Skip to main content
Log in

From leaf explants to hanging rooted plantlets in a mist reactor

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A mist bioreactor using a disposable bag as a culture chamber was used to propagate single nodal explants of Artemisia annua into rooted plantlets that were ready for soil using a single batch (one-step) culture. To vertically scale plant growth inside the mist reactor, poly-l-lysine (PLL)-coated 70 µm nylon mesh and solid polypropylene sheeting were used for explant attachment. Both manually chopped and blender-chopped (blenderized) shoot tissues were attached to PLL-coated substrates. Compared to blenderized shoots, manually chopped tissues were larger with better attachment to PLL-coated substrates. Regardless of substrates or explant preparation method, 80–95 % of initially attached shoot tissues remained attached to PLL-coated surfaces after being misted with culture medium for 24 h. New shoot proliferation increased about tenfold as the size of blenderized shoot tissue increased. To reduce callusing during shoot proliferation and thus stimulate root initiation, original shooting medium was reduced to half strength of phytohormone and Murashige and Skoog salts. The duration of shoot proliferation was also reduced from 2 to 1 week. Original rooting medium was then further improved with NAA or IBA. After successive shooting, rooting and in vitro acclimatization, the nodal explants attached to PLL-coated hanging strips and developed into fully rooted plantlets in the mist reactor. Although most of the large rooted plantlets detached from the hanging strips by the time of harvest, they had fully functional stomata and were later successfully established in the soil, suggesting this “hanging garden” technology may prove useful for micropropagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adelberg J (2006) Agitated, thin-films of liquid media for efficient micropropagation. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering, vol 6. Focus on biotechnology. Springer, Netherlands, pp 101–117

    Google Scholar 

  • Adelberg J, Fári MG (2010) Applied physiology and practical bioreactors for plant propagation. Propag Ornam Plants 10:205–219

    Google Scholar 

  • Afreen F (2006) Temporary immersion bioreactor-engineering considerations and applications in plant micropropagation. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering, vol 6. Focus on biotechnology. Springer, Heidelberg, pp 187–201

    Google Scholar 

  • Alam P, Abdin MZ (2011) Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep 30:1919–1928. doi:10.1007/s00299-011-1099-6

    Article  CAS  PubMed  Google Scholar 

  • Alister BM, Finnie J, Watt MP, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi forests (SA). In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 425–442

    Chapter  Google Scholar 

  • Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 165–195

    Chapter  Google Scholar 

  • Correll MJ, Wu Y, Weathers PJ (2001) Controlling hyperhydration of carnations (Dianthus caryophyllus L.) grown in a mist reactor. Biotechnol Bioeng 71:307–314. doi:10.1002/1097-0290(2000)71:4<307:AID-BIT1019>3.0.CO;2-9

    Article  CAS  Google Scholar 

  • Davis HE, Rosinski M, Morgan JR, Yarmush ML (2004) Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J 86:1234–1242. doi:10.1016/S0006-3495(04)74197-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dewir Y, Indoliya Y, Chakrabarty D, Paek K-Y (2014) Biochemical and physiological aspects of hyperhydricity in liquid culture system. In: Paek K-Y, Murthy HN, Zhong J-J (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, Netherlands, pp 693–709

    Google Scholar 

  • Dicosmo F, Facchini PJ, Neumann AW (1989) Plant cell adhesion to polymer surfaces as predicted by a thermodynamic model and modified by electrostatic interaction. Colloids Surf 42:255–269. doi:10.1016/0166-6622(89)80195-7

    Article  CAS  Google Scholar 

  • Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372

    Article  Google Scholar 

  • Facchini P, DiCosmo F, Radvanyi L, Giguere Y (1988a) Adhesion of Catharanthus roseus cells to surfaces: effect of substrate hydrophobicity. Biotechnol Bioeng 32:935–938. doi:10.1002/bit.260320716

    Article  CAS  PubMed  Google Scholar 

  • Facchini P, Neumann A, DiCosmo F (1988b) Thermodynamic aspects of plant cell adhesion to polymer surfaces. Appl Microbiol Biotechnol 29:346–355. doi:10.1007/BF00265818

    Article  CAS  Google Scholar 

  • Facchini PJ, Wilhelm Neumann A, DiCosmo F (1989) Adhesion of suspension-cultured Catharanthus roseus cells to surfaces: effect of pH, ionic strength, and cation valency. Biomaterials 10:318–324. doi:10.1016/0142-9612(89)90072-0

    Article  CAS  PubMed  Google Scholar 

  • Fei L, Weathers P (2014) From cells to embryos to rooted plantlets in a mist bioreactor. Plant Cell, Tissue Organ Cult 116:37–46. doi:10.1007/s11240-013-0380-5

    Article  CAS  Google Scholar 

  • Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. doi:10.1002/elsc.201300166

    Article  CAS  Google Scholar 

  • González E (2005) Mass propagation of tropical crops in temporary immersion systems. In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 197–211

    Chapter  Google Scholar 

  • Gopinath B, Gandhi K, Saravanan S (2014) In vitro propagation of an important medicinal plant Artemisia annua L. from axillary bud explants. Adv Appl Sci Res 5:254–258

    Google Scholar 

  • Hahn EJ, Paek KY (2005) Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 143–153

    Chapter  Google Scholar 

  • Hailu T, Abera B, Mariam G (2014) In vitro mass propagation of Artemisia (Artemisia annua L.) cv: anamed. Plant Tissue Cult Biotechnol 23:165–176. doi:10.3329/ptcb.v23i2.17518

    Article  Google Scholar 

  • Han J, Wang H, Ye H, Liu Y, Li Z, Zhang Y, Zhang Y, Yan F, Li G (2005) High efficiency of genetic transformation and regeneration of Artemisia annua L. via Agrobacterium tumefaciens-mediated procedure. Plant Sci 168:73–80. doi:10.1016/j.plantsci.2004.07.020

    Article  CAS  Google Scholar 

  • Hong G, Hu W, Li J, Chen X, Wang L (2009) Increased accumulation of artemisinin and anthocyanins in Artemisia annua expressing the Arabidopsis blue light receptor CRY1. Plant Mol Biol Rep 27:334–341. doi:10.1007/s11105-008-0088-6

    Article  CAS  Google Scholar 

  • Huang TK, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30:398–409. doi:10.1016/j.biotechadv.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  • Jamaleddine Z, Lyam P, Fajimi O, Giwa A, Aina A, Lawyer E, Okere A, Odofin W (2013) In vitro growth response of Artemisia annua seeds to different concentrations of plant growth regulators. Afr J Biotechnol 10:17841–17844. doi:10.5897/AJB10.1289

    Google Scholar 

  • Janarthanam B, Rashmi P, Sumathi E (2012) Rapid and efficient plant regeneration from nodal explants of Artemisia annua L. Plant Tissue Cult Biotechnol 22:33–39. doi:10.3329/ptcb.v22i1.11257

    Article  Google Scholar 

  • Jarvis BC (1986) Endogenous control of adventitious rooting in non-woody cuttings. In: Jackson M (ed) New root formation in plants and cuttings, vol 20. Developments in Plant and Soil Sciences. Springer, Netherlands, pp 191–222

    Chapter  Google Scholar 

  • Lane WD (1979) Regeneration of pear plants from shoot meristem-tips. Plant Sci Lett 16:337–342. doi:10.1016/0304-4211(79)90046-4

    Article  CAS  Google Scholar 

  • Lin X, Zhou Y, Zhang J, Lu X, Zhang F, Shen Q, Wu S, Chen Y, Wang T, Tang K (2011) Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Biotechnol Appl Biochem 58:50–57. doi:10.1002/bab.13

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo J, González B, Escalona M, Teisson C, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell, Tissue Organ Cult 54:197–200. doi:10.1023/a:1006168700556

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nguyen K, Towler M, Weathers P (2013) The effect of roots and media constituents on trichomes and artemisinin production in Artemisia annua L. Plant Cell Rep 32:207–218. doi:10.1007/s00299-012-1355-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roels S, Escalona M, Cejas I, Noceda C, Rodriguez R, Canal MJ, Sandoval J, Debergh P (2005) Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell, Tissue Organ Cult 82:57–66. doi:10.1007/s11240-004-6746-y

    Article  CAS  Google Scholar 

  • Roels S, Noceda C, Escalona M, Sandoval J, Canal MJ, Rodriguez R, Debergh P (2006) The effect of headspace renewal in a temporary immersion bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell, Tissue Organ Cult 84:155–163. doi:10.1007/s11240-005-9013-y

    Article  Google Scholar 

  • Ruffoni B, Pistelli L, Bertoli A, Pistelli L (2010) Plant cell cultures: bioreactors for industrial production. In: Giardi M, Rea G, Berra B (eds) Bio-farms for nutraceuticals, vol 698. Advances in experimental medicine and biology. Springer, US, pp 203–221

    Chapter  Google Scholar 

  • Sharma G, Agrawal V (2013) Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol 29:1133–1138. doi:10.1007/s11274-013-1263-y

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Shetty S (2011) Impact of tissue culture on agriculture in India. Biotechnol Bioinform Bioeng 1:279–288

    Google Scholar 

  • Steingroewer J, Bley T, Georgiev V, Ivanov I, Lenk F, Marchev A, Pavlov A (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13:26–38. doi:10.1002/elsc.201100226

    Article  CAS  Google Scholar 

  • Sudha CG, George M, Rameshkumar KB, Nair GM (2012) Improved clonal propagation of Alpinia calcarata Rosc., a commercially important medicinal plant and evaluation of chemical fidelity through comparison of volatile compounds. Am J Plant Sci 3:930. doi:10.4236/ajps.2012.37110

    Article  CAS  Google Scholar 

  • Takayama S, Akita M (2006) Bioengineering aspects of bioreactor application in plant propagation. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering, vol 6. Focus on biotechnology. Springer, Netherlands, pp 83–100

    Google Scholar 

  • Towler MJ, Weathers PJ (2003) Adhesion of plant roots to poly-l-lysine coated polypropylene substrates. J Biotechnol 101:147–155. doi:10.1016/S0168-1656(02)00319-X

    Article  CAS  PubMed  Google Scholar 

  • Tyler RT, Kurz WGW, Paiva NL, Chavadej S (1995) Bioreactors for surface-immobilized cells. Plant Cell, Tissue Organ Cult 42:81–90. doi:10.1007/BF00037685

    Article  CAS  Google Scholar 

  • Watt MP (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol 11:14025–14035. doi:10.5897/AJB12.1693

    CAS  Google Scholar 

  • Weathers PJ, Towler MJ (2012) The flavonoids casticin and artemetin are poorly extracted and are unstable in an Artemisia annua tea infusion. Planta Med 78:1024–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weathers PJ, Towler MJ, Xu JF (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351. doi:10.1007/s00253-009-2354-4

    Article  CAS  PubMed  Google Scholar 

  • Welander M, Persson J, Asp H, Zhu LH (2014) Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci Hortic 179:227–232. doi:10.1016/j.scienta.2014.09.035

    Article  CAS  Google Scholar 

  • Wilken D, Gonzalez EJ, Gerth A, Gómez-Kosky R, Schumann A, Claus D (2014) Effect of immersion systems, lighting, and TIS designs on biomass increase in micropropagating banana (Musa spp. cv’.Grande naine’AAA). In Vitro Cell Dev Biol Plant 50:582–589. doi:10.1007/s11627-014-9605-5

    Article  CAS  Google Scholar 

  • Yan H, Liang C, Li Y (2010) Improved growth and quality of Siraitia grosvenorii plantlets using a temporary immersion system. Plant Cell, Tissue Organ Cult 103:131–135. doi:10.1007/s11240-010-9752-2

    Article  Google Scholar 

  • Yan H, Yang L, Li Y (2013) Improved growth and quality of Dioscorea fordii Prain et Burk and Dioscorea alata plantlets using a temporary immersion system. Afr J Biotechnol 10:19444–19448. doi:10.5897/AJB11.2684

    Google Scholar 

  • Yang SH, Yeh DM (2008) In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid medium and temporary immersion systems. Plant Cell, Tissue Organ Cult 93:201–207. doi:10.1007/s11240-008-9363-3

    Article  CAS  Google Scholar 

  • Yang J, Piao X, Sun D, Lian M (2010) Production of protocorm-like bodies with bioreactor and regeneration in vitro of Oncidium‘Sugar Sweet’. Sci Hortic 125:712–717. doi:10.1016/j.scienta.2010.05.003

    Article  CAS  Google Scholar 

  • Zia M, Rehman R, Chaudhary MF (2007) Hormonal regulation for callogenesis and organogenesis of Artemisia absinthium L. Afr J Biotechnol 6:1874–1878. doi:10.5897/AJB2007.000-2281

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank WPI for supporting L Fei and to the Society for In Vitro Biology for travel awards to L Fei. Advice from Dr. Melissa Towler, and Profs. Elizabeth Ryder and Samuel Politz of the Department of Biology and Biotechnology at WPI was also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Weathers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, L., Weathers, P. From leaf explants to hanging rooted plantlets in a mist reactor. Plant Cell Tiss Organ Cult 124, 265–274 (2016). https://doi.org/10.1007/s11240-015-0890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0890-4

Keywords

Navigation