Skip to main content
Log in

Surface-enhanced Raman scattering and catalytic activity studies over nanostructured Au–Pd alloy films prepared by DC magnetron sputtering

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanostructured Au33Pd67 alloy films were fabricated on glass using one-step air plasma DC magnetron sputtering. The films exhibited highly sensitive detection of dye molecules (RhB and CV) by the surface-enhanced Raman scattering (SERS). The synthesized films also showed good catalytic properties for the reduction in 4-nitrophenol at pH ≈ 9.8. Such unique characteristic of the films was linked to the evolution of nanostructure, which can be controlled simply by the sputtering time. At the shorter sputtering time (10 and 20 s), the film was composed of isolated particles. By increasing the sputtering time (30 and 40 s), agglomeration of such nanoparticles resulted in the formation of the partially connected island nanostructures (about 38 nm) which can be confirmed by TEM and electrical resistivity measurement. The detection limit of 1 × 10–12 M RhB and 1 × 10–8 M CV with an enhancement factor of 7 × 107 and 3.3 × 104, respectively, was achieved over the film synthesized at the sputtering time of 30 s. The high sensitivity of this film can be ascribed to the strong electromagnetic field at the junction spots formed between the two adjacent islands. Moreover, this film has a slightly lower SERS, and better catalytic properties, in contrast to Au (30 s) film. Finally, the film providing efficient SERS enhancement is not the most active catalyst. Unlike the SERS, the catalytic activity depends highly on the amount of AuPd deposited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Merlen, V. Gadenne, J. Romann, V. Chevallier, L. Patrone, J.C. Valmalette, Nanotechnology 20, 215705 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. A. Liu, T. Xu, J. Tang, H. Wu, T. Zhao, W. Tang, Electrochem. Acta 119, 43 (2014)

    Article  CAS  Google Scholar 

  3. A. Belahmar, A. Chouiyakh, J. Nanosci. Technol. 2(2), 100 (2016)

    Google Scholar 

  4. T.A. Alexander, D.M. Le, Appl. Opt. 46, 3878 (2007)

    Article  PubMed  Google Scholar 

  5. Y. Wu, D. Su, D. Qin, Chem. Nano Mat. 3(4), 245 (2017)

    CAS  Google Scholar 

  6. K.D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin, Y. Xia, Chem. Rev. 116, 10414 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. A.Z. Medynska, M. Marchelek, M. Diak, E. Grabowska, Adv. Colloid Interface Sci. 229, 80 (2016)

    Article  CAS  Google Scholar 

  8. R. Kavitha, S. Girish Kumar, Chem. Pap. 74, 717 (2020)

    Article  CAS  Google Scholar 

  9. T. Li, H. Zhou, J. Huang, J. Yin, Z. Chen, D. Liu, N. Zhang, Y. Kuang, Colloids Surf. A 463, 55 (2014)

    Article  CAS  Google Scholar 

  10. B. Pergolese, A. Bigotto, M. Muniz-Miranda, G. Sbrana, Appl. Spectrosc. 59, 194 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K.X. Yao, Y. Han, J. Am. Chem. Soc. 135, 8552 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Y.W. Lee, M. Kim, S.W. Kang, S.W. Han, Angew. Chem. Int. Ed. 50, 3466 (2011)

    Article  CAS  Google Scholar 

  13. L.-F. Zhang, C.-Y. Zhang, Nanoscale 5, 6074 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. D. Sun, G. Zhang, X. Jiang, J. Huang, X. Jing, Y. Zheng, J. He, Q. Li, J. Mater. Chem. A 2, 1767 (2014)

    Article  CAS  Google Scholar 

  15. S.-S. Li, P. Song, A.-J. Wang, J.-J. Feng, J. Colloid Interface Sci. 482, 73 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. T. Li, S. Vongehr, S. Tang, Y. Dai, X. Huang, X. Meng, Sci. Rep. 6, 37092 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A.D. Bonis, A. Galasso, N. Ibris, M. Sansone, A. Santagata, R. Teghil, Suf. Coat. Tech. 207, 279 (2012)

    Article  CAS  Google Scholar 

  18. L. Baojia, H. Lijing, Z. Ming, F. Xiaomeng, M. Ming, J. Wuhan Univ. Technol. Mater. Sci. 29, 651 (2014)

    Article  CAS  Google Scholar 

  19. S. Tuscharoen, M. Horprathum, P. Eiamchai, N. Nuntawong, C. Chananonnawathorn, P. Limnonthakul, S. Kalasung, J. Kaewkhao, Key Eng. Mat. 675–676, 285 (2016)

    Article  Google Scholar 

  20. G.C. Shi, M.L. Wang, Y.Y. Zhu, L. Shen, W.L. Ma, Y.H. Wang, R.F. Li, Sci. Rep. 8, 6916 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. R. Li, G. Shi, Y. Wang, M. Wang, Y. Zhu, X. Sun, H. Xu, C. Chang, Optik 172, 49 (2018)

    Article  CAS  Google Scholar 

  22. Y. Liu, Mater. Lett. 224, 26 (2018)

    Article  CAS  Google Scholar 

  23. A. Reznickova, Z. Novotna, N.S. Kasalkova, V. Svorcik, Nanoscale Res. Lett. 8, 252 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. J. Siegel, O. Kvítek, Z. Kolská, P. Slepička, V. Švorčík, Metallurgy - Advances in Materials and Processes (InTech Publ., Rijeka) (2012)

    Google Scholar 

  25. L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, Y. Song, J. Phys. Chem. C 117, 12526 (2013)

    Article  CAS  Google Scholar 

  26. M. Abd El-Aal, T. Seto, M. Kumita, A.A. Abdelaziz, Y. Otani, Opt. Mater. 83, 263 (2018)

    Article  CAS  Google Scholar 

  27. P. Žvátora, P. Řezanka, V. Prokopec, J. Siegel, V. Švorčĺk, V. Král, Nanoscale Res. Lett. 6, 366 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Y.-B. Tan, J.-M. Zou, N. Gu, Nanoscale Res. Lett. 10, 417 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. K. Sugawa, T. Akiyama, Y. Tanoue, T. Harumoto, S. Yanagida, A. Yasumori, S. Tomita, J. Otsukia, Phys. Chem. Chem. Phys. 17, 21182 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. K. Sivashanmugan, W.-L. Huang, C.-H. Lin, J.-D. Liao, C.-C. Lin, W.-C. Su, T.-C. Wen, J. Taiwan Inst. Chem. E. 80, 149 (2017)

    Article  CAS  Google Scholar 

  31. Y. Su, Y. Shi, P. Wang, J. Du, M.B. Raschke, L. Pang, Beilstein J. Nanotechnol. 10, 549 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Liu, W. Gao, C. Zhang, L. Zhang, Y. Zhi, J. Taiwan Inst. Chem. E. 88, 277 (2018)

    Article  CAS  Google Scholar 

  33. A.A. Semenova, A.E. Baranchikov, V.K. Ivanov, E.A. Goodilin, Funct. Mater. Lett. 11(05), 1850028 (2018)

    CAS  Google Scholar 

  34. X. Liu, Y. Shao, Y. Tang, K.-F. Yao, Sci. Rep. 4, 5835 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. E.C.L. Ru, E. Blackie, M. Meyer, P.G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007)

    Article  CAS  Google Scholar 

  36. T. Xia, H. Luo, S. Wang, J. Liu, G. Yu, R. Wang, Cryst. Eng. Commun. 17, 4200 (2015)

    Article  CAS  Google Scholar 

  37. V. Joseph, A. Matschulat, J. Polte, S. Rolf, F. Emmerling, J. Kneipp, J. Raman Spectrosc. 42, 1736 (2011)

    Article  CAS  Google Scholar 

  38. D. Wang, A. Villa, F. Porta, L. Prati, D. Su, J. Phys. Chem. C 112, 8617 (2008)

    Article  CAS  Google Scholar 

  39. H.R. Molina, J.L.S. Muñoz, M.I.D. Leal, T.R. Reina, S. Ivanova, M.Á.C. Gallego, J.A. Odriozola, Front. Chem. 7, 548 (2019)

    Article  CAS  Google Scholar 

  40. T. Ma, W. Yang, S. Liu, H. Zhang, F. Liang, Catalysts 7, 38 (2017)

    Article  CAS  Google Scholar 

  41. Z.D. Pozun, S.E. Rodenbusch, E. Keller, K. Tran, W. Tang, K.J. Stevenson, G. Henkelman, J. Phys. Chem. C 117, 7598 (2013)

    Article  CAS  Google Scholar 

  42. S. Gu, Y. Lu, J. Kaiser, M. Albrechtb, M. Ballauff, Phys. Chem. Chem. Phys. 17, 28137 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. K. Sravanthi, D. Ayodhya, P.Y. Swamy, Mater. Sci. Energy Tech. 2, 298 (2019)

    Google Scholar 

Download references

Acknowledgements

This study was supported by JST CREST, Japan (Grant Number JPMJCR18H4), by the Hosokawa Powder Technology Foundation. The authors would like to thank Prof. Atsushi Matsuki for providing part of the tools to do these measurements at Kanazawa University, Japan. Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) scholarship for Mohamed was also gratefully acknowledged. The authors also would like to thank Mr. Hironori Sugiyama, for his help in FE-SEM, XPS and HR-TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abd El-Aal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Aal, M., Seto, T. Surface-enhanced Raman scattering and catalytic activity studies over nanostructured Au–Pd alloy films prepared by DC magnetron sputtering. Res Chem Intermed 46, 3741–3756 (2020). https://doi.org/10.1007/s11164-020-04172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04172-1

Keywords

Navigation