Skip to main content
Log in

Estimating the impact force generated by granular flow on a rigid obstruction

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Flowing sediments such as debris and liquefied soils could exert a tremendous amount of force as they impact objects along their paths. The total impact force generally varies with slope angle, velocity at impact, and thickness of the flowing sediment. Estimation of the impact force of flowing sediments against protective measures such as earth retaining structures is an important factor for risk assessment. In this paper, we conduct small-scale laboratory physical modeling of sand flow at different slopes and measure the impact force exerted by this material on a fixed rigid wall. We also conduct numerical simulations in the Eulerian framework using computational fluid dynamics algorithms to analyze and reproduce the laboratory test results. The numerical simulations take into consideration the overtopping of the wall with sand, which influenced the measured impact force–time history responses. In addition, the numerical simulations are shown to capture accurately the change of the impact force with slope angle. Finally, the modeling approach conducted in this study is used to estimate the quasi-static force generated by the sediment as it comes to rest on the wall following impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Abe K, Johasson J, Konagai K (2007) A new method for the run-out analysis and motion prediction of rapid and long-traveling landslide with MPM. J Jpn Soc Civil Eng Div C 63:93–109 (in Japanese)

    Google Scholar 

  2. Armanini A, Scotton P (1992) Experimental analysis on dynamic impact of a debris flow on structure. In: Sixth INTERPRAEVENT, vol 6

  3. Armanini A (1997) On the dynamic impact of debris flows, recent developments on debris flows, book series on lecture notes in earth sciences. Springer, Berlin, vol 64, pp 208–226

  4. Aulitzky H (1990) Vorlaufige Studienblatter zu der Vorlesung Widbachu.Lawinenverbauug, Einverlag des Inst. fiir Wildbachu.Lawinenverbau, Universitat für Bodenkultur, Wien, Nr.2.6/12a 2.6/31

  5. Borja RI (2006) Conditions for instabilities in collapsible solids including volume implosion and compaction banding. Acta Geotech 1:107–122

    Article  Google Scholar 

  6. Borja RI (2006) Condition for liquefaction instability in fluid-saturated granular soils. Acta Geotech 1:211–224

    Article  Google Scholar 

  7. Borja RI (2009) Foundation engineering lecture notes. Stanford University, Stanford

    Google Scholar 

  8. Chen H, Lee CF (2000) Numerical simulation of debris flow. Can Geotech J 37:146–160

    Article  Google Scholar 

  9. Dent JD, Lang TE (1983) A biviscous modified Bingham model of snow avalanche motion. Ann Glaciol 4:42–46

    Google Scholar 

  10. Dragoni M, Bonafede M, Boschi E (1986) Downslope flow models of a Bingham liquid: implications for lava flows. J Volcanol Geotherm Res 30:305–325

    Article  Google Scholar 

  11. Hirt C, Nichols B (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  12. Hungr O (1985) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  13. Hutchinson JN (1986) A sliding-consolidation model for flow slides. Can Geotech J 23:115–126

    Article  Google Scholar 

  14. Johnson AM (1984) Debris flow. In: Brunsden B, Prior DB (eds) Slope Instability. Wiley, Chichester, pp 257–361

    Google Scholar 

  15. Kaitna R, Rickenmann D, Schatzmann M (2007) Experimental study on rheologic behaviour of debris flow material. Acta Geotech 2:71–85

    Article  Google Scholar 

  16. Koerner HJ (1976) Reichweite und Geschwindigkeit von Bergsturzen und Fleisschneelawinen. Rock Mech 8:225–256

    Article  Google Scholar 

  17. Kusumoto T, Nakase Y, Fujimoto M, Nakai S (2006) A study of landslide reaching distance in case analysis by statistical method. J Japanese Landslide Soc 43:1–8 (in Japanese)

    Article  Google Scholar 

  18. Lichtenhahn C (1973) Die Bereclmung von Sperren in Beton und Eisenbeton, Kolloquium on Torrent Dams ODC 384.3. Mitteiltmgea der Forstlichen Bundes-Versuchsanstalt, pp 91–127

  19. McDougall S, Hunger O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097

    Article  Google Scholar 

  20. Mizuyama T (1979) Estimation of impact force on dam due to debris flow and its problems. J Jpn Soc Eros Control Eng 112:40–43 (in Japanese)

    Google Scholar 

  21. Mori H, Tanigawa Y (1987) Simulation of flow behavior of fresh concrete by visco-plastic finite element analysis. J Archit Inst Jpn 374:1–9

    Google Scholar 

  22. Moriguchi S, Yashima A, Sawada K, Uzuoka R, Ito M (2005) Numerical simulation of flow failure of geomaterials based on fluid dynamics. Soils Found 45:155–166

    Google Scholar 

  23. Moriwaki H (1987) A prediction of the runout distance of a debris flow. J Japanese Landslide Soc 24:10–16 (in Japanese)

    Google Scholar 

  24. Osher S, Sethian J (1988) Fronts propagating with curvature dependent speed, algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  25. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin

    Google Scholar 

  26. Pudasaini SP, Hutter K, Hsiau S-S, Tai S-C, Wang Y, Katzenbach, R (2007) Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys Fluids 19:053302

    Article  Google Scholar 

  27. Pudasaini SP, Kroner C (2008) Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Phys Rev E 78:041308

    Article  Google Scholar 

  28. Sassa K (1987) Prediction of landslide movement. Annuals. Disaster Prevention Research Institute, Kyoto University, vol 30(B-1), pp 341–357 (in Japanese)

  29. Soussa J, Voight B (1991) Continuum simulation of flow failures. Geotechnique 41:515–538

    Article  Google Scholar 

  30. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  MATH  MathSciNet  Google Scholar 

  31. Scheideger AE (1973) On the prediction of the research and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  32. Takahashi T, Tsujimoto H (1984) Numerical simulation of flooding and deposition of a debris flow, Annuals. Disaster Prevention Research Institute, Kyoto University, vol 27(B-2), pp 467–485 (in Japanese)

  33. Tryggvason G, Bunner BB, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ (2001) A front-tracking method for the computations of multiphase flow. J Comput Phy 169:708–759

    Article  MATH  Google Scholar 

  34. Xiao F, Honma Y, Kono T (2005) A simple algebraic interface capturing scheme using hyperbolic tangent function. Int J Numer Methods Fluids 48:1023–1040

    Article  MATH  Google Scholar 

  35. Yabe T, Aoki T (1991) A universal solver for hyperbolic equations by cubic polynomial interpolation. Comput Phys Commun 66:219–232

    Article  MATH  MathSciNet  Google Scholar 

  36. Yabe T, Xiao F (1993) Description of complex and sharp interface during shock wave interaction with liquid drop. J Phys Soc Jpn 62:2537–2540

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the US National Science Foundation under Contract Number CMMI-0824440 and the US Department of Energy under Contract Number DE-FG02-03ER15454 to Stanford University. We thank the two reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo I. Borja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriguchi, S., Borja, R.I., Yashima, A. et al. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 4, 57–71 (2009). https://doi.org/10.1007/s11440-009-0084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-009-0084-5

Keywords

Navigation