Skip to main content
Log in

An Investigation of Efficient Detection of Ultra-Low Concentration of Penicillins in Milk Using AuNPs/PSi Hybrid Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, porous silicon (PSi) sample was employed to increase the SERS efficiency for rapid detection of penicillins in spiked milk by developing Au nanoparticles (AuNPs)/PSi hybrid structure. SERS was used to study penicillin G and ampicillin residue in milk. The results show that the AuNPs/PSi hybrid structure is very able to detect penicillins residue in milk with an excellent linear relationship and a correlation coefficient (R2 = 1) in the range of 1 × 10−7 mol/L to 1 × 10−9 mol/L. The highest enhancement factors of penicillin G (2.8 × 108) and of ampicillin (1.2 × 108) with an excellent relative standard deviation (RSD) of 2.69 and 0.93, respectively, are obtained at the ultra-low concentration of 1 × 10−9 mol/L. The detection limit of penicillin G and ampicillin is 1 × 10−9 mol/L (equal to 0.33 μg/kg and 0.35 μg/kg, respectively) which is very lower than the maximum residue limit (MRL) of penicillins in milk (4 μg/kg) established by the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kantiani L, Farré M, Barceló D (2009) Analytical methodologies for the detection of β-lactam antibiotics in milk and feed samples. TrAC Trends Anal Chem 28(6):729–744

    Article  CAS  Google Scholar 

  2. Qi M, Huang X, Zhou Y, Zhang L, Jin Y, Peng Y, Jiang H, Du S (2016) Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products. Food Chem 197:723–729

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Li X, Yang M, Yang L, Han X, Jiang X, Zhao B (2017) High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering. Talanta 167:236–241

    Article  CAS  PubMed  Google Scholar 

  4. Li L, Guo C, Ai L, Dou C, Wang G, Sun H (2014) Research on degradation of penicillins in milk by β-lactamase using ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. J Dairy Sci 97(7):4052–4061

    Article  CAS  PubMed  Google Scholar 

  5. do Prado TM, Foguel MV, Gonçalves LM, Maria del Pilar TS (2015) β-Lactamase-based biosensor for the electrochemical determination of benzylpenicillin in milk. Sensors Actuators B Chem 210:254–258

    Article  CAS  Google Scholar 

  6. Zhang Y, Jiang Y, Wang S (2010) Development of an enzyme-linked immunosorbent assay to detect benzylpenicilloic acid, a degradation product of penicillin G in adulterated milk. J Agric Food Chem 58(14):8171–8175

    Article  CAS  PubMed  Google Scholar 

  7. Beltrán M, Romero T, Althaus R, Molina M (2013) Evaluation of the charm maximum residue limit β-lactam and tetracycline test for the detection of antibiotics in ewe and goat milk. J Dairy Sci 96(5):2737–2745

    Article  PubMed  Google Scholar 

  8. Han-Wen S, Hui L, Jing-Xuan Z, Zheng Z (2010) Qualitative analysis of active beta-lactamases in milk samples by rapid resolution liquid chromatography-tandem mass spectrometry. Chin J Anal Chem 38(8):1203–1205

    Google Scholar 

  9. Alwan AM, Naseef IA, Dheyab AB (2018) Well controlling of plasmonic features of gold nanoparticles on macro porous silicon substrate by HF acid concentration. Plasmonics 13(6):2037–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wali LA, Hasan KK, Alwan AM (2019) Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate. Spectrochim Acta A Mol Biomol Spectrosc 206:31–36

    Article  CAS  PubMed  Google Scholar 

  11. Andreou C, Mirsafavi R, Moskovits M, Meinhart CD (2015) Detection of low concentrations of ampicillin in milk. Analyst 140(15):5003–5005

    Article  CAS  PubMed  Google Scholar 

  12. Yu M, Huang Z, Liu Z, Chen J, Liu Y, Tang L, Liu G (2018) Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates. Sensors Actuators B Chem 262:845–851

    Article  CAS  Google Scholar 

  13. G-q L, Yu M-d, Z-q L, X-s L, Huang S, Pan P-p, Wang Y, Liu M-l GG (2015) One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering. Nanotechnology 26(18):185702

    Article  Google Scholar 

  14. Liu G, Liu Y, Tang L, Liu X, Fu G, Liu Z (2019) Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures. Nanophotonics 8(6):1095–1107

    Article  CAS  Google Scholar 

  15. Tang L, Liu Y, Liu G, Chen Q, Li Y, Shi L, Liu Z, Liu X (2019) A novel SERS substrate platform: spatially stacking plasmonic hotspots films. Nanoscale Res Lett 14(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alwan AM, Wali LA, Yousif AA (2018) Optimization of AgNPs/mesoPS active substrates for ultra–low molecule detection process. Silicon 10(5):2241–2251

    Article  CAS  Google Scholar 

  17. Dheyab AB, Alwan AM, Zayer MQ (2019) Optimizing of gold nanoparticles on porous silicon morphologies for a sensitive carbon monoxide gas sensor device. Plasmonics 14(2):501–509

    Article  CAS  Google Scholar 

  18. Alwan AM, Yousif AA, Wali LA (2018) A study on the morphology of the silver nanoparticles deposited on the n-type porous silicon prepared under different illumination types. Plasmonics 13(4):1191–1199

    Article  CAS  Google Scholar 

  19. Ahmed NM, Al-Douri Y, Alwan AM, Jabbar AA, Arif GE (2013) Characteristics of nanostructure silicon photodiode using laser assisted etching. Procedia Engineering 53:393–399

    Article  CAS  Google Scholar 

  20. Manilov A, Skryshevsky V (2013) Hydrogen in porous silicon—a review. Mater Sci Eng B 178(15):942–955

    Article  CAS  Google Scholar 

  21. Alwan AM, Yousif AA, Wali LA (2017) The growth of the silver nanoparticles on the mesoporous silicon and macroporous silicon: a comparative study. Indian Journal of Pure & Applied Physics (IJPAP) 55(11):813–820

    Google Scholar 

  22. Mehdi Q, Alwan M (2019) Active control of silver nanostructure aggregates for ultrahigh sensitive SERS detection of organic molecules: single molecule approach. Int J Anoelectron Mater 12(1):55–66

    Google Scholar 

  23. Zayer MQ, Alwan AM, Ahmed AS, Dheyab AB (2019) Accurate controlled deposition of silver nanoparticles on porous silicon by drifted ions in electrolytic solution. Curr Appl Phys

  24. Gunnarsson L, Bjerneld E, Xu H, Petronis S, Kasemo B, Käll M (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78(6):802–804

    Article  CAS  Google Scholar 

  25. Xu H, Käll M (2006) Estimating SERS properties of silver-particle aggregates through generalized Mie theory. Surface-Enhanced Raman Scattering. Springer, In, pp 87–103

    Google Scholar 

  26. Kumar CG, Pombala S, Poornachandra Y, Agarwal SV (2016) Synthesis, characterization, and applications of nanobiomaterials for antimicrobial therapy. Nanobiomaterials in Antimicrobial Therapy. Elsevier, In, pp 103–152

    Book  Google Scholar 

  27. Lobanovska M, Pilla G (2017) Focus: drug development: Penicillin’s discovery and antibiotic resistance: lessons for the future? The Yale journal of biology and medicine 90(1):135

    CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Abassy R, Eravuchira P, Donfack P, Von der Kammer B, Materny A (2011) Fast determination of milk fat content using Raman spectroscopy. Vib Spectrosc 56(1):3–8

    Article  CAS  Google Scholar 

  29. Mazurek S, Szostak R, Czaja T, Zachwieja A (2015) Analysis of milk by FT-Raman spectroscopy. Talanta 138:285–289

    Article  CAS  PubMed  Google Scholar 

  30. Dhakal S, Chao K, Huang Q, Kim M, Schmidt W, Qin J, Broadhurst C (2018) A simple surface-enhanced Raman spectroscopic method for on-site screening of tetracycline residue in whole milk. Sensors 18(2):424

    Article  Google Scholar 

  31. Jiang X, Qin X, Yin D, Gong M, Yang L, Zhao B, Ruan W (2015) Rapid monitoring of benzylpenicillin sodium using Raman and surface enhanced Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 140:474–478

    Article  CAS  PubMed  Google Scholar 

  32. Clarke SJ, Littleford RE, Smith WE, Goodacre R (2005) Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy. Analyst 130(7):1019–1026

    Article  CAS  PubMed  Google Scholar 

  33. Pazzola M, Piras G, Noce A, Dettori ML, Vacca GM (2015) Evaluation of the rapid assay Betastar combo 3.0 for the detection of penicillin, amoxicillin, cefazolin and Oxytetracycline in individual sheep milk. Small Rumin Res 124:127–131

    Article  Google Scholar 

  34. Camara M, Gallego-Pico A, Garcinuno R, Fernandez-Hernando P, Durand-Alegria J, Sanchez P (2013) An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk. Food Chem 141(2):829–834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Technology, Baghdad, Iraq, and Mustansiriyah University (www.uomustansiriyah.edu.iq), Baghdad, Iraq, for their support in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layla A. Wali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wali, L.A., Hasan, K.K. & Alwan, A.M. An Investigation of Efficient Detection of Ultra-Low Concentration of Penicillins in Milk Using AuNPs/PSi Hybrid Structure. Plasmonics 15, 985–993 (2020). https://doi.org/10.1007/s11468-019-01096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01096-4

Keywords

Navigation