Skip to main content
Log in

Alkali and ion exchange co-modulation strategies to design magnetic–dielectric synergistic nano-absorbers for tailoring microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Alkali and Co2+ co-modulation has seldom been investigated as a prospective strategy to achieve high-efficient microwave absorbing (MA) materials. In this work, a new alkali and Co ion exchange co-modulation strategy was first reported, leading to broadband MA capacity through simultaneous manipulating multiple factors, such as composition, micromorphology, and heterogeneous interface. And enhancements in impedance matching and magnetic–dielectric loss were synergistically realized. Consequently, the optimized FeCo alloy@porous carbon (FPC) nanocomposite with the alkali regulation delivered an effective absorption bandwidth (EAB) of 6.72 GHz, making it the merely single FeCo-based metal-organic framework derived FPC absorber with a low filler content of 15 wt.%. Interestingly, the nanocomposites by ion exchange strategy realized the switchable “on/off” states on electromagnetic response. Furthermore, the radar cross-section (RCS) reduction value of the products reached 25.6 dB·m2 under the incident angle of 0°. In brief, this work not only offers the special role of alkali and Co2+ co-modulation in composition regulation, structure design, and MA capacity, but also provides a reliable strategy to develop smart nano-absorbers to cope with electromagnetic pollution issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, Y.; Tan, S. J.; Zhao, Y.; Liang, L. L.; Zhou, M.; Ji, G. B. Broadband multispectral compatible absorbers for radar, infrared, and visible stealth application. Prog. Mater. Sci. 2023, 135, 101088.

    Google Scholar 

  2. Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

    CAS  Google Scholar 

  3. Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 2022, 15, 7731–7741.

    CAS  Google Scholar 

  4. Liu, Y. J.; Wei, X. F.; He, X. X.; Yao, J. R.; Tan, R. Y.; Chen, P.; Yao, B. Y.; Zhou, J. T.; Yao, Z. J. Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 2023, 33, 2211352.

    CAS  Google Scholar 

  5. Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

    Google Scholar 

  6. Cheng, Z.; Wang, R. F.; Cao, Y. S.; Cai, Z. H.; Zhang, Z. W.; Huang, Y. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 2022, 32, 2205160.

    CAS  Google Scholar 

  7. Tang, X. W.; Luo, J. T.; Hu, Z. W.; Lu, S. J.; Liu, X. Y.; Li, S. S.; Zhao, X.; Zhang, Z. H.; Lan, Q. Q.; Ma, P. M. et al. Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding. Nano Res. 2023, 16, 1755–1763.

    CAS  Google Scholar 

  8. Bu, F. X.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.

    CAS  Google Scholar 

  9. Wang, W. J.; Ye, W. P.; Hou, X. W.; Ran, K.; Huang, Y. L.; Zhang, Z. D.; Fang, Y.; Wang, S.; Zhao, R.; Xue, W. D. Salt-assisted pyrolysis of carbon nanosheet and carbon nanoparticle hybrids for efficient microwave absorption. J. Mater. Chem. C 2023, 11, 2941–2948.

    CAS  Google Scholar 

  10. Wu, D.; Wang, Y. Q.; Deng, S. L.; Lan, D.; Xiang, Z. N.; He, Q. C. Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption. Nano Res. 2023, 16, 1859–1868.

    CAS  Google Scholar 

  11. Cui, J.; Wang, X. H.; Huang, L.; Zhang, C. W.; Yuan, Y.; Li, Y. B. Environmentally friendly bark-derived Co-doped porous carbon composites for microwave absorption. Carbon 2022, 187, 115–125.

    CAS  Google Scholar 

  12. Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2621.

    CAS  Google Scholar 

  13. Xu, Z. J.; He, M.; Zhou, Y. M.; Zhang, M. Y.; Feng, S. J.; Wang, Y. J.; Xu, R.; Peng, H.; Chen, X. Rime-like carbon paper@Bi2S3 hybrid structure for efficient and broadband microwave absorption. Chem. Eng. J. 2022, 428, 131127.

    CAS  Google Scholar 

  14. Ren, J. Q.; Lyu, Y. T.; Liu, Z. G.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Microwave absorption performance evaluation of carbonized derivatives of Fe3O4@MOF-74 with controllable morphologies. ACS Appl. Electron. Mater. 2022, 4, 5221–5233.

    CAS  Google Scholar 

  15. Chen, X. T.; Zhou, M.; Zhao, Y.; Gu, W. H.; Wu, Y.; Tang, S. L.; Ji, G. B. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 2022, 24, 5280–5290.

    CAS  Google Scholar 

  16. Wan, Y. Z.; Xiao, J.; Li, C. Z.; Xiong, G. Y.; Guo, R. S.; Li, L. L.; Han, M.; Luo, H. L. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J. Magn. Magn. Mater. 2016, 399, 252–259.

    CAS  Google Scholar 

  17. Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

    CAS  Google Scholar 

  18. Qiu, Y.; Yang, H. B.; Cheng, Y.; Lin, Y. MOFs derived flower-like nickel and carbon composites with controllable structure toward efficient microwave absorption. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106772.

    CAS  Google Scholar 

  19. Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

    CAS  Google Scholar 

  20. Liu, W.; Shao, Q. W.; Ji, G. B.; Liang, X. H.; Cheng, Y.; Quan, B.; Du, Y. W. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 2017, 313, 734–744.

    CAS  Google Scholar 

  21. Li, X. A.; Qu, X. Y.; Xu, Z.; Dong, W. Q.; Wang, F. Y.; Guo, W. C.; Wang, H. Y.; Du, Y. C. Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl. Mater. Interfaces 2019, 11, 19267–19276.

    CAS  Google Scholar 

  22. Cheng, T. T.; Guo, Y. Y.; Xie, Y. X.; Zhao, L. B.; Wang, T.; Meng, A. L.; Li, Z. J.; Zhang, M. Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance. Carbon 2023, 206, 181–191.

    CAS  Google Scholar 

  23. Wu, Z. C.; Hu, W.; Huang, T.; Lan, P.; Tian, K.; Xie, F.; Li, L. Hierarchically porous carbons with controlled structures for efficient microwave absorption. J. Mater. Chem. C 2018, 6, 8839–8845.

    CAS  Google Scholar 

  24. Gao, S.; Zhang, G. Z.; Wang, Y.; Han, X. P.; Huang, Y.; Liu, P. B. MOFs derived magnetic porous carbon microspheres constructed by core–shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 88, 56–65.

    CAS  Google Scholar 

  25. Jia, Z. R.; Kong, M. Y.; Yu, B. W.; Ma, Y. Z.; Pan, J. Y.; Wu, G. L. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 2022, 127, 153–163.

    CAS  Google Scholar 

  26. Xu, X. Q.; Ran, F. T.; Fan, Z. M.; Cheng, Z. J.; Lv, T.; Shao, L.; Xie, Z. M.; Liu, Y. Y. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption. Carbon 2021, 171, 211–220.

    CAS  Google Scholar 

  27. Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

    Google Scholar 

  28. Wang, L.; Xing, H. L.; Gao, S. T.; Ji, X. L.; Shen, Z. Y. Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 2017, 5, 2005–2014.

    Google Scholar 

  29. Shu, R. W.; Wu, Y.; Li, X. H.; Li, N. N.; Shi, J. J. Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers. J. Colloid Interface Sci. 2022, 613, 477–487.

    CAS  Google Scholar 

  30. Wei, Y.; Liu, H. J.; Liu, S. C.; Zhang, M. M.; Shi, Y. P.; Zhang, J. W.; Zhang, L.; Gong, C. H. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 2018, 9, 70–75.

    Google Scholar 

  31. Wu, J. Z.; Zhao, Y. H.; Zhao, X. Y.; Nan, H. Y.; Lu, Q. Q.; Chen, Q. Core-shell nanowires comprising silver@polypyrrole-derived pyrolytic carbon for high-efficiency microwave absorption. J. Mater. Sci. 2022, 57, 20672–20684.

    CAS  Google Scholar 

  32. Wang, F. Y.; Sun, Y. Q.; Li, D. R.; Zhong, B.; Wu, Z. G.; Zuo, S. Y.; Yan, D.; Zhuo, R. F.; Feng, J. J.; Yan, P. X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 2018, 134, 264–273.

    CAS  Google Scholar 

  33. Li, Y. X.; Liu, R. G.; Pang, X. Y.; Zhao, X. N.; Zhang, Y. H.; Qin, G. W.; Zhang, X. F. Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon 2018, 126, 372–381.

    CAS  Google Scholar 

  34. Su, X. G.; Wang, J.; Zhang, X. X.; Huo, S. Q.; Dai, W.; Zhang, B. Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance. J. Alloys Compd. 2020, 829, 154426.

    CAS  Google Scholar 

  35. He, G. H.; Duan, Y. P.; Pang, H. F. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 2020, 12, 57.

    CAS  Google Scholar 

  36. Guo, S. Y.; Bao, Y. F.; Li, Y.; Guan, H. L.; Lei, D. Y.; Zhao, T. J.; Zhong, B. M.; Li, Z. H. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks. J. Mater. Sci. Technol. 2022, 118, 218–228.

    CAS  Google Scholar 

  37. Fang, G.; Liu, C. Y.; Yang, Y.; Peng, K. S.; Cao, Y. F.; Jiang, T.; Zhang, Y. T.; Zhang, Y. J. Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands. ACS Appl. Mater. Interfaces 2021, 13, 37517–37526.

    CAS  Google Scholar 

  38. Yao, Z. Q.; Xu, S. Q.; Zhang, X. K.; Yuan, J. J.; Rong, C. C.; Xiong, Z. Z.; Zhu, X. R.; Yu, Y.; Yu, H. J.; Kang, S. Y. et al. CuCo nanocube/N-doped carbon nanotube composites for microwave absorption. ACS Appl. Nano Mater. 2023, 6, 1325–1338.

    CAS  Google Scholar 

  39. Fang, G.; Liu, C. Y.; Yang, Y.; Peng, K. S.; Cao, Y. F.; Xu, G. Y.; Zhang, Y. J. High-efficiency microwave absorbing performance originating from sufficient magnetic exchange coupling interaction and impressive dielectric loss. J. Mater. Chem. C 2021, 9, 1936–1944.

    CAS  Google Scholar 

  40. Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

    CAS  Google Scholar 

  41. Wu, H. J.; Wu, G. L.; Wang, L. D. Peculiar porous α-Fe2O3, γ-Fe2O3, and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 2015, 269, 443–451.

    CAS  Google Scholar 

  42. Wu, G. L.; Zhang, H. X.; Luo, X. X.; Yang, L. J.; Lv, H. L. Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 2019, 536, 548–555.

    CAS  Google Scholar 

  43. Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

    CAS  Google Scholar 

  44. Lv, H. L.; Zhou, X. D.; Wu, G. L.; Kara, U. I.; Wang, X. G. Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 2021, 9, 19710–19718.

    CAS  Google Scholar 

  45. Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

    CAS  Google Scholar 

  46. Siddiki, S. H.; Verma, K.; Chakraborty, B.; Das, S.; Thakur, V. K.; Nayak, G. C. Defect dipole-induced HfO2-coated Ti3C2T MXene/nickel ferrite nanocomposites for enhanced microwave absorption. ACS Appl. Nano Mater. 2023, 6, 1839–1848.

    CAS  Google Scholar 

  47. Zhang, Y.; Tan, S. J.; Zhou, Z. T.; Guan, X. M.; Liao, Y.; Li, C.; Ji, G. B. Construction of Co2NiO4@MnCo2O45 nanoparticles with multiple hetero-interfaces for enhanced electromagnetic wave absorption. Particuology 2023, 81, 86–97.

    CAS  Google Scholar 

  48. Li, X. A.; Zhang, B.; Ju, C. H.; Han, X. J.; Du, Y. C.; Xu, P. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C 2011, 115, 12350–12357.

    CAS  Google Scholar 

  49. Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595–1607.

    CAS  Google Scholar 

  50. Gu, W. H.; Cui, X. Q.; Zheng, J.; Yu, J. W.; Zhao, Y.; Ji, G. B. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 2021, 67, 265–272.

    CAS  Google Scholar 

  51. Cheng, Y.; Zhao, H. Q.; Zhao, Y.; Cao, J. M.; Zheng, J.; Ji, G. B. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon 2020, 161, 870–879.

    CAS  Google Scholar 

  52. Yu, L. J.; Zhu, Y. F.; Fu, Y. Q. Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption. Appl. Surf. Sci. 2018, 427, 451–457.

    CAS  Google Scholar 

  53. Hou, Z. L.; Du, K. R.; Zhang, Y. Q.; Bi, S.; Zhang, J. Y. Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res. 2023, 16, 2604–2610.

    CAS  Google Scholar 

  54. Liu, Y. L.; Tian, C. H.; Wang, F. Y.; Hu, B.; Xu, P.; Han, X. J.; Du, Y. C. Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 2023, 461, 141867.

    CAS  Google Scholar 

  55. Xue, W.; Yang, G.; Bi, S.; Zhang, J. Y.; Hou, Z. L. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 2021, 173, 521–527.

    CAS  Google Scholar 

  56. Rao, L. J.; Wang, L.; Yang, C. D.; Zhang, R. X.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2213258.

    CAS  Google Scholar 

  57. Nandan, R.; Pandey, P.; Gautam, A.; Bisen, O. Y.; Chattopadhyay, K.; Titirici, M. M.; Nanda, K. K. Atomic arrangement modulation in CoFe nanoparticles encapsulated in N-doped carbon nanostructures for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 3771–3781.

    CAS  Google Scholar 

  58. Chen, S. B.; Zhou, X. F.; Liao, J. H.; Yang, S. Y.; Zhou, X. S.; Gao, Q. Z.; Zhang, S. Q.; Fang, Y. P.; Zhong, X. H.; Zhang, S. S. FeNi intermetallic compound nanoparticles wrapped with N-doped graphitized carbon: A novel cocatalyst for boosting photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 3481–3490.

    CAS  Google Scholar 

  59. Rezania, J.; Rahimi, H. Investigating the carbon materials’ microwave absorption and its effects on the mechanical and physical properties of carbon fiber and carbon black/polypropylene composites. J. Compos. Mater. 2017, 51, 2263–2276.

    CAS  Google Scholar 

  60. Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B Eng. 2018, 137, 260–277.

    CAS  Google Scholar 

  61. Diao, J. L.; Cai, Z. H.; Xia, L.; Wang, Z. Y.; Yin, Z. Z.; Liu, X. Y.; Ma, W. L.; Huang, Y. High-performance microwave absorption of 3D Bi2Te2.7Se0.3/graphene foam. Carbon 2021, 183, 702–710.

    CAS  Google Scholar 

  62. Zhang, D. Q.; Xiong, Y. F.; Cheng, J. Y.; Chai, J. X.; Liu, T. T.; Ba, X. W.; Ullah, S.; Zheng, G. P.; Yan, M.; Cao, M. S. Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 2020, 65, 138–146.

    CAS  Google Scholar 

  63. Bai, Y. W.; Shi, G. M.; Gao, J.; Shi, F. N. MOF decomposed for the preparation of Co3O4/N-doped carbon with excellent microwave absorption. J. Solid State Chem. 2020, 288, 121401.

    CAS  Google Scholar 

  64. Liu, Z. K.; Chen, J.; Que, M. D.; Zheng, H. Q.; Yang, L. F.; Yuan, H. D.; Ma, Y. Z.; Li, Y. J.; Yang, X. F. 2D Ti3C2Tx MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption. Chem. Eng. J. 2022, 450, 138442.

    CAS  Google Scholar 

  65. Song, S. W.; Zhang, A. T.; Chen, L.; Jia, Q.; Zhou, C. L.; Liu, J. Q.; Wang, X. X. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption. Carbon 2021, 176, 279–289.

    CAS  Google Scholar 

  66. Cheng, R. R.; Wang, Y.; Di, X. C.; Lu, Z.; Wang, P.; Wu, X. M. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions. J. Mater. Sci. Technol. 2022, 129, 15–26.

    CAS  Google Scholar 

  67. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting–etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    CAS  Google Scholar 

  68. Chen, X. T.; Wang, Z. D.; Zhou, M.; Zhao, Y.; Tang, S. L.; Ji, G. B. Multilevel structure carbon aerogels with 99.999% electromagnetic wave absorptivity at 1.8 mm and efficient thermal stealth. Chem. Eng. J. 2023, 452, 139110.

    CAS  Google Scholar 

  69. Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

    CAS  Google Scholar 

  70. Fang, G.; Liu, C. Y.; Wei, X. Y.; Cai, Q. Y.; Chen, C.; Xu, G. Y.; Ji, G. B. Determining the preferable polarization loss for magnetoelectric microwave absorbers by strategy of controllably regulating defects. Chem. Eng. J. 2023, 463, 142440.

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for financial support from the National Nature Science Foundation of China (Nos. 51971111 and 52273247), the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics) (No. ILA220461A22), and the facilities in the Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujuan Tan.

Electronic Supplementary Material

12274_2023_5799_MOESM1_ESM.pdf

Alkali and ion exchange co-modulation strategies to design magnetic–dielectric synergistic nano-absorbers for tailoring microwave absorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Tan, S., Zhang, T. et al. Alkali and ion exchange co-modulation strategies to design magnetic–dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res. 16, 8522–8532 (2023). https://doi.org/10.1007/s12274-023-5799-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5799-3

Keywords

Navigation