Skip to main content
Log in

Study of the dynamics of water-enriched debris flow and its impact on slit-type barriers by a modified SPH–DEM coupling approach

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Slit-type barriers serve as active countermeasures against debris flow. However, the dynamic interaction between debris flows and slit-type barriers is extremely complicated. To model the fluid-solid behavior of debris flows, a coupled approach of smoothed particle hydrodynamics (SPH) and discrete element method (DEM) is developed. We use the model to investigate the dynamics of how debris flows impact slit-type barriers. The proposed approach is able to simulate the embedding of arbitrarily shaped particles in viscous debris flows. A GPU acceleration technique is employed to overcome large computational costs. The approach is first validated by comparing numerical results to experimental observations for some standard conditions. Subsequently, experiments of the impact of water-enriched debris on slit-type barriers are modeled and validated. Moreover, the effects of barrier arrangement, solid volume fraction and boulder shape on debris-barrier interactions are further explored. This study analyzes the interaction between debris flows and slit-type barriers by coupled SPH–DEM and provides insight into the optimal design of barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abdulnabi A, Wilson GW (2021) Flume-scale laboratory study of rainfall-runoff responses in Devon silt and capillary barrier profiles. Can Geotech J 58:238–247

    Article  Google Scholar 

  2. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. equations of motion. Ind Eng Chem Fund 6:527–539

    Article  CAS  Google Scholar 

  3. Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181:532–549

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Armanini A (2007) On the dynamic impact of debris flows. Recent Dev Debris Flows 208–226

  5. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Meth Geomech 32:1537–1570

    Article  Google Scholar 

  6. Calvetti F, Di Prisco CG, Vairaktaris E (2017) Dem assessment of impact forces of dry granular masses on rigid barriers. Acta Geotech 12:129–144

    Article  Google Scholar 

  7. Chalk CM, Peakall J, Keevil G, Fuentes R (2022) Spatial and temporal evolution of an experimental debris flow, exhibiting coupled fluid and particulate phases. Acta Geotech 17:965–979

    Article  Google Scholar 

  8. Chen L, Yang H, Song K, Huang W, Ren X, Xu H (2021) Failure mechanisms and characteristics of the Zhongbao landslide at Liujing village, Wulong, china. Landslides 18:1445–1457

    Article  Google Scholar 

  9. Cheung AK, Yiu J, Lam HW, Sze EH (2018) Advanced numerical analysis of landslide debris mobility and barrier interaction. HKIE Trans 25:76–89

    Article  Google Scholar 

  10. Choi C, Ng CWW, Goodwin GR, Liu L, Cheung W (2016) Flume investigation of the influence of rigid barrier deflector angle on dry granular overflow mechanisms. Can Geotech J 53:1751–1759

    Article  Google Scholar 

  11. Choi CE, Au-Yeung S, Ng CWW, Song D (2015) Flume investigation of landslide granular debris and water runup mechanisms. Géotech Lett 5:28–32

    Article  ADS  Google Scholar 

  12. Choi SK, Lee JM, Kwon TH (2018) Effect of slit-type barrier on characteristics of water-dominant debris flows: small-scale physical modeling. Landslides 15:111–122

    Article  Google Scholar 

  13. Choi SK, Park JY, Lee DH, Lee SR, Kim YT, Kwon TH (2021) Assessment of barrier location effect on debris flow based on smoothed particle hydrodynamics (SPH) simulation on 3d terrains. Landslides 18:217–234

    Article  Google Scholar 

  14. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475

    Article  ADS  Google Scholar 

  15. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  16. Dai Z, Huang Y, Cheng H, Xu Q (2014) 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 wenchuan earthquake. Eng Geol 180:21–33

    Article  Google Scholar 

  17. Dai Z, Huang Y, Cheng H, Xu Q (2017) SPH model for fluid-structure interaction and its application to debris flow impact estimation. Landslides 14:917–928

    Article  Google Scholar 

  18. Darema F (2001) The spmd model: Past, present and future. In: European parallel virtual machine/message passing interface users’ group meeting, Springer, pp 1

  19. De Wrachien D, Mambretti S (2008) Dam-break shock waves: a two-phase model for mature and immature debris flow. WIT Trans Eng Sci 60:183–196

    Article  Google Scholar 

  20. Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425:1068–1082

    Article  ADS  Google Scholar 

  21. Dou J, Yunus AP, Tien Bui D, Sahana M, Chen CW, Zhu Z, Wang W, Thai Pham B (2019) Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the lidar dem. Remote Sens 11:638

    Article  ADS  Google Scholar 

  22. Fávero Neto AH, Askarinejad A, Springman SM, Borja RI (2020) Simulation of debris flow on an instrumented test slope using an updated Lagrangian continuum particle method. Acta Geotech 15:2757–2777

    Article  Google Scholar 

  23. Fávero Neto AH, Borja RI (2018) Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity. Acta Geotech 13:1027–1040

    Article  Google Scholar 

  24. Gao L, Zhang LM, Chen H (2017) Two-dimensional simulation of debris flow impact pressures on buildings. Eng Geol 226:236–244

    Article  Google Scholar 

  25. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  ADS  Google Scholar 

  26. Gomez-Gesteira M, Rogers BD, Crespo AJ, Dalrymple RA, Narayanaswamy M, Dominguez JM (2012) Sphysics-development of a free-surface fluid solver-part 1: theory and formulations. Comput Geosci 48:289–299

    Article  ADS  Google Scholar 

  27. Gotoh H (2001) Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for hydraulic engineering. Comput Fluid Dyn J 9:339–347

    Google Scholar 

  28. He Y, Bayly AE, Hassanpour A, Muller F, Wu K, Yang D (2018) A GPU-based coupled SPH-dem method for particle-fluid flow with free surfaces. Powder Technol 338:548–562

    Article  CAS  Google Scholar 

  29. Hong Y, Wang JP, Li D, Cao Z, Ng CWW, Cui P (2015) Statistical and probabilistic analyses of impact pressure and discharge of debris flow from 139 events during 1961 and 2000 at jiangjia ravine, china. Eng Geol 187:122–134

    Article  Google Scholar 

  30. Hu K, Wei F, Li Y (2011) Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surf Proc Land 36:1268–1278

    Article  ADS  Google Scholar 

  31. Huang Y, Dai Z (2014) Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method. Eng Geol 168:86–97

    Article  Google Scholar 

  32. Huang Y, Jin X, Ji J (2022) Effects of barrier stiffness on debris flow dynamic impact-I: laboratory flume test. Water 14:177

    Article  CAS  Google Scholar 

  33. Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78:359–372

    Article  ADS  Google Scholar 

  34. Imaizumi F, Masui T, Yokota Y, Tsunetaka H, Hayakawa YS, Hotta N (2019) Initiation and runout characteristics of debris flow surges in Ohya landslide scar, Japan. Geomorphology 339:58–69

    Article  ADS  Google Scholar 

  35. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296

    Article  ADS  Google Scholar 

  36. Jakob M, Hungr O, Cui P, Chen X, Waqng Y, Hu K, Li Y (2005) Jiangjia ravine debris flows in south-western china. Debris-Flow Hazards Relat Phenom 565–594

  37. Jeong SS, Lee KW, Ko JY (2015) A study on the 3d analysis of debris flow based on large deformation technique (coupled Eulerian-Lagrangian). J Korean Geotech Soc 31:45–57

    Article  Google Scholar 

  38. Jiang YJ, Towhata I (2013) Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech Rock Eng 46:713–729

    Article  ADS  Google Scholar 

  39. Kang C, Chan D (2018) Numerical simulation of 2D granular flow entrainment using dem. Granular Matter 20:1–17

    Article  Google Scholar 

  40. Kawamoto R, Andò E, Viggiani G, Andrade JE (2018) All you need is shape: predicting shear banding in sand with ls-dem. J Mech Phys Solids 111:375–392

    Article  ADS  Google Scholar 

  41. Kim M, Lee S, Kwon TH, Choi SK, Jeon JS (2021) Sensitivity analysis of influencing parameters on slit-type barrier performance against debris flow using 3D-based numerical approach. Int J Sedim Res 36:50–62

    Article  Google Scholar 

  42. Koo CH (2017) Mechanisms of interaction between dry sand flow and multiple rigid barries: flume and finite-element modelling. Ph.D. thesis

  43. Koo R, Kwan JS, Ng CWW, Lam C, Choi CE, Song D, Pun WK (2017) Velocity attenuation of debris flows and a new momentum-based load model for rigid barriers. Landslides 14:617–629

    Article  Google Scholar 

  44. Koshizuka S, Oka Y, Tamako H (1995) A particle method for calculating splashing of incompressible viscous fluid

  45. Krušić J, Abolmasov B, Samardžić-Petrović M (2019) Influence of dem resolution on numerical modelling of debris flows in ramms-selanac case study. In: Proceedings of the 4th Regional symposium on in the adriatic–balkan region, pp 23–25

  46. Kuwabara G, Kono K (1987) Restitution coefficient in a collision between two spheres. Jpn J Appl Phys 26:1230

    Article  ADS  Google Scholar 

  47. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  48. Leonardi A (2015) Numerical simulation of debris flow and interaction between flow and obstacle via DEM. Ph.D. thesis. ETH Zurich

  49. Leonardi A, Pirulli M (2020) Analysis of the load exerted by debris flows on filter barriers: comparison between numerical results and field measurements. Comput Geotech 118:103311

    Article  Google Scholar 

  50. Leonardi A, Wittel FK, Mendoza M, Herrmann HJ (2015) Lattice–boltzmann method for geophysical plastic flows. Recent Adv Model Landslides Debris Flows 131–140

  51. Li S, Peng C, Wu W, Wang S, Chen X, Chen J, Zhou GG, Chitneedi BK (2020) Role of baffle shape on debris flow impact in step-pool channel: an sph study. Landslides 17:2099–2111

    Article  Google Scholar 

  52. Li X (2018) Computational modelling of debris flows and their interaction with resisting barriers based on a coupled CFD-DEM approach. Ph.D. thesis

  53. Li X, Zhao J (2018) A unified cfd-dem approach for modeling of debris flow impacts on flexible barriers. Int J Numer Anal Meth Geomech 42:1643–1670

    Article  Google Scholar 

  54. Liu C, Yu Z, Zhao S (2021) A coupled sph-dem-fem model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation. Landslides 18:2403–2425

    Article  Google Scholar 

  55. Lyu HG, Deng R, Sun PN, Miao JM (2021) Study on the wedge penetrating fluid interfaces characterized by different density-ratios: numerical investigations with a multi-phase sph model. Ocean Eng 237:109538

    Article  Google Scholar 

  56. Macia F, Colagrossi A, Antuono M, Souto-Iglesias A (2011) Benefits of using a Wendland kernel for free-surface flows. In: 6th ERCOFTAC SPHERIC workshop on SPH applications, pp 30–37

  57. Manenti S, Wang D, Domínguez JM, Li S, Amicarelli A, Albano R (2019) Sph modeling of water-related natural hazards. Water 11:1875

    Article  CAS  Google Scholar 

  58. Mao W, Wang Y, Yang P, Huang Y, Zheng H (2023) Dynamics of granular debris flows against slit dams based on the cfd–dem method: effect of grain size distribution and ambient environments. Acta Geotechn 1–28

  59. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  ADS  Google Scholar 

  60. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703

    Article  ADS  MathSciNet  Google Scholar 

  61. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125:145–155

    Article  Google Scholar 

  62. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    ADS  Google Scholar 

  63. Moriguchi S, Borja RI, Yashima A, Sawada K (2009) Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4:57–71

    Article  Google Scholar 

  64. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using sph. J Comput Phys 136:214–226

    Article  ADS  Google Scholar 

  65. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method-an overview. Int J Comput Methods 1:267–307

    Article  Google Scholar 

  66. Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31:385–404

    Article  ADS  CAS  Google Scholar 

  67. Pastor M, Blanc T, Haddad B, Petrone S, Sanchez Morles M, Drempetic V, Issler D, Crosta G, Cascini L, Sorbino G et al (2014) Application of a sph depth-integrated model to landslide run-out analysis. Landslides 11:793–812

    Article  Google Scholar 

  68. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled sph model for flow-like landslides and related phenomena. Int J Numer Anal Meth Geomech 33:143–172

    Article  Google Scholar 

  69. Pastor M, Tayyebi SM, Stickle MM, Molinos M, Yague A, Manzanal D, Navas P (2022) An arbitrary lagrangian eulerian (ale) finite difference (fd)-sph depth integrated model for pore pressure evolution on landslides over erodible terrains. Int J Numer Anal Meth Geomech 46:1127–1153

    Article  Google Scholar 

  70. Peng C, Xu G, Wu W, Yu HS, Wang C (2017) Multiphase sph modeling of free surface flow in porous media with variable porosity. Comput Geotech 81:239–248

    Article  Google Scholar 

  71. Peng C, Zhan L, Wu W, Zhang B (2021) A fully resolved sph-dem method for heterogeneous suspensions with arbitrary particle shape. Powder Technol 387:509–526

    Article  CAS  Google Scholar 

  72. Pudasaini SP, Miller SA (2012) A real two-phase submarine debris flow and tsunami. In: AIP conference proceedings, American Institute of Physics, pp 197–200

  73. Qodri MF, Noviardi N, Mase LZ et al (2021) Numerical modelling based on digital elevation model (dem) analysis of debris flow at rinjani volcano, West Nusa Tenggara, Indonesia. In: Journal of the Civil Engineering Forum, pp 279–288

  74. M Khoshdel Rajab Doost, Taheri E, Fakhimi A (2021) Combined sph-dem modeling of solid-fluid interactions. J Hydraul Struct 7:72–99

    Google Scholar 

  75. Rickenmann D, Laigle D, McArdell B, Hübl J (2006) Comparison of 2d debris-flow simulation models with field events. Comput Geosci 10:241–264

    Article  Google Scholar 

  76. Scheidl C, Chiari M, Kaitna R, Müllegger M, Krawtschuk A, Zimmermann T, Proske D (2013) Analysing debris-flow impact models, based on a small scale modelling approach. Surv Geophys 34:121–140

    Article  ADS  Google Scholar 

  77. Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet JP (2018) Optimizing landslide susceptibility zonation: effects of dem spatial resolution and slope unit delineation on logistic regression models. Geomorphology 301:10–20

    Article  ADS  Google Scholar 

  78. Shao X, Zhou Z, Wu W (2012) Particle-based simulation of bubbles in water-solid interaction. Comput Anim Virt Worlds 23:477–487

    Article  Google Scholar 

  79. Shen W, Zhao T, Zhao J, Dai F, Zhou GG (2018) Quantifying the impact of dry debris flow against a rigid barrier by dem analyses. Eng Geol 241:86–96

    Article  Google Scholar 

  80. Song D, Choi CE, Zhou G, Kwan JS, Sze H (2018) Impulse load characteristics of bouldery debris flow impact. Géotech Lett 8:111–117

    Article  Google Scholar 

  81. Song D, Ng CWW, Choi CE, Zhou GG, Kwan JS, Koo R (2017) Influence of debris flow solid fraction on rigid barrier impact. Can Geotech J 54:1421–1434

    Article  Google Scholar 

  82. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196

    Article  ADS  MathSciNet  Google Scholar 

  83. Tan DY, Yin JH, Feng WQ, Qin JQ, Zhu ZH (2020) New simple method for measuring impact force on a flexible barrier from rockfall and debris flow based on large-scale flume tests. Eng Geol 279:105881

    Article  Google Scholar 

  84. Teufelsbauer H, Wang Y, Pudasaini SP, Borja R, Wu W (2011) Dem simulation of impact force exerted by granular flow on rigid structures. Acta Geotech 6:119–133

    Article  Google Scholar 

  85. Thouret JC, Antoine S, Magill C, Ollier C (2020) Lahars and debris flows: characteristics and impacts. Earth Sci Rev 201:103003

    Article  Google Scholar 

  86. Tsunetaka H, Hotta N, Hayakawa YS, Imaizumi F (2020) Spatial accuracy assessment of unmanned aerial vehicle-based structures from motion multi-view stereo photogrammetry for geomorphic observations in initiation zones of debris flows, ohya landslide, japan. Prog Earth Planet Sci 7:1–14

    Article  Google Scholar 

  87. Tsunetaka H, Hotta N, Imaizumi F, Hayakawa YS, Masui T (2021) Variation in rainfall patterns triggering debris flow in the initiation zone of the Ichino-sawa Torrent, Ohya landslide, japan. Geomorphology 375:107529

    Article  Google Scholar 

  88. Vetsch DF (2012) Numerical simulation of sediment transport with meshfree methods. Ph.D. thesis. ETH Zurich

  89. Wachs A, Girolami L, Vinay G, Ferrer G (2012) Grains3d, a flexible dem approach for particles of arbitrary convex shape-part I: numerical model and validations. Powder Technol 224:374–389

    Article  CAS  Google Scholar 

  90. Wang F, Chen X, Chen J, You Y (2017) Experimental study on a debris-flow drainage channel with different types of energy dissipation baffles. Eng Geol 220:43–51

    Article  CAS  Google Scholar 

  91. Wang X, Yin ZY, Xiong H, Su D, Feng YT (2021) A spherical-harmonic-based approach to discrete element modeling of 3d irregular particles. Int J Numer Meth Eng 122:5626–5655

    Article  MathSciNet  Google Scholar 

  92. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Article  MathSciNet  Google Scholar 

  93. Wu F, Fan Y, Liang L, Wang C (2016) Numerical simulation of dry granular flow impacting a rigid wall using the discrete element method. PLoS ONE 11:e0160756

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu F, Sun W, Li X, Guan Y, Dong M (2023). Material point method-based simulation of dynamic process of soil landslides considering pore fluid pressure. Int J Numer Anal Methods Geomech

  95. Xiong H, Nicot F, Yin Z (2017) A three-dimensional micromechanically based model. Int J Numer Anal Meth Geomech 41:1669–1686

    Article  Google Scholar 

  96. Xiong H, Nicot F, Yin Z (2019) From micro scale to boundary value problem: using a micromechanically based model. Acta Geotech 14:1307–1323

    Article  Google Scholar 

  97. Xiong H, Wu H, Bao X, Fei J (2021) Investigating effect of particle shape on suffusion by cfd-dem modeling. Constr Build Mater 289:123043

    Article  Google Scholar 

  98. Xiong H, Yin ZY, Nicot F (2019) A multiscale work-analysis approach for geotechnical structures. Int J Numer Anal Meth Geomech 43:1230–1250

    Article  Google Scholar 

  99. Xiong H, Yin ZY, Nicot F (2020) Programming a micro-mechanical model of granular materials in Julia. Adv Eng Softw 145:102816

    Article  Google Scholar 

  100. Xiong H, Yin ZY, Nicot F, Wautier A, Marie M, Darve F, Veylon G, Philippe P (2021) A novel multi-scale large deformation approach for modelling of granular collapse. Acta Geotech 16:2371–2388

    Article  Google Scholar 

  101. Xiong H, Yin ZY, Zhao J, Yang Y (2021) Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils. Acta Geotech 16:399–419

    Article  Google Scholar 

  102. Xu WJ, Yao ZG, Luo YT, Dong XY (2020) Study on landslide-induced wave disasters using a 3d coupled sph-dem method. Bull Eng Geol Env 79:467–483

    Article  Google Scholar 

  103. Yang H, Xu WJ, Sun QC, Feng Y (2017) Study on the meso-structure development in direct shear tests of a granular material. Powder Technol 314:129–139

    Article  CAS  Google Scholar 

  104. Zhan L, Peng C, Zhang B, Wu W (2019) A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction. J Fluids Struct 86:329–353

    Article  Google Scholar 

  105. Zhang Y, Chen J, Tan C, Bao Y, Han X, Yan J, Mehmood Q (2021) A novel approach to simulating debris flow runout via a three-dimensional cfd code: a case study of Xiaojia gully. Bull Eng Geol Env 80:5293–5313

    Article  Google Scholar 

  106. Zhou Q, Xu WJ, Dong XY (2022) Sph-dem coupling method based on GPU and its application to the landslide tsunami. part I: method and validation. Acta Geotech 17:2101–2119

    Article  Google Scholar 

  107. Zhu C, Huang Y (2018) SPH-based simulation of flow process of a landslide at Hongao landfill in China. Nat Hazards 93:1113–1126

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52208354, 52090084 and 51938008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debo Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Hao, M., Zhao, D. et al. Study of the dynamics of water-enriched debris flow and its impact on slit-type barriers by a modified SPH–DEM coupling approach. Acta Geotech. 19, 1019–1045 (2024). https://doi.org/10.1007/s11440-023-02106-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02106-w

Keywords

Navigation