Skip to main content
Log in

1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption

  • Recsearch Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rational design of the components and microstructure is regarded as an efficacious strategy for the high-performance electromagnetic wave absorbing (EMWA) materials. Herein, the CoTe2@MoS2 nanocomposites with CoTe2 nanorods and MoS2 nanosheets were synthesized via a hydrothermal method. The microstructure and composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The CoTe2@MoS2 composite was composed of stacked CoTe2 as the core and intertwined MoS2 nanosheets as the shell. The electromagnetic parameters of the CoTe2@MoS2 composites were investigated by vector network analyzer (VNA). The EMWA property of the composite showed a trend of first increasing and then decreasing with the increasing content of MoS2. When the mass ratio of MoS2 and CoTe2 was 1:1, the CoTe2@MoS2 composite exhibited the minimum reflection loss value of −68.10 dB at 4.71 GHz, and the effective absorption bandwidth value might reach 4.64 GHz (13.08–17.72 GHz) at a matching thickness of 1.60 mm with filler loading of 50 wt.%. The extraordinary EMWA property was attributed to the optimized impedance matching, multiple scattering and reflections, dipole polarization, conductive loss, and interfacial polarization. Therefore, the present approach to the design of microstructure and interface engineering offers a crucial way to construct high-performance EMW absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Z. H.; Zhang, L. M.; Wu, H. J. Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers. Adv. Mater. 2022, 34, 2205376.

    CAS  Google Scholar 

  2. Liu, P. B.; Zhang, G. Z.; Xu, H. X.; Cheng, S. C.; Huang, Y.; Ouyang, B.; Qian, Y. T.; Zhang, R. X.; Che, R. C. Synergistic dielectric–magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023, 33, 2211298.

    CAS  Google Scholar 

  3. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

    CAS  Google Scholar 

  4. Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2021, 32, 2108194.

    Google Scholar 

  5. Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

    CAS  Google Scholar 

  6. Zhang, X. C.; Li, B.; Xu, J.; Zhang, X.; Shi, Y. N.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2210456.

    CAS  Google Scholar 

  7. Zhang, X. C.; Zhang, X.; Yuan, H. R.; Li, K. Y.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, S.; Chen, Y. J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123208.

    CAS  Google Scholar 

  8. Wang, Y. H.; Han, X. J.; Xu, P.; Liu, D. W.; Cui, L. R.; Zhao, H. H.; Du, Y. C. Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 2019, 372, 312–320.

    CAS  Google Scholar 

  9. Pan, F.; Wu, X. F.; Batalu, D.; Lu, W.; Guan, H. T. Assembling of low-dimensional aggregates with interlaminar electromagnetic synergy network for high-efficient microwave absorption. Adv. Powder Mater. 2023, 2, 100100.

    Google Scholar 

  10. Zhang, Z. W.; Cai, Z. H.; Xia, L.; Zhao, D.; Fan, F.; Huang, Y. Synergistically assembled cobalt-telluride/graphene foam with high-performance electromagnetic wave absorption in both gigahertz and terahertz band ranges. ACS Appl. Mater. Interfaces 2021, 13, 30967–30979.

    CAS  Google Scholar 

  11. Chen, J. B.; Liang, X. H.; Quan, B.; Yang, Z. H.; Du, Y. W.; Ji, G. B. 3D flake-like Bi2Te3 with outstanding lightweight electromagnetic wave absorption feature. Part. Part. Syst. Charact. 2018, 35, 1700468.

    Google Scholar 

  12. Wu, C.; Wang, J.; Zhang, X. H.; Kang, L. X.; Cao, X.; Zhang, Y. Y.; Niu, Y. T.; Yu, Y. Y.; Fu, H. L.; Shen, Z. J. et al. Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 2022, 15, 7.

    Google Scholar 

  13. Chen, J. B.; Tan, S. J.; Liang, X. H.; Liu, W.; Ji, G. B. Rod-like Te as excellent microwave absorber: A new exploration. J. Alloys Compd. 2019, 777, 1197–1203.

    CAS  Google Scholar 

  14. Yan, J.; Huang, Y.; Zhang, X. Y.; Gong, X.; Chen, C.; Nie, G. D.; Liu, X. D.; Liu, P. B. MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber. Nano-Micro Lett. 2021, 13, 114.

    CAS  Google Scholar 

  15. Tao, J. Q.; Xu, L. L.; Pei, C. B.; Gu, Y. S.; He, Y. R.; Zhang, X. F.; Tao, X. W.; Zhou, J. T.; Yao, Z. J.; Tao, S. F. et al. Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 2023, 33, 2211996.

    CAS  Google Scholar 

  16. Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.

    CAS  Google Scholar 

  17. Bai, J. L.; Huang, S. J.; Yao, X. M.; Liu, X. J.; Huang, Z. R. Surface engineering of nanoflower-like MoS2 decorated porous Si3N4 ceramics for electromagnetic wave absorption. J. Mater. Chem. A. 2023, 11, 6274–6285.

    CAS  Google Scholar 

  18. Tong, Z. Y.; Liao, Z. J.; Liu, Y. Y.; Ma, M. L.; Bi, Y. X.; Huang, W. B.; Ma, Y.; Qiao, M. T.; Wu, G. L. Hierarchical Fe3O4/Fe@C@MoS2 core–shell nanofibers for efficient microwave absorption. Carbon 2021, 179, 646–654.

    CAS  Google Scholar 

  19. Liu, Z. C.; Pan, F.; Deng, B. W.; Xiang, Z.; Lu, W. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 2021, 174, 59–69.

    CAS  Google Scholar 

  20. Liu, Z. H.; Fan, Y. H.; Liu, Z. G.; Zhang, Q. Y.; Zhang, B. L. Wrinkled 3D MoS2/RGO/NC composite microspheres: Optimal composition and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107119.

    CAS  Google Scholar 

  21. Jiang, L.; Zhu, Y. J.; Cui, J. B. Nanostructures of metal tellurides (PbTe, CdTe, CoTe2, Bi2Te3, and Cu7Te4) with various morphologies: A general solvothermal synthesis and optical properties. Eur. J. Inorg. Chem. 2010, 19, 3005–3011.

    Google Scholar 

  22. Lei, Y. X.; Miao, N. X.; Zhou, J. P.; Hassan, Q. U.; Wang, J. Z. Novel magnetic properties of CoTe nanorods and diversified CoTe2 nanostructures obtained at different NaOH concentrations. Sci. Technol. Adv. Mater. 2017, 18, 325–333.

    CAS  Google Scholar 

  23. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

    CAS  Google Scholar 

  24. Mao, H.; Yu, J. M.; Li, J.; Zheng, T. B.; Cen, J.; Ye, Y. W. A highperformance supercapacitor electrode based on nanoflower-shaped CoTe2. Ceram. Int. 2020, 46, 6991–6994.

    CAS  Google Scholar 

  25. Gao, Q.; Huang, C. Q.; Ju, Y. M.; Gao, M. R.; Liu, J. W.; An, D.; Cui, C. H.; Zheng, Y. R.; Li, W. X.; Yu, S. H. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew. Chem., Int. Ed. 2017, 56, 7769–7773.

    CAS  Google Scholar 

  26. Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flowerlike core@shell MFe2O4@MoS2 (M = Mn, Ni, and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2022, 139, 137–146.

    Google Scholar 

  27. Zhang, Y. F.; Li, Y. L.; Wei, M. M.; Yang, D. T.; Zhang, Q. Y.; Zhang, B. L. Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties. J. Mater. Sci. Technol. 2022, 128, 148–159.

    CAS  Google Scholar 

  28. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    CAS  Google Scholar 

  29. Shi, X. F.; Liu, Z. W.; Li, X.; You, W. B.; Shao, Z. Z.; Che, R. C. Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2−x heterostructure for broadband microwave absorption. Chem. Eng. J. 2021, 419, 130020.

    CAS  Google Scholar 

  30. Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

    CAS  Google Scholar 

  31. Chang, M.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. Part B Eng. 2021, 225, 109306.

    CAS  Google Scholar 

  32. Song, X. Q.; Tian, D.; Qiu, Y.; Sun, X.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q. Efficient polysulfide trapping and conversion on N-doped CoTe2 via enhanced dual-anchoring effect. Small 2021, 17, 2102962.

    CAS  Google Scholar 

  33. Zhou, X. J.; Wen, J. W.; Wang, Z. N.; Ma, X. H.; Wu, H. J. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 2022, 112, 148–155.

    Google Scholar 

  34. Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

    CAS  Google Scholar 

  35. Hou, Z. L.; Ma, X. M.; Zhang, J. Y.; Li, C. J.; Wang, Y. L.; Cao, M. S. Fascinating electrical transport behavior of topological insulator Bi2Te3 nanorods: Toward electrically responsive smart materials. Small 2022, 18, 2205624.

    CAS  Google Scholar 

  36. Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

    CAS  Google Scholar 

  37. Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-5522-4.

  38. Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

    CAS  Google Scholar 

  39. Wang, Y.; Di, X. C.; Fu, Y. Q.; Wu, X. M.; Cao, J. T. Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber. J. Colloid Interface Sci. 2021, 587, 561–573.

    CAS  Google Scholar 

  40. Chen, X. L.; Wang, W.; Shi, T.; Wu, G. L.; Lu, Y. One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. Carbon 2020, 163, 202–212.

    CAS  Google Scholar 

  41. Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

    CAS  Google Scholar 

  42. Su, Q.; Wang, B. C.; Mu, C. P.; Zhai, K.; Nie, A. M.; Xiang, J. Y.; Wen, F. S. Polypyrrole coated 3D flower MoS2 composites with tunable impedance for excellent microwave absorption performance. J. Alloys Compd. 2021, 888, 161487.

    CAS  Google Scholar 

  43. Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

    CAS  Google Scholar 

  44. Zhu, W. F.; Zhang, L.; Zhang, W. D.; Zhang, F.; Li, Z.; Zhu, Q.; Qi, S. H. Facile synthesis of GNPs@NixSy@MoS2 composites with hierarchical structures for microwave absorption. Nanomaterials 2019, 9, 1403.

    CAS  Google Scholar 

  45. Zhang, M.; Qian, C.; Zhu, R. T.; Liu, H. M.; Zhang, Y. X.; Liu, Q. C. Flower-like MoS2 self-assembled on multiferroic Z-type Sr3Co2Fe24O41 hexaferrite for ultra-wideband microwave absorption. J. Alloys Compd. 2022, 926, 166881.

    CAS  Google Scholar 

  46. Liao, Z. J.; Ma, M. L.; Bi, Y. X.; Tong, Z. Y.; Chung, K. L.; Li, Z. J.; Ma, Y.; Gao, B. L.; Cao, Z. K.; Sun, R. R. et al. MoS2 decorated on one-dimensional MgFe2O4/MgO/C composites for highperformance microwave absorption. J. Colloid Interface Sci. 2022, 606, 709–718.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52173267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhua Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, N., Luo, J., Shu, P. et al. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption. Nano Res. 16, 10698–10706 (2023). https://doi.org/10.1007/s12274-023-5777-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5777-9

Keywords

Navigation