Skip to main content
Log in

Detection of benzylpenicillin sodium and ampicillin residue based on flower-like silver nanostructures using surface-enhanced Raman spectroscopy

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The capability to evaluate antibiotic residues in a sensitive, rapid, and reliable manner, is of great importance. Surface-enhanced Raman spectroscopy (SERS) is the phenomenon related to rough surface, which is used to effectively detect residual antibiotics in food. In this work, SERS strategy was used for the determination of antibiotic Benzylpenicillin sodium (NaBP) and Ampicillin (AMP) in the milk based on flower-like Ag nanoparticles, synthesized at 25 °C. A liner correlation was twigged between the SERS signal and the concentration for NaBP and AMP, with regression coefficient of 0.997 and 0.987. The limit of detection of NaBP and AMP residue based on this SERS-based detection, can be as low as 6.3 × 10–9 mol L−1 and 9.2 × 10–10 mol L−1, respectively. The presented method can be used for the determination of NaBP and AMP residue in milk. The recovery is 83–95% and 80–96%, and the relative standard deviation is 4.7–8.5% and 5.3–15.1%, respectively, which could be a simple method for the determination of antibiotic residues in animal derived food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.M. Zhao, Z.X. Liu, G.J. Zhao, L.S. Feng, World. notes. antibiotics 39, (2018)

  2. D.V.R. Venugopal, A.K. Rao, P.U. Devi, Y.N. Sastry, K.A. Lakshmi, M.T. Ramji, Y. Shiralgi, Res. Chem. Intermed. 43, 5755 (2017)

    Article  CAS  Google Scholar 

  3. M.H. Mahmoudian, M. Fazlzadeh, M.H. Niari, A. Azari, E.C. Lima, Arab. J. Chem 13(9), 7147 (2020)

    Article  CAS  Google Scholar 

  4. X. Jiang, X.Y. Qin, D. Yin, M.D. Gong, L.B. Yang, B. Zhao, W.D. Ruan, Spec. Acta. A 140(1), 465 (2015)

    Google Scholar 

  5. W.J. Guo, A. Umar, M.A. Alsaiari, L.Y. Wang, M.S. Pei, Microchem. J. 158, 105270 (2018)

    Article  Google Scholar 

  6. A. Pennacchio, A. Varriale, A. Scala, V.M. Marzullo, M. Staiano, S.D. Auria, Food Chem. 190, 381 (2016)

    Article  CAS  Google Scholar 

  7. Q. Zhao, G.Y. Zhang, D. Lu, K.J. Feng, X.B. Shi, Microchem. J. 164(11–12), 106082 (2021)

    Article  CAS  Google Scholar 

  8. T. Yan, Y.X. Feng, X. Ren, J.K. Li, Y.Z. Lu, M. Sun, L.G. Yan, Q. Wei, H.X. Ju, J. Materiomics 7(1), 1 (2021)

    Article  Google Scholar 

  9. L.X. Li, C. Guo, L. Ai, C. Dou, G. Wang, H.W. Sun, J. Dairy, Sci. 97(7), 4052 (2014)

    CAS  Google Scholar 

  10. A.Z. Yang, X.L. Li, J. Xi’an, Med. Univ. 20, 377 (1999)

    Google Scholar 

  11. C.N. Cha, E.A. Yu, M.J. Shin, E.K. Park, H. Choi, S. Kim, H.J. Lee, J. Food. Hyg. Saf 28(3), 213 (2013)

    Article  Google Scholar 

  12. P. Thavarungkul, S. Dawan, P. Kanatharana, P. Asawatreratanakul, Biosens. Bioelectron 23(5), 688 (2007)

    Article  CAS  Google Scholar 

  13. J. Chen, Anhui. Agri. Sci. Bull 14, 24 (2008)

    CAS  Google Scholar 

  14. T. Miura, H. Kouno, T. Kitagawa, J. pharmacobio-dynamics 4(9), 706 (1981)

    Article  CAS  Google Scholar 

  15. Announcement of the Ministry of Agriculture 2006:781.

  16. E. Karageorgou, S. Christoforidou, M. Ioannidou, E. Psomas, G. Samouris, Foods 7(6), 82 (2018)

    Article  Google Scholar 

  17. C. Kress, E. Schneider, E. Usleber, Small. Rumin. Res. 96(2–3), 160 (2011)

    Article  Google Scholar 

  18. S. Das, N. Kumar, R.H. Vishweswaraiah, J. Food. Sci. Technol 51(6), 1161 (2014)

    Article  CAS  Google Scholar 

  19. K. Hady, R. Salam, G. Hadad, E. Hameed, J. Iran. Chem. Soc. 18, 1 (2020)

    Google Scholar 

  20. D. Canzani, K. Hsieh, K. Standland, W. Hammack, F. Aldeek, J. Chromatogr. B 1044–1045, 87 (2017)

    Article  Google Scholar 

  21. X. Lin, Dissertation, Harbin Institute of Technology, (2016)

  22. M.A. El-Aal, T. Seto, Res. Chem. Intermed. 46, 3741 (2020)

    Article  Google Scholar 

  23. L. Zhang, W.B. Miu, J. Yao, L. Sun, B. Yu, Res. Chem. Intermed. 44, 3365 (2018)

    Article  CAS  Google Scholar 

  24. X.H. Xie, H.B. Pu, D.W. Sun, Crit. Rev. Food. Sci. Nutr. 58(16), 2800 (2018)

    Article  CAS  Google Scholar 

  25. Y. Zhang, S.J. Zhao, L.L. He, J.K. Zheng, Trends Anal. Chem. 90, 1 (2017)

    Article  Google Scholar 

  26. T.T. Zou, Z.L. Xu, J.Y. Yang, H. Wang, Y.M. Sun, Y.D. Sheng, J. Anal. Test 37, 1174 (2018)

    Google Scholar 

  27. N. Srikhao, P. Kasemsiri, N. Lorwanishpaisarn, M. Okhawilai, Res. Chem. Intermed. 47, 1269 (2021)

    Article  CAS  Google Scholar 

  28. Y. Lin, C.E. Bunker, K.S. Fernando, J.W. Connell, ACS. Appl. Mater. Inter. 4(2), 1110 (2012)

    Article  CAS  Google Scholar 

  29. S. Barbosa, A. Agrawal, L. Rodríguez-Lorenzo, I. Pastoriza-Santos, A. Alvarez-Puebla Ramón, A. Kornowski, H. Weller, M. Liz-Marzán Luis, Langmuir 26, 14943 (2010)

    Article  CAS  Google Scholar 

  30. M.A. EI-Aal, T. Seto, Res. Chem. Intermed. 46, 3741 (2020)

    Article  Google Scholar 

  31. A.X. Wang, X. Kong, Materials 8(6), 3024 (2015)

    Article  CAS  Google Scholar 

  32. D. Wu, M.N. Hu, Y.Y. Zhang, J. Zhou, Z.N. Wang, Appl. Surf. Sci. 505, 144505 (2020)

    Article  Google Scholar 

  33. H.J. Zheng, D.J. Ni, Z. Yu, P. Liang, H.C. Chen, Sensor. Actuat. B-Chem. 231, 423 (2016)

    Article  CAS  Google Scholar 

  34. X. Jing, L. Chang, L. Shi, X. Liu, W. Zhang, ACS. Appl. Bio. Mater. 3(4), 2385 (2020)

    Article  CAS  Google Scholar 

  35. J. Yu, Y. Guo, H. Wang, S. Su, C. Zhang, B. Man, F. Lei, J. Phys. Chem. Lett. 10(13), 3676 (2019)

    Article  CAS  Google Scholar 

  36. J.H. Xu, C.H. Li, H.P. Si, X.F. Zhao, L. Wang, S.Z. Jiang, D.M. Wei, J. Yu, X.W. Xiu, C. Zhang, Opt. Express 26, 21546 (2018)

    Article  CAS  Google Scholar 

  37. G. Kibar, A.E. Topal, A. Dana, A. Tuncel, J. Mol. Struct. 1119, 133 (2016)

    Article  CAS  Google Scholar 

  38. L.A. Wali, K.K. Hasan, A.M. Alwan, Plasmonics 15(6), 985 (2020)

    Article  CAS  Google Scholar 

  39. B. Zhang, A.W. Zhao, D.P. Wang, H.Y. Guo, D. Li, M. Li, J. Chem. Colle. U 31(8), 1491 (2010)

    CAS  Google Scholar 

  40. H.L. Tan, Y. Chen, Sens. Actuators. B. Chem. 173, 262 (2012)

    Article  CAS  Google Scholar 

  41. Y.X. Wu, P. Liang, Q.M. Dong, Y. Bai, Z. Yu, J. Huang, Y. Zhong, Y.C. Dai, D.J. Ni, H.B. Shu, Food. Chem. 237(15), 974 (2017)

    Article  CAS  Google Scholar 

  42. N. Zhou, D.S. Li, D. Yang, Nanoscale. Res. Lett. 9(1), 302 (2014)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31870045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualan Zhou.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Liang, Y., Zhang, J. et al. Detection of benzylpenicillin sodium and ampicillin residue based on flower-like silver nanostructures using surface-enhanced Raman spectroscopy. Res Chem Intermed 48, 117–128 (2022). https://doi.org/10.1007/s11164-021-04574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04574-9

Keywords

Navigation