Skip to main content
Log in

Application of a SPH depth-integrated model to landslide run-out analysis

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Hazard and risk assessment of landslides with potentially long run-out is becoming more and more important. Numerical tools exploiting different constitutive models, initial data and numerical solution techniques are important for making the expert’s assessment more objective, even though they cannot substitute for the expert’s understanding of the site-specific conditions and the involved processes. This paper presents a depth-integrated model accounting for pore water pressure dissipation and applications both to real events and problems for which analytical solutions exist. The main ingredients are: (i) The mathematical model, which includes pore pressure dissipation as an additional equation. This makes possible to model flowslide problems with a high mobility at the beginning, the landslide mass coming to rest once pore water pressures dissipate. (ii) The rheological models describing basal friction: Bingham, frictional, Voellmy and cohesive-frictional viscous models. (iii) We have implemented simple erosion laws, providing a comparison between the approaches of Egashira, Hungr and Blanc. (iv) We propose a Lagrangian SPH model to discretize the equations, including pore water pressure information associated to the moving SPH nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471

    Article  Google Scholar 

  • Alonso EE, Pinyol NM (2010) Criteria for rapid sliding. I: a review of the Vaiont case. Eng Geol 114:198–210

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  Google Scholar 

  • Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185

    Article  Google Scholar 

  • Blanc T (2008) Numerical simulation of debris flows with the 2D SPH depth-integrated model. Master’s thesis, Institute for Mountain Risk Engineering, University of Natural Resources and Applied Life Sciences, Vienna, Austria

  • Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47:1189–1214

    Article  Google Scholar 

  • Bonet J, Rodríguez Paz MX (2005) A corrected smooth particle hydrodynamics formulation of the shallow-water equations. Comput Struct 83:1396–1410

    Article  Google Scholar 

  • Briukhanov AV, Grigorian SS, Miagkov SM, Plam MYa, Shurova IYa, Eglit ME, Yakimov YuL (1967) On some new approaches to the dynamics of snow avalanches. In: Ôura H (ed) Physics of Snow and Ice, Proc. Intl. Conf. Low Temperature Science, Sapporo, Japan, 1966. Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan. Vol. I, Part 2, pp. 1223–1241

  • Calvetti F, Crosta G, Tatarella M (2000) Numerical simulation of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches. Riv Ital Geotecnica 2000:21–38

    Google Scholar 

  • Cannon SH (1993) An empirical model for the volume-change behaviour of debris flows. In: Shen HW, Su ST, Wen F (eds) Proceedings of Hydraulic Engineering’93, San Francisco. American Society of Civil Engineers, New York, USA. Vol. 2, pp. 1768–1773

  • Carson MA, Kirkby MJ (1972) Hillslope form and process. Cambridge University Press, Cambridge, pp 13–17, 372–377

    Google Scholar 

  • Chen H, Crosta GB, Lee CF (2006) Erosional effects on run-out of fast landslides, debris flows and avalanches: a numerical investigation. Geotechnique 56(5):305–322

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Coussy O (1995) Mechanics of porous media. Wiley, Chichester

    Google Scholar 

  • Crosta GB, Cucchiaro S, Frattini P (2003) Validation of semi-empirical relationships for the definition of debris-flow behaviour in granular materials. In: Rickenmann D, Chen CI (eds) Debris-flow hazards mitigation: mechanics, prediction and assessment. Millpress, Rotterdam, pp 821–831

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2008) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109(1–2):135–145. doi:10.1016/j.enggeo.2008.10.004

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2009) Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J Geophys Res 114, F03020. doi:10.1029/2008JF001186

    Google Scholar 

  • Daouadji A, Hicher P-Y (2010) An enhanced constitutive model for crushable granular materials. Int J Numer Anal Meth Geomech 34:555–580. doi:10.1002/nag.815

    Google Scholar 

  • Dawson RF, Morgenstern NR, Stokes AW (1998) Liquefaction flowslides in Rocky Mountains coal mine waste dumps. Can Geotech J 35:328–343

    Article  Google Scholar 

  • de Boer R (2000) Theory of porous media. Springer, Berlin

    Book  Google Scholar 

  • Egashira S (1993) Mechanism of sediment deposition from debris flow (part 1). J Jpn Soc Erosion Control Eng 46(I), 186: 45–49 (in Japanese)

  • Egashira S, Honda N, Itoh T (2001) Experimental study on the entrainment of bed material into debris flow. Phys Chem Earth (C) 26(9):645–650

    Google Scholar 

  • Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38:982–994

    Article  Google Scholar 

  • Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int J Num Methods Eng 72:295–324. doi:10.1002/nme.2010

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Jt Tech Comm Landslides Eng Slopes Eng Geol 102:85–98

    Google Scholar 

  • Fernández-Merodo JA, Pastor M, Mira P, Tonni L, Herreros MI, Gonzalez E, Tamagnini R (2004) Modelling of diffuse failure mechanisms of catastrophic landslides. Comput Methods Appl Mech Eng 193:2911–2939

    Article  Google Scholar 

  • Gauer P, Issler D (2004) Possible erosion mechanisms in snow avalanches. Ann Glaciol 38:384–392

    Article  Google Scholar 

  • George DL, Iverson RM (2011) A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. Ital J Eng Geol Environ. doi:10.4408/IJEGE.2011-03.B-047

    Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics. Mon Not R Astron Soc 181:375–389

    Article  Google Scholar 

  • Gingold RA, Monaghan JJ (1982) Kernel estimates as a basis for general particle methods in hydrodynamics. J Comput Phys 46:429–453

    Article  Google Scholar 

  • Gray JMNT, Ancey C (2011) Multi-component particle-size segregation in shallow granular avalanches. J Fluid Mech 678:535–588

  • Gray JMNT, Thornton AR (2005) A theory for particle size segregation in shallow granular free-surface flows. Proc R Soc Math Phys Eng Sci 461(2057):1447–1473

    Article  Google Scholar 

  • Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc R Soc Lond 455:1841–1874

    Article  Google Scholar 

  • Guinot V (2003) Godunov-type schemes. An Introduction for Engineers. Elsevier, Amsterdam

    Google Scholar 

  • Hu W, Yin ZY, Dano C, Hicher PY (2012) Numerical study of crushable granular materials. In: Deformation characteristics of Geomaterials: Proceedings of the Fifth International Symposium on Deformation Characteristics of Geomaterials, Is-Seoul 2011, 1–3 September 2011, Seoul, Korea. IOS Press, p. 404

  • Hungr O (1995) A model for the run-out analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  • Hungr O, Evans SG (1988) Engineering evaluation of fragmental rockfall hazards. In: Bonnard (ed), 5th International Symposium on Landslides, Lausanne, Switzerland. A. A. Balkema, vol. 1, pp. 685–690

  • Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Proceedings of the 7th International Symposium on Landslides, Trondheim, Norway, Vol. 17, p. 21

  • Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116(9/10):1240–1252

    Article  Google Scholar 

  • Hungr O, McDougall S, Bovis M (2005) Entrainment of material by debris flows. In: Jakob M, Hungr O (eds) Debris flow hazard and related phenomena, chapter 7. Springer and Praxis, Berlin, pp 135–158

    Chapter  Google Scholar 

  • Hunter G, Fell R (2003) Travel distance angle for rapid landslides in constructed and natural slopes. Can Geotech J 40:1123–1141

    Article  Google Scholar 

  • Hutchinson JN (1986) A sliding-consolidation model for flow slides. Can Geotech J 23:115–126

    Article  Google Scholar 

  • Issler D, Jóhannesson T (2011) Dynamically consistent entrainment and deposition rates in depth-averaged gravity mass flow models. Norwegian Geotechnical Institute, Oslo, Technical Note 20110112-00-1-TN

    Google Scholar 

  • Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res 117, F03006. doi:10.1029/2011JF002189, 17 pp

    Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three dimensional terrain. 1. Coulomb mixture theory. J Geophys Res 106(B1):537–552

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar inhundation hazard zones. Geol Soc Am Bull 110:972–984

    Article  Google Scholar 

  • Iverson NR, Mann JE, Iverson RM (2010) Effects of soil aggregates on debris-flow mobilization: results from ring-shear experiments. Eng Geol 114(1):84–92

    Article  Google Scholar 

  • Jakob M (2005) Debris-flow hazard analysis. In: Jakob M, Hungr O (eds) Debris flow hazard and related phenomena, chapter 17. Springer and Praxis, Berlin

    Google Scholar 

  • Jeyapalan JK, Duncan JM, Seed HB (1983) Investigation of flow failures of tailing dams. J Geotech Eng ASCE 109:172–189

    Article  Google Scholar 

  • Johnson CG, Kokelaar BP, Iverson RM, Logan M, LaHusen RG, Gray JMNT (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res 117. doi:10.1029/2011JF002185, 23 p

  • Kikumoto M, Muir Wood D, Russell AR (2009) Particle crushing and deformation behaviour. Int. Symp. on Prediction and Simulation Methods for Geohazard Mitigation (IS-Kyoto), Kyoto, Japan, 2010, 50(4):547–563

  • King JP (2001a) The Tsing Shan debris flow and debris flood. Landslide study report LSR 2/2001, Geotechnical Engineering Office, Civil Engineering and Development Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China, 216 pages

  • King JP (2001b) The 2000 Tsing Shan Debris Flow and Debris Flood. Landslide study report No. LSR 3/2001, Geotechnical Engineering Office, Civil Engineering and Development Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China, 54 pages

  • Knill SJ, Geotechnical Engineering Office (2006) Report on the Fei Tsui road landslide of 13 August 1995. GEO REPORT no. 188. Geotechnical Engineering Office, Civil Engineering and Development Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China

  • Körner HJ (1976) Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen. Rock Mech 8(4):225–256

    Article  Google Scholar 

  • Lewis RL, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, Hoboken

    Google Scholar 

  • Lied K, Bakkehøi S (1980) Empirical calculations of snow-avalanche run-out distance based on topographic parameters. J Glaciol 26:165–177

  • Lucy LB (1977) A numerical approach to the testing of fusion process. Astron J 82:1013–1024

    Article  Google Scholar 

  • Mangeney A, Heirich P, Roche R (2000) Analytical solution for testing debris avalanche numerical models. Pure Appl Geophys 157:1081–1096

    Article  Google Scholar 

  • Mangeney A, Bouchut F, Thomas N, Vilotte JP, Bristeau MO (2007a) Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J Geophys Res 112, F02017. doi:10.1029/2006JF000469

    Google Scholar 

  • Mangeney A, Tsimring LS, Volfson D, Aranson IS, Bouchut F (2007b) Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys Res Lett 34, L22401

    Article  Google Scholar 

  • Marshall G, Méndez R (1981) Computational aspects of the random choice method for shallow water equations. J Comput Phys 39(1):1–21

    Article  Google Scholar 

  • Maunsell Geotechnical Services Ltd (2007) Detailed study of the 22 August 2005 landslide and distress on the natural hillside above Kwun Ping Road, Kwun Yam Shan, Shatin. Landslide study report LSR 5/2007, Geotechnical Engineering Office, Civil Engineering and Development Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China

  • McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. PhD thesis, University of British Columbia, Vancouver, B.C., Canada, 253 pages

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide run out motion across three dimensional terrain. Can Geotech J 41:1084–1097

    Article  Google Scholar 

  • Monaghan JJ, Cas RF, Kos A, Hallworth M (1999) Gravity currents descending a ramp in a stratified tank. J Fluid Mech 379:36–39

    Article  Google Scholar 

  • Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterw Port Coastal Ocean Eng 129:250–259

  • Norem H, Irgens F, Schieldrop B (1987) A continuum model for calculating avalanche velocities. In: Salm B, Gubler H (eds) Avalanche formation, movements and effects. IAHS Publication no. 162. IAHS, Institute of Hydrology, Wallingford, pp 363–379

    Google Scholar 

  • Norem H, Irgens F, Schieldrop B (1989) Simulation of snow-avalanche flow in run-out zones. Ann Glaciol 13:218–225

    Google Scholar 

  • Pastor M, Quecedo M, Fernández Merodo JA, Herreros MI, Gonzalez E, Mira P (2002) Modelling tailings dams and mine waste dumps failures. Geotechnique 52:579–591

    Article  Google Scholar 

  • Pastor M, Quecedo M, González E, Herreros I, Fernández Merodo JA, Mira P (2004) A simple approximation to bottom friction for Bingham fluid depth integrated models. J Hydraul Eng ASCE 130(2):149–155

    Article  Google Scholar 

  • Pastor M, Fernández Merodo JA, Herreros MI, Mira P, González E, Haddad B, Drempetic V (2008) Mathematical, constitutive and numerical modelling of catastrophic landslides and related phenomena. Rock Mech Rock Eng 41(1):85–132

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009a) A depth-integrated coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33:143–172

    Article  Google Scholar 

  • Pastor M, Blanc T, Pastor MJ (2009b) A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J Non-Newtonian Fluid Mech 158:142–153

    Article  Google Scholar 

  • Pelanti M, Bouchut F, Mangeney A (2008) A Roe-type scheme for two-phase shallow granular flows over variable topography. ESAIM Math Model Numer Anal 42(05):851–885

    Article  Google Scholar 

  • Peraire J, Vahdati M, Morgan K, Zienkiewicz OC (1987) Adaptive remeshing for compressible flow computations. J Comput Phys 72(2):449–466

    Article  Google Scholar 

  • Pinyol NM, Alonso EE (2010) Criteria for rapid sliding. II.: thermo-hydro-mechanical and scale effects in Vaiont case. Eng Geol 114:211–227

    Article  Google Scholar 

  • Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philos Trans A Math Phys Eng Sci 363:1573–1601

    Article  Google Scholar 

  • Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res 117, F03010. doi:10.1029/2011JF002186

    Google Scholar 

  • Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin Heidelberg

  • Quecedo M, Pastor M (2003) Finite element modelling of free surface flows on inclined and curved beds. J Comput Phys 189(1):45–62

    Article  Google Scholar 

  • Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59:1633–1656. doi:10.1002/nme.934

    Article  Google Scholar 

  • Roche O, Montserrat S, Niño Y, Tamburrino A (2008) Experimental observations of water-like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. J Geophys Res 113, B12203. doi:10.1029/2008JB005664

    Article  Google Scholar 

  • Russell AR, Wood DM, Kikumoto M (2009) Crushing of particles in idealised granular assemblies. J Mech Phys Solids 57(8):1293–1313

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to run-out. Part I: analysis. Acta Mech 86:201–223

    Article  Google Scholar 

  • Schneider D, Huggel C, Haeberli W, Kaitna R (2011) Unravelling driving factors for large rock-ice avalanche mobility. Earth Surf Process Landf 36:1948–1966

    Article  Google Scholar 

  • Sosio R, Crosta G, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1–2):11–26

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2011) Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides 9:315–334

    Article  Google Scholar 

  • Sosio R, Crosta GB, Chen JH, Hungr O (2012) Modelling rock avalanche propagation onto glaciers. Quat Sci Rev 47:23–40

    Article  Google Scholar 

  • Taboada A, Estrada N (2009) Rock-and-soil avalanches: theory and simulation. J Geophys Res 114, F03004. doi:10.1029/2008JF001072

    Google Scholar 

  • Takahashi T, Nakagawa H, Harada T, Yamashiki Y (1992) Routing debris flows with particle segregation. J Hydraul Eng 118(11):1490–1507

    Article  Google Scholar 

  • Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley, New York

    Google Scholar 

  • Trujillo L, Herrmann HJ (2003) Hydrodynamic model for particle size segregation in granular media. Phys A Stat Mech Appl 330(3):519–542

    Article  Google Scholar 

  • Vallance JW, SB Savage (2000) Particle segregation in granular flows down chutes. In: Rosato AD, Blackmore DL (eds) Solid mechanics and its applications. IUTAM Symposium on Segregation in Granular Flows. Springer, pp. 31–51

  • Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweiz Bauzeitung 73:159–165, 212–217, 246–249, 280–285

    Google Scholar 

  • Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media: the generalised Biot formulation and its numerical solution. Int J Numer Analytical Methods Geomech 8:71–96

    Article  Google Scholar 

  • Zienkiewicz OC, Chang CT, Bettess P (1980) Drained, undrained, consolidating dynamic behaviour assumptions in soils. Geotechnique 30:385–395

    Article  Google Scholar 

  • Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T (1990a) Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems. Proc R Soc (London) A 429:285–309

    Article  Google Scholar 

  • Zienkiewicz OC, Xie YM, Schrefler BA, Ledesma A, Bicanic N (1990b) Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems. Proc R Soc (London) A 429:311–321

    Article  Google Scholar 

  • Zienkiewicz OC, Chan AHC, Pastor M, Shrefler BA, Shiomi T (2000) Computational geomechanics. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Geotechnical Engineering Office, Civil Engineering and Development Department of the Government of the Hong Kong SAR for providing the digital terrain models for the Hong Kong landslide cases. The financial support of the Spanish MCINN (Project GeoDyn), and the EC-Project SafeLand (FP7 European project “Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies”) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pastor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor, M., Blanc, T., Haddad, B. et al. Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11, 793–812 (2014). https://doi.org/10.1007/s10346-014-0484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0484-y

Keywords

Navigation