. Eng. J. 2021, 419, 130019.

    Article  CAS  Google Scholar 

  12. Chen, X. M.; Wang, X.; Wen, K. Q.; Zhang, J. B.; Zhao, F. W.; Zhang, J.; Wang, Y. J.; Song, Q. H.; Yi, C. L.; Shao, J. Y. Electrically aligned Ti3C2Tx MXene composite with multilayered gradient structure for broadband microwave absorption. Carbon 2023, 203, 706–716.

    Article  CAS  Google Scholar 

  13. Jiang, H. J.; Cai, L.; Pan, F.; Shi, Y. Y.; Cheng, J.; Yang, Y.; Shi, Z.; Chai, X. L.; Wu, H. J.; Lu, W. Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 2023, 10, 2301599.

    Article  CAS  Google Scholar 

  14. Dai, B.; Ma, Y.; Dong, F.; Yu, J.; Ma, M. L.; Thabet, H. K.; El-Bahy, S. M.; Ibrahim, M. M.; Huang, M. N.; Seok, I. et al. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 704–754.

    Article  Google Scholar 

  15. Zhang, Z. W.; Cai, Z. H.; Zhang, Y.; Peng, Y. L.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Wang, R. F.; Cao, Y. S. et al. The recent progress of MXene-based microwave absorption materials. Carbon 2021, 174, 484–499.

    Article  CAS  Google Scholar 

  16. Guo, J.; Chen, Z. R.; Xu, X. J.; Li, X.; Liu, H.; Xi, S. H.; Abdul, W.; Wu, Q.; Zhang, P.; Xu, B. B. et al. Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 2022, 5, 1769–1777.

    Article  CAS  Google Scholar 

  17. Zhang, X. Y.; Jia, Z. R.; Zhang, F.; Xia, Z. H.; Zou, J. X.; Gu, Z.; Wu, G. L. MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 610, 610–620.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wang, L.; Zhu, S. H.; Zhu, J. F. Constructing ordered macropores in hollow Co/C polyhedral nanocages shell toward superior microwave absorbing performance. J. Colloid Interface Sci. 2022, 624, 423–432.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Shan, Z.; Cheng, S. Y.; Wu, F.; Pan, X. H.; Li, W. J.; Dong, W.; Xie, A. M.; Zhang, G. Electrically conductive two-dimensional metal-organic frameworks for superior electromagnetic wave absorption. Chem. Eng. J. 2022, 446, 137409.

    Article  CAS  Google Scholar 

  20. Gao, Z. G.; Iqbal, A.; Hassan, T.; Zhang, L. M.; Wu, H. J.; Koo, C. M. Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv. Sci. 2022, 9, 2204151.

    Article  CAS  Google Scholar 

  21. Feng, S. X.; Zhai, F. T.; Su, H. H.; Sridhar, D.; Algadi, H.; Xu, B. B.; Pashameah, R. A.; Alzahrani, E.; Abo-Dief, H. M.; Ma, Y. et al. Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater. Today Phys. 2023, 30, 100950.

    Article  Google Scholar 

  22. Zhang, X.; Qiao, J.; Jiang, Y. Y.; Wang, F. L.; Tian, X. L.; Wang, Z.; Wu, L. L.; Liu, W.; Liu, J. R. Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 2021, 13, 1–31.

    Article  ADS  Google Scholar 

  23. Miao, P.; Cao, J. W.; Kong, J.; Li, J.; Wang, T.; Chen, K. J. Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption. Nanoscale 2020, 16, 13311–13315.

    Article  Google Scholar 

  24. Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

    Article  CAS  Google Scholar 

  25. Lu, X. K.; Zhu, D. M.; Li, X.; Li, M. H.; Chen, Q.; Qing, Y. Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2021, 4, 946–956.

    Article  CAS  Google Scholar 

  26. Wen, B.; Yang, H. B.; Lin, Y.; Ma, L.; Qiu, Y.; Hu, F. F.; Zheng, Y. N. Synthesis of core–shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 2021, 9, 3567–3575.

    Article  CAS  Google Scholar 

  27. Niu, H. H.; Tu, X. Y.; Zhang, S.; Li, Y. Y.; Wang, H. L.; Shao, G.; Zhang, R.; Li, H. X.; Zhao, B.; Fan, B. B. Engineered core–shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260.

    Article  CAS  Google Scholar 

  28. Zhao, Z. H.; Zhang, L. M.; Wu, H. J. Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers. Adv. Mater. 2022, 34, 2205376.

    Article  CAS  Google Scholar 

  29. Li, C. X.; Ni, X. X.; Lei, Y.; Li, S. Y.; Jin, L.; You, B. Plasmolysis-inspired yolk–shell hydrogel-core@void@MXene-shell microspheres with strong electromagnetic interference shielding performance. J. Mater. Chem. A 2021, 9, 26839–26851.

    Article  CAS  Google Scholar 

  30. Xu, J.; Zhang, X.; Yuan, H. R.; Zhang, S.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 2020, 159, 357–365.

    Article  CAS  Google Scholar 

  31. Xu, J.; Liu, M. J.; Zhang, X. C.; Li, B.; Zhang, X.; Zhang, X. L.; Zhu, C. L.; Chen, Y. J. Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 2022, 9, 011402.

    Article  ADS  CAS  Google Scholar 

  32. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    Article  CAS  Google Scholar 

  33. Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

    Article  CAS  Google Scholar 

  34. Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

    Article  CAS  Google Scholar 

  35. Han, X. P.; Huang, Y.; Ding, L.; Song, Y.; Li, T. H.; Liu, P. B. Ti3C2Tx MXene nanosheet/metal-organic framework composites for microwave absorption. ACS Appl. Nano Mater. 2021, 4, 691–701.

    Article  CAS  Google Scholar 

  36. Pan, F.; Rao, Y. P.; Batalu, D.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Shi, Y. Y.; Shi, Z.; Liu, Y. W.; Lu, W. Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 2022, 14, 140.

    Article  ADS  CAS  Google Scholar 

  37. Xu, H. Y.; Zheng, R. X.; Du, D. Y.; Ren, L. F.; Wen, X. J.; Wang, X. X.; Tian, G. L.; Shu, C. Z. Adjusting the 3d orbital occupation of Ti in Ti3C2 MXene via nitrogen doping to boost oxygen electrode reactions in Li-O2 battery. Small 2023, 19, 2206611.

    Article  CAS  Google Scholar 

  38. Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 2021, 31, 2103436.

    Article  CAS  Google Scholar 

  39. Shi, X. D.; Xu, Z. M.; Han, C.; Shi, R. Z.; Wu, X. W.; Lu, B. A.; Zhou, J.; Liang, S. Q. Highly dispersed cobalt nanoparticles embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 2021, 13, 21.

    Article  ADS  Google Scholar 

  40. Wang, J. M.; Huang, Y.; Du, X. P.; Zhang, S.; Zong, M. Hollow 1D carbon tube core anchored in Co3O4@SnS2 multiple shells for constructing binder-free electrodes of flexible supercapacitors. Chem. Eng. J. 2023, 464, 142741.

    Article  CAS  Google Scholar 

  41. Li, X. Y.; Jiang, Q. Q.; Dou, S.; Deng, L. B.; Huo, J.; Wang, S. Y. ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalys. J. Mater. Chem. A 2016, 4, 15836–15840.

    Article  CAS  Google Scholar 

  42. Zhang, X. Y.; Wu, J. N.; Meng, G. H.; Guo, X. H.; Liu, C.; Liu, Z. Y. One-step synthesis of novel PANI-Fe3O4@ZnO core–shell microspheres: An efficient photocatalyst under visible light irradiation. Appl. Surf. Sci. 2016, 366, 486–493.

    Article  ADS  CAS  Google Scholar 

  43. Yu, M.; Huang, Y.; Liu, X. D.; Zhao, X. X.; Fan, W. Q.; She, K. H. In situ modification of MXene nanosheets with polyaniline nanorods for lightweight and broadband electromagnetic wave absorption. Carbon 2023, 208, 311–321.

    Article  CAS  Google Scholar 

  44. Guo, M.; Liu, C. B.; Zhang, Z. H.; Zhou, J.; Tang, Y. H.; Luo, S. L. Flexible Ti3C2Tx@Al electrodes with ultrahigh areal capacitance: In situ regulation of interlayer conductivity and spacing. Adv. Funct. Mater. 2018, 28, 1803196.

    Article  Google Scholar 

  45. Wang, J. M.; Huang, Y.; Zhang, S.; Du, X. P.; Duan, Z. L.; Sun, X. Hollow Co9S8 cores encapsulated in hierarchical MXene@Bi2O3 multiple shells for constructing binder-free electrodes of foldable supercapacitors. J. Mater. Sci. Technol. 2023, 147, 112–123.

    Article  CAS  Google Scholar 

  46. Xu, H. Z.; Zheng, D. H.; Liu, F. Q.; Li, W.; Lin, J. J. Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 2020, 8, 5853–5858.

    Article  CAS  Google Scholar 

  47. Liu, S. Q.; Zhang, Z. C.; Huang, F.; Liu, Y. Z.; Feng, L.; Jiang, J.; Zhang, L. Q.; Qi, F.; Liu, C. Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: Role of PMS adsorption and singlet oxygen generation. Appl. Catal. B Environ. 2021, 286, 119921.

    Article  CAS  Google Scholar 

  48. Yang, W. T.; Sun, J. W.; Liu, D. Y.; Fu, W. W.; Dong, Y. B.; Fu, Y. Q.; Zhu, Y. F. Rational design of hierarchical structure of carbon@polyaniline composite with enhanced microwave absorption properties. Carbon 2022, 194, 114–126.

    Article  CAS  Google Scholar 

  49. Guo, J.; Chen, Z. R.; Abdul, W.; Kong, J.; Khan, M. A.; Young, D. P.; Zhu, J. F.; Guo, Z. H. Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv. Compos. Hybrid Mater. 2021, 4, 534–542.

    Article  CAS  Google Scholar 

  50. Sun, T. P.; Liu, Z. W.; Li, S.; Liu, H. S.; Chen, F.; Wang, K.; Zhao, Y. Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method. Compos. Part A: Appl. Sci. Manuf. 2021, 150, 106594.

    Article  CAS  Google Scholar 

  51. Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

    Article  CAS  Google Scholar 

  52. Yin, T. T.; Cheng, Y. F.; Hou, Y. X.; Sun, L.; Ma, Y. A.; Su, J.; Zhang, Z.; Liu, N. S.; Li, L. Y.; Gao, Y. H. 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small 2022, 18, 2204806.

    Article  CAS  Google Scholar 

  53. VahidMohammadi, A.; Moncada, J.; Chen, H. Z.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123–22133.

    Article  CAS  Google Scholar 

  54. Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of compressible Polymer/MXene composite foams for highperformance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940.

    Article  CAS  Google Scholar 

  55. Liu, S. J.; Amiinu, I. S.; Liu, X. B.; Zhang, J.; Bao, M. J.; Meng, T.; Mu, S. C. Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc-air batteries. Chem. Eng. J. 2018, 342, 163–170.

    Article  CAS  Google Scholar 

  56. Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 2021, 31, 2008006.

    Article  CAS  Google Scholar 

  57. Wu, W. L.; Wang, C. W.; Zhao, C. H.; Wei, D.; Zhu, J. F.; Xu, Y. L. Facile strategy of hollow polyaniline nanotubes supported on Ti3C2-MXene nanosheets for high-performance symmetric supercapacitors. J. Colloid Interface Sci. 2020, 580, 601–613.

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Zhai, N. X.; Luo, J. H.; Shu, P. C.; Mei, J.; Li, X. P.; Yan, W. X. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 10698–10706.

    Article  ADS  CAS  Google Scholar 

  59. Wang, X. Y.; Liao, J.; Du, R. X.; Wang, G. H.; Tsidaeva, N.; Wang, W. Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping. J. Colloid Interface Sci. 2021, 590, 186–198.

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Cheng, J. B.; Zhao, H. B.; Cao, M.; Li, M. E.; Zhang, A. N.; Li, S. L.; Wang, Y. Z. Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 26301–26312.

    Article  CAS  PubMed  Google Scholar 

  61. Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M. K.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.

    Article  CAS  PubMed  Google Scholar 

  62. Xu, J. S.; Lu, N.; Yuan, M. W.; Sun, G. B. Rational design of hollow rice-grained a-Fe2O3/carbon nanofibers with optimized impedance matching for electromagnetic wave absorption enhanced. Nano Res. 2022, 16, 5676–5684.

    Article  ADS  Google Scholar 

  63. Liao, Q.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Wang, B. B.; Yang, X. M.; Bu, X. H.; Wang, R. L. Rational construction of Ti3C2T/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 2018, 34, 15854–15863.

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

    Article  Google Scholar 

  65. Yan, X.; Huang, X. X.; Zhong, B.; Wu, T.; Wang, H. T.; Zhang, T.; Bai, N.; Zhou, G. P.; Pan, H.; Wen, G. W. et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 2020, 391, 123538.

    Article  CAS  Google Scholar 

  66. Wu, Y.; Tan, S. J.; Zhang, T. C.; Zhou, M.; Fang, G.; Ji, G. B. Alkali and ion exchange co-modulation strategies to design magnetic-dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res. 2023, 16, 8522–8532.

    Article  ADS  CAS  Google Scholar 

  67. Liang, L. Y.; Yang, R. S.; Han, G. J.; Feng, Y. Z.; Zhao, B.; Zhang, R.; Wang, Y. M.; Liu, C. T. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 2020, 12, 2644–2654.

    Article  CAS  PubMed  Google Scholar 

  68. Liu, T. T.; Zhu, Y. H.; Shu, J. C.; Zhang, M.; Cao, M. S. Patterned MXene-enabled switchable health monitoring and electromagnetic protection for architecture. Mater. Today Phys. 2023, 31, 100988.

    Article  CAS  Google Scholar 

  69. Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. Acs Nano 2021, 15, 6622–6632.

    Article  CAS  PubMed  Google Scholar 

  70. Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

    Article  CAS  PubMed  Google Scholar 

  71. Liu, P. B.; Zhang, G. Z.; Xu, H. X.; Cheng, S. C.; Huang, Y.; Ouyang, B.; Qian, Y. T.; Zhang, R. X.; Che, R. C. Synergistic dielectric-magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023, 33, 2211298.

    Article  CAS  Google Scholar 

  72. Pan, F.; Ning, M. Q.; Li, Z. H.; Batalu, D.; Guo, H. T.; Wang, X.; Wu, H. J.; Lu, W. Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 2023, 33, 2300374.

    Article  CAS  Google Scholar 

  73. Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

    Article  CAS  Google Scholar 

  74. Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

    Article  ADS  CAS  Google Scholar 

  75. Wu, Q. L.; Wang, J.; Jin, H. H.; Dong, Y. W.; Huo, S. Q.; Yang, S.; Su, X. G.; Zhang, B. Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption. Compos. Sci. Technol. 2020, 195, 108206.

    Article  CAS  Google Scholar 

  76. Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

    Article  CAS  Google Scholar 

  77. Wang, B. J.; Huang, F. Z.; Wu, H.; Xu, Z. J.; Wang, S. P.; Han, Q. H.; Liu, F. H.; Li, S. K.; Zhang, H. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott–Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 4160–4169.

    Article  ADS  CAS  Google Scholar 

  78. Zhao, H. Q.; Cheng, Y.; Liu, W.; Yang, L. J.; Zhang, B. S.; Wang, L. P.; Ji, G. B.; Xu, Z. J. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019, 11, 24.

    Article  ADS  CAS  Google Scholar 

  79. Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable highperformance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

    Article  CAS  PubMed  Google Scholar 

  80. Zhou, M.; Wang, J. W.; Tan, S. J.; Ji, G. B. Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding. Mater. Today Phys. 2023, 31, 100962.

    Article  CAS  Google Scholar 

  81. Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

    Article  Google Scholar 

  82. Cao, M. S.; Shu, J. C.; Wen, B.; Wang, X. X.; Cao, W. Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Struct. 2021, 6, 2100104.

    Article  Google Scholar 

  83. Rao, L. J.; Wang, L.; Yang, C. D.; Zhang, R. X.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2213258.

    Article  CAS  Google Scholar 

  84. Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

    Article  Google Scholar 

  85. Zhang, Y.; Tan, S. J.; Zhou, Z. T.; Guan, X. M.; Liao, Y.; Li, C.; Ji, G. B. Construction of Co2NiO4@MnCo2O4.5 nanoparticles with multiple hetero-interfaces for enhanced electromagnetic wave absorption. Particuology 2023, 81, 86–97.

    Article  CAS  Google Scholar 

  86. Shi, X. F.; You, W. B.; Li, X.; Wang, L.; Shao, Z. Z.; Che, R. C. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chem. Eng. J. 2021, 415, 128951.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the Analytical & Testing Center of Northwestern Polytechnical University for support of characterization and measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Electronic Supplementary Material

12274_2023_6130_MOESM1_ESM.pdf

Synthetic strategy of biomimetic sea urchin-like Co-NC@PANI modified MXene-based magnetic aerogels with enhanced electromagnetic wave absorption properties

Supplementary material, approximately 10.5 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Huang, Y., Liu, X. et al. Synthetic strategy of biomimetic sea urchin-like Co-NC@PANI modified MXene-based magnetic aerogels with enhanced electromagnetic wave absorption properties. Nano Res. 17, 2025–2037 (2024). https://doi.org/10.1007/s12274-023-6130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6130-z

Keywords

Navigation