Skip to main content
Log in

Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Shallow slope failure in mountainous regions is a common and emergent hazard in terms of its damage to important traffic routes and local communities. The impact of dry granular flows consisting of rock fragments and other particles resulting from shallow slope failures on retaining structures has yet to be systematically researched and is not covered by current design codes. As a preliminary study of the impact caused by dry granular flows, a series of dry granular impact experiments were carried out for one model of a retaining wall. It was indirectly verified that the total normal force exerted on a retaining wall consists of a drag force (F d), a gravitational and frictional force (F gf), and a passive earth force (F p), and that the calculation of F d can be based on the empirical formula defined in NF EN Eurocode 1990 (Eurocode structuraux. Base de calcul des structures, AFNOR La plaine Saint Denis, 2003). It was also indirectly verified that, for flow with Froude number from 6 to 11, the drag coefficient (C d) can be estimated using the previously proposed empirical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Bartelt P, Salm B, Gruber U (1999) Calculating dense snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J Glaciol 45(150):242–254

    Article  Google Scholar 

  • Buchholtz V, Pöschel T (1998) Interaction of a granular stream with an obstacle. Granul Matter 1:33–41

    Article  Google Scholar 

  • Burkalow A (1945) Angle of repose and angle of sliding friction: an experimental study. Geol Soc Am Bull 56(6):669–707

    Article  Google Scholar 

  • Carrigy MA (1970) Experiments on the angles of repose of granular materials. Sedimentology 14:147–158

    Article  Google Scholar 

  • Carstensen JT, Chan P (1976) Relation between particle size and repose angles of powders. Powder Technol 15(1):129–131

    Article  Google Scholar 

  • Fang Y, Ishibashi I (1986) Static earth pressures with various wall movements. J Geotech Eng ASCE 112(3):317–333

    Article  Google Scholar 

  • Favier L, Daudon D, Donze’ FV, Mazars J (2009) Predicting the drag coefficient of a granular flow using the discrete element method. J Stat Mech 06:P06012

    Article  Google Scholar 

  • Gauer P, Issler D, Lied K, Kristensen K, Iwe H, Lied E, Rammer L, Schreiber H (2007) On full-scale avalanche measurements at the Ryggfonn test site, Norway. Cold Reg Sci Technol 49:39–53

    Article  Google Scholar 

  • Gerber W (2001) Guideline for the approval of rockfall protection kits. Swiss Agency for the Environment, Forests and Landscape (SAEFL) and the Swiss Federal Research Institute WSL, Berne

    Google Scholar 

  • Gottardi G, Govoni L (2010) Full-scale modeling of falling rock protection barriers. Rock Mech Rock Eng 43(3):261–274

    Article  Google Scholar 

  • Grasselli Y, Herrmann HJ (1997) On the angles of dry granular heaps. Phys A Stat Theor Phys 246(3–4):301–312

    Article  Google Scholar 

  • Hákonardóttir KM, Hogg AJ, Jóhannesson T, Tómasson GG (2003) A laboratory study of the retarding effects of braking mounds on snow avalanches. J Glaciol 49(165):191–200

    Article  Google Scholar 

  • Handy RL (1985) The arch in soil arching. J Geotech Eng ASCE 111(3):302–318

    Article  Google Scholar 

  • Hauksson S, Pagliardi M, Barbolini M, Jóhannesson T (2007) Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg Sci Technol 49(1):54–63

    Article  Google Scholar 

  • Holzinger G, Hübl J (2004) Belastung eines Murbrechers—Abgeleitet aus Laborversuchen (Impact forces on a debris flow breaker derived from laboratory experiments). In: Mikos M, Gutknecht D Eds. 10. Kongress Interpraevent 2004, 24–27. Mai 2004, Riva del Garda, Trient, vol 3, pp 131–139

  • Huang HP, Yang KC, Lai SW (2007) Impact forces of debris flow on filter dam. Geophys Res Abstr Eur Geosci Un 9:03218

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623

    Article  Google Scholar 

  • Hungr O, Morgan GC, Kellrehals R (1984) Quantitative analysis of debris torrent hazard for design of remedial measures. Can Geotech J 21:663–667

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Google Scholar 

  • Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Phil Trans R Soc Lond A 334:93–138

    Article  Google Scholar 

  • Japan Road Association (2000) Japanese Rockfall Protection Measures Handbook. Japan Road Association

  • Kirsten H (1982) Design and Construction of Kowyon’s Pass rockfall shelter. Trans S Afr Inst Civ Engs 24:477–492

    Google Scholar 

  • Lambe TW, Whitman RV (1979) Soil Mechanics SI Version. Wiley, New York, pp 191–193

    Google Scholar 

  • Lueptow RM, Akonur A, Shinbrot T (2000) PIV for granular flows. Exp Fluids 28(2):183–186

    Article  Google Scholar 

  • Mancarella D, Hungr O (2010) Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers. Can Geotech J 47:827–841

    Article  Google Scholar 

  • Masuya H, Amanuma K, Nishikawa Y, Tsuji T (2009) Basic rockfall simulation with consideration of vegetation and application to protection measure. Nat Hazards Earth Syst Sci 9(6):1835–1843

    Article  Google Scholar 

  • Matsuo M, Kenmochi S, Yagi H (1978) Experimental study on earth pressure of retaining wall by field tests. Soils Found 18(3):27–41

    Article  Google Scholar 

  • McClung DM, Mears AI (1995) Dry-flowing avalanche run-up and run-out. J Glaciol 41(138):359–372

    Google Scholar 

  • Miura K, Maeda K, Toki S (1997) Method of measurement for the angle of repose of sands. Soils Found 37(2):89–96

    Article  Google Scholar 

  • Mizuyama T (1979) Evaluation of debris flow impact on sabo dam and its problems. J Shin-Sabo 112:40–43 (in Japanese)

    Google Scholar 

  • Mizuyama T (2008) Structural countermeasures for debris flow disasters. Int J Eros Control Eng 1(2):38–43

    Google Scholar 

  • Moriguchi S, Borja RI, Yashima A, Sawada K (2009) Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4(1):57–71

    Article  Google Scholar 

  • National Institute for Land and Infrastructure Management in Japan (2007) Manual of Technical Standard for establishing Sabo master plan for debris flow and drift wood. Technical note of National Institute for Land and Infrastructure Management, No. 364 (in Japanese)

  • NF En 1990 (2003) Eurocode structuraux. Base de calcul des structures. AFNOR, La plaine Saint Denis (France)

    Google Scholar 

  • Norem H (1991) Estimating snow avalanche impact pressure on towers. In: Gubler HU (ed.) Proceeding of a workshop on avalanche dynamics, 14–19 May 1990. Mitt. Eidgenöss. Inst. Schnee-Lawinenforsch, vol 48, pp 42–56

  • Norem H, Kvisterøy T, Evensen BD (1985) Measurement of avalanche speed and forces: instrumentation and preliminary results of the Ryggfonn project. Ann Glaciol 6:19–22

    Google Scholar 

  • Peila D, Ronco C (2009) Technical note: design of rockfall net fences and the new ETAG 027 European guideline. Nat Hazards Earth Syst Sci 9(4):1291–1298

    Article  Google Scholar 

  • Peila D, Pelizza S, Sassudelli F (1998) Evaluation of Behaviour of Rockfall Restraining Nets by Full Scale Tests. Rock Mech Rock Eng 31(1):1–24

    Article  Google Scholar 

  • Pudasaini SP (2003) Dynamics of flow avalanches over curved and twisted channels, theory, numerics and experimental validation. PhD dissertation, Darmstadt University of Technology, Germany

  • Pudasaini SP, Hutter K (2007) Avalanche Dynamics Dynamics of Rapid Flows of Dense Granular Avalanches. Springer Science + Business Media Deutschland GmbH, Berlin

    Google Scholar 

  • Pudasaini SP, Hsiau S-S, Wang Y, Hutter K (2005) Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys Fluids 17(9):093301

    Article  Google Scholar 

  • Pudasaini SP, Hutter K, Hsiau S-S, Tai S-C, Wang Y, Katzenbach R (2007) Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys Fluids 19(5):053302

    Article  Google Scholar 

  • Rankine W (1857) On the stability of loose earth. Philos Trans R Soc London Ser A 147:9–27

    Article  Google Scholar 

  • Robert BH, Steven FD (2004) Maximum impact force of woody debris on floodplain structures. J Hydr Eng 130(2):112–120

    Article  Google Scholar 

  • Savage SB (1984) The mechanics of rapid granular flows. Adv Appl Mech 24:289–366

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Shieh CL, Ting CH, Pan HW (2008) Impulsive force of debris flow on a curved dam. Int J Sediment Res 23(2):149–158

    Article  Google Scholar 

  • Sovilla B, Schaer M, Rammer L (2007) Measurements and analysis of full-scale avalanche impact pressure at Vallée de la Sionne test site. Cold Reg Sci Technol 51(2–3):122–137

    Google Scholar 

  • Spadari M, Giacomini A, Buzzi O, Hambleton JP (2011) Prediction of the bullet effect for rockfall barriers: a scaling approach. Rock Mech Rock Eng (Article in press but available on-line)

  • Takahashi T (1981) Debris flow. Annu Rev Fluid Mech 13(1):57–77

    Article  Google Scholar 

  • Takahashi T (2007) Debris flow: mechanics, prediction and countermeasures. Taylor & Francis, London

    Book  Google Scholar 

  • Takahasi K (1937) On the dynamical properties of granular mass. Geophys Mag 11:165–175

    Google Scholar 

  • Taylor DW (1948) Fundamentals of soil mechanics, Wiley, pp 347–348

  • Terzaghi K (1943) Theoretical Soil Mechanics, John Wiley & Sons, pp. 4-5

  • Teufelsbauer H, Wang Y, Chlou MC, Wu W (2009) Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul Matter 11(4):209–220

    Article  Google Scholar 

  • Thibert E, Baroudi D, Limam A, Berthet-Rambaud P (2008) Avalanche impact pressure on an instrumented structure. Cold Reg Sci Technol 54(3):206–215

    Article  Google Scholar 

  • Tsagareli ZV (1965) Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface. J Soil Mech Found Eng ASCE 91(4):197–200

    Article  Google Scholar 

  • Valentino R, Barla G, Montrasio L (2008) Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech Rock Eng 41(1):153–177

    Article  Google Scholar 

  • Yoshida H (1999) Recent experimental studies on rockfall control. In: Masuya P, Labiouse V (eds) Proceedings of Joint Japan–Swiss Scientific Seminar on impact load by falling rocks and design of protection structures, Kanazawa (Japan), pp 69–78

  • Zanuttigh B, Lamberti A (2006) Experimental analysis of the impact of dry avalanches on structures and implication for debris flows. J Hydraul Res 44(4):522–534

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to the Ministry of Education, Science, Sports, and Culture, Government of Japan (MEXT) for their financial support (no. 083154). Many thanks also to the Chinese National and Technology Support Program (no. 2011BAK12B01) for its support during the completion of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Jun Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, YJ., Towhata, I. Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall. Rock Mech Rock Eng 46, 713–729 (2013). https://doi.org/10.1007/s00603-012-0293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-012-0293-3

Keywords

Navigation