Skip to main content
Log in

DEM simulation of impact force exerted by granular flow on rigid structures

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The paper presents a DEM model for simulating dry granular avalanche down an incline. Flow pattern and impact forces on rigid obstacles are considered. Results of the simulations are compared with experimental data reported in the literature. The experiments include granular flow along an inclined channel and three-dimensional free surface flow on an inclined chute merging into a horizontal run-out region. The introduction of the rotation constraint allows realistic description of the flow behavior. Parametric studies are carried out to show the effect of model parameters on granular flow, including the run-out distance, deposition pattern, flow pattern, and impact forces against an obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bharadwaj R, Wassgren C, Zenit R (2006) The unsteady drag force on a cylinder immersed in a dilute granular flow. Phys Fluids 16:1511–1517

    Google Scholar 

  2. Chiou MC (2005) Modelling dry granular avalanches past different obstructs: numerical simulations and laboratory analyses. Dissertation, Technical University Darmstadt, Germany

  3. Cundall PA, Strack ODL (1979) A distinct element model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  4. Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25(3):107–116

    Google Scholar 

  5. Hákonardóttir KM, Hogg AJ, Jóhannesson T, Tómasson GG (2003) A laboratory study of the retarding effects of braking mounds on snow avalanches. J Glaciol 49(165):191–200

    Article  Google Scholar 

  6. Hákonardóttir KM (2004) The interaction between snow avalanches and dams. PhD thesis, University of Bristol, School of Mathematics

  7. Hákonardóttir KM, Hogg AJ (2005) Oblique shocks in rapid granular flows. Phys Fluids 17:077101. doi:10.1063/1.1950688

    Article  MathSciNet  Google Scholar 

  8. Hutter K, Wang Y, Pudasaini SP (2005) The Savage-Hutter avalanche model: how far can it be pushed? Philos Transact A Math Phys Eng Sci 363:1507–1528

    Article  MathSciNet  MATH  Google Scholar 

  9. Itasca Consulting Group, Inc. (2003) “PFC3D (Particle flow code in 3D) theory and background manual”, Version 3.0, ICG, Minneapolis

  10. Jóhannesson T (2001) Run-up of two avalanches on the deflecting dams at Flateyri, northwestern Iceland. Ann Glaciol 32:350–354

    Article  Google Scholar 

  11. Khan KM, Bushell G (2005) Comment on ‘‘Rolling friction in the dynamic simulation of sandpile formation’’. Physica A 352:522–524

    Article  Google Scholar 

  12. Kruggel-Emden H, Simsek E, Rickelt S, Wirtz S, Scherer V (2007) Review and extension of normal force models for the discrete element method. Powder Technol 171:157–173

    Article  Google Scholar 

  13. Labra C, Rojek J, Oñate E, Zarate F (2008) Advances in discrete element modelling of underground excavations. Acta Geotech 3:317–322

    Article  Google Scholar 

  14. Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20:327–344

    MathSciNet  MATH  Google Scholar 

  15. Montrasio L, Valentino R (2004) Experimental and numerical analysis of impact forces on structures due to a granular flow. Manag Inf Syst 9:267–276

    Google Scholar 

  16. Moriguchi S, Borja RI, Yashima A, Sawada K (2009) Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4(1):57–71

    Article  Google Scholar 

  17. Muir Wood D, Maeda K (2008) Changing grading of soil: effect on critical states. Acta Geotech 3:3–14

    Article  Google Scholar 

  18. Nicot F (2004) Constitutive modelling of snow as a cohesive-granular material. Granular Matter 6:47–60

    Article  MATH  Google Scholar 

  19. Pitman EB, de Long LE (2005) A two-fluid model for avalanche and debris flows. Philos Transact A Math Phys Eng Sci 363:1573–1601

    Article  MATH  Google Scholar 

  20. Pudasaini SP, Hsiau S, Wang Y, Hutter K (2005) Velocity measurements in dry granular avalanches using particle image velocimetry-technique and comparison with theoretical predictions. Phys Fluids 17(9)

  21. Pudasaini SP, Hutter K, Hsiau S, Tai S, Wang Y, Katzenbach R (2007) Rapid flow of dry granular materials down inclined Chutes impinging on rigid walls. Phys Fluids 19(5)

  22. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin

  23. Pudasaini SP, Kroener C (2008) Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Phys Rev E 78(4)

  24. Sampl P, Zwinger T (2004) Avalanche simulation with Samos. Ann Glaciol 38:393–398

    Article  Google Scholar 

  25. Schwager T, Pöschel T (2007) Coefficient of restitution and linear–dashpot model revisited. Granular Matter 9:465–469

    Article  Google Scholar 

  26. Schwager T, Pöschel T (2007) Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery. arXiv:07081434

  27. Sibille L, Donzé F-V, Nicot F, Chareyre B, Darve F (2008) From bifurcation to failure in a granular material: a DEM analysis. Acta Geotech 3:15–24

    Article  Google Scholar 

  28. Stevens AB, Hrenya CM (2005) Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Techn 154:99–109

    Article  Google Scholar 

  29. Teufelsbauer H, Wang Y, Chiou M-C, Wu W (2009) Flow-obstacle-interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granular Matter 11(4), 209–220. doi:10.1007/s10035-009-0142-6

    Google Scholar 

  30. Thompson N, Bennett MR, Petford N (2009) Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: implications for large-scale rock and debris avalanches. Acta Geotech 4:233–247

    Article  Google Scholar 

  31. Wu C, Li L, Thornton C (2003) Rebound behaviour of spheres for plastic impacts. Int J Impact Eng 28:929–946

    Article  Google Scholar 

  32. Zhang J, Hu Z, Ge W, Zhang Y, Li T, Li J (2004) Application of the discrete approach to the simulation of size segregation in granular chute flow. Ind Eng Chem Res 43:5521–5528

    Article  Google Scholar 

  33. Zhou YC, Wright BD, Yang RY, Xu BH, Yu AB (1999) Rolling friction in the dynamic simulation of sandpile formation. Physica A 269:536–553

    Article  Google Scholar 

  34. Zwinger T (2000) Dynamik einer Trockenschneelawine auf beliebig geformten Berghängen. PhD Thesis, Vienna University of Technology

Download references

Acknowledgment

The authors are grateful to the Austrian Science Fund (FWF) for the grant L351: Numerical modelling of innovative protection against snow avalanches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teufelsbauer, H., Wang, Y., Pudasaini, S.P. et al. DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech. 6, 119–133 (2011). https://doi.org/10.1007/s11440-011-0140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-011-0140-9

Keywords

Navigation