Skip to main content
Log in

Genetic Mapping and Transcriptomic Analysis Revealed the Molecular Mechanism Underlying Leaf-Rolling and a Candidate Protein Phosphatase Gene for the Rolled Leaf-Dominant (RL-D) Mutant in Rice

  • Original Article
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In rice, moderate leaf rolling improves photosynthesis and crop yield. However, the molecular mechanisms underlying this important agronomic trait remain incompletely understood. Here, we investigated a dominant rolled leaf mutant (RL-D) developed from Nipponbare rice (WT). From the six-leaf stage, the leaves of the mutant rolled inward, and abnormal sclerenchyma tissues developed on the abaxial side of the leaf midribs. Additionally, leaf length, plant height, grain weight, and chlorophyll content were significantly greater in the mutant as compared to the WT. Genetic mapping analysis suggested that the leaf-rolling trait in the RL-D mutant was controlled by a single dominant gene, which was located in a 743-kb region on rice chromosome 3. Re-sequencing analysis showed that one gene in the mapped region encoding a protein phosphatase, Os03g0395100 (herein designated OsPP2C), had base mutations in the first exon. These mutations may have produced a truncated form of the OsPP2C protein in RL-D. Further transcriptomic analysis revealed that several biological processes, especially secondary cell wall formation and protein phosphorylation, were overrepresented among the differentially expressed genes (DEGs) between the mutant and the wild type. qRT-PCR verification also demonstrated that specific genes associated with leaf polarity and secondary cell wall formation were differentially expressed in the mutant. This study presents a novel dominant rolled-leaf germplasm that may help to improve rice leaf morphology in the future. The results also suggested that the RL-D phenotype might result from abnormal sclerenchyma tissue development, possibly regulated by OsPP2C via the dephosphorylation pathway. This may present a novel mechanism underlying leaf-rolling in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

All data supporting the conclusions of this article are provided with the article and its supplementary information files.

References

  • Abdel-Latif A, Osman G (2017) Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods 13:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):1–12

    Article  CAS  Google Scholar 

  • Anders S, Huber W (2013) Differential expression of RNA-Seq data at the gene level-the DESeq package. European Molecular Biology Laboratory (EMBL) Heidelberg Germany

  • Ashikari M, Jianzhong WU, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberrellin-insensitive dwarf mutant gene Dwarf1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96(18):10284–10289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18(3):134–141

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14(3):537–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen QL, Xie QJ, Gao J, Wang WY, Sun B, Liu BH, Zhu HT, Peng HF, Zhao HB, Liu CH, Wang J, Zhang JL, Zhang GQ, Zhang ZM (2015) Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot 66(19):6047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SB, Tao LZ, Zeng LR, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7(5):417–427

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Liang HL, Ma XL, Lou SL, Xie YY, Liu ZL, Chen LT, Liu YG (2013) An efficient rRice mutagenesis system based on suspension-cultured cells. J Integr Plant Biol 55(2):122–130

    Article  CAS  PubMed  Google Scholar 

  • Dai MQ, Hu YF, Zhao Y, Liu HF, Zhou DX (2007) A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol 144(1):380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16(4):407–415

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman J (2004) Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131(12):2997–3006

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16(9):939–944

    Article  CAS  PubMed  Google Scholar 

  • Fan LS, Hao HQ, Xue YQ, Zhang L, Song K, Ding ZJ, Botella MA, Wang HY, Lin JX (2013) Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140(18):3826–3837

    Article  CAS  PubMed  Google Scholar 

  • Fang JJ, Guo TT, Xie ZW, Chun Y, Zhao JF, Peng LX, Zafar SA, Yuan SJ, Xiao LT, Li XY (2021) The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. Plant Physiol 185(4):1722–1744

  • Fang KL, Zhao FM, Cong YF, Sang XC, Du Q, Wang DZ, Li YF, Ling YH, Yang ZL, He GH (2012) Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J 10(5):524–532

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Toriyama K (2008) DCW11, down-regulated gene 11 in CW-type cytoplasmic male sterile rice, encoding mitochondrial protein phosphatase 2C is related to cytoplasmic male sterility. Plant Cell Physiol (japan) 9(4):633–640

    Article  CAS  Google Scholar 

  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom MGG 279(5):499–507

    Article  CAS  PubMed  Google Scholar 

  • Gui JS, Shen JH, Li LG (2011) Functional characterization of evolutionarily divergent 4-coumarate: coenzyme a Ligases in rice. Plant Physiol 157(2):574–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo TT, Wang DF, Fang JJ, Zhao JF, Yuan SJ, Xiao LT, Li XY (2019) Mutations in the rice OsCHR4 gene, encoding a CHD3 family chromatin remodeler, induce narrow and rolled leaves with increased cuticular wax. Int J Mol Sci 20(10):2567

    Article  CAS  Google Scholar 

  • Hibara KI, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh JI, Nagato Y (2009) The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol 334:345–354

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Zhu L, Zeng DL, Gao ZY, Guo LB, Fang YX, Zhang GH, Dong GJ, Yan MX, Liu J, Qian Q (2010) Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol 73(3):283–292

    Article  CAS  PubMed  Google Scholar 

  • Hu XB, Zhang HJ, Li GJ, Yang YX, Zheng Z, Song FM (2009) Ectopic expression of a rice protein phosphatase 2C gene OsBIPP2C2 in tobacco improves disease resistance. Plant Cell Rep 28(6):985–995

    Article  CAS  PubMed  Google Scholar 

  • Hunter C, Willmann MR, Wu G, Yoshikawa M, Poethig G-N, S, (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981

    Article  CAS  PubMed  Google Scholar 

  • Itoh J, Hibara K, Sato Y, Nagato Y (2008) Developmental role and auxin responsiveness of class III homeodomain leucine zipper gene family members in rice. Plant Physiol 147(4):1960–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428(6978):84–88

    Article  CAS  PubMed  Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411(6838):706–709

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):295–311

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zou XH, Zhang CY, Shao QH, Liu J, Liu B, Li HY, Zhao T (2016) OsLBD3–7 overexpression induced adaxially rolled leaves in rice. PLoS One 11(6):e0156413

  • Li L, Shi ZY, Li L, Shen GZ, Wang XQ, An LS, Zhang JL (2010) Overexpression of ACL 1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant 3(5):807–817

    Article  CAS  PubMed  Google Scholar 

  • Li WQ, Zhang MJ, Gan PF, Qiao L, Yang SQ, Miao H, Wang GF, Zhang MM, Liu WT, Li HF, Shi CH, Chen KM (2017) CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J 92(5):904–923

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Yang YY, Yao JL, Chen GX, Li XH, Zhang QF, Wu CY (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69(6):685–697

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Shen A, Xiong W, Sun QL, Luo Q, Song T, Li ZL, Luan WJ (2016b) Overexpression of OsHox32 results in pleiotropic effects on plant type architecture and leaf development in rice. Rice (n y) 9(1):46

    Article  Google Scholar 

  • Li ZY, Mo WP, Jia LQ, Xu YC, Tang WJ, Yang WQ, Guo YL, Lin RC (2019) Rice FLUORESCENT1 is involved in the regulation of chlorophyll. Plant Cell Physiol 60(10):2307–2318

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Xu YY, Xu ZH, Chong K (2007a) A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol 217(9):629–637

    Article  CAS  PubMed  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007b) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Li M, Liu K, Tang D, Sun MF, Li YF, Shen Y, Du GJ, Cheng ZK (2016) Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot 67(8):2139–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang JY, Guo SY, Sun B, Liu Q, Chen XH, Peng HF, Zhang ZM, Xie QJ (2018) Constitutive expression of REL1 confers the rice response to drought stress and abscisic acid. Rice (n y) 11(1):59

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang GL, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23(16):3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Yasui Y, Kumamaru T, Hirano HY (2018) Characterization of a half-pipe-like leaf1 mutant that exhibits a curled leaf phenotype. Genes Genet Syst 92(6):287–291

    Article  PubMed  CAS  Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324:7–14

    Article  PubMed  Google Scholar 

  • Shi ZY, Wang J, Wan XS, Shen GZ, Wang XQ, Zhang JL (2007) Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226(1):99–108

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133(1):73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonnessen BW, Manosalva P, Lang JM, Baraoidan M, Bordeos A, Mauleon R, Oard J, Hulbert S, Leung H, Leach JE (2015) Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Mol Biol 87(3):273–286

    Article  CAS  PubMed  Google Scholar 

  • Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY (2007) Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genomics 277(5):457–468

    Article  CAS  PubMed  Google Scholar 

  • Tougane K, Komatsu K, Bhyan SB, Sakata Y, Ishizaki K, Yamato KT, Kohchi T, Takezawa D (2010) Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants:characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha. Plant Physiol 152(3):1529–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(28):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbrasaite J, Schweighofer A, Kazanaviciute V, Magyar Z, Ayatollahi Z, Unterwurzacher V, Choopayak C, Boniecka J, Murray JA, Bogre L, Meskiene I (2010) MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis. PLoS One 5(12):e15357

  • Waites R, Selvadurai HR, Oliver IR, Hudson A (1998) The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93(5):779–789

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Wang FH, Chen HQ, Liang XY, Huang YM, Yi JC (2017) Comparative genomic hybridization and transcriptome sequencing reveal that two genes, OsI_14279 (LOC_Os03g62620) and OsI_10794 (LOC_Os03g14950) regulate the mutation in the γ-rl rice mutant. Physiol Mol Biol Plants 23(4):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Xue YB, Li JY (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10(12):610–614

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Mizuno H, Hayashi-Tsugane M, Ito Y, Chiden Y, Fujisawa M, Katagiri S, Saji S, Yoshiki S, Karasawa W, Yoshihara R, Hayashi A, Kobayashi H, Ito K, Hamada M, Okamoto M, Ikeno M, Ichikawa Y, Katayose Y, Yano M, Matsumoto T, Sasaki T (2003) Physical maps and recombination frequency of six rice chromosomes. Plant J 36(5):720–730

    Article  CAS  PubMed  Google Scholar 

  • Wu RH, Li BS, He S, Wassmann F, Yu CH, Qin GJ, Schreiber L, Qu LJ, Gu HY (2011) CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23(9):3392–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang JJ, Zhang GH, Qian Q, Xue HW (2012) Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol- anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol 159(4):1488–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu PZ, Ali A, Han BL, Wu XJ (2018) Current advances in molecular basis and mechanisms regulating leaf morphology in rice. Front Plant Sci 9:1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu SB, Tao YF, Yang ZQ, Chu JY (2002) A simple and rapid methods used for silver staining and gel preservation. Hereditas 24:335–336

    CAS  PubMed  Google Scholar 

  • Xu Y, Wang YH, Long QZ, Huang JX, Wang YL, Zhou KN, Zheng M, Sun J, Chen H, Chen SH, Jiang L, Wang CM, Wan JM (2014) Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta 239(4):803–816

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Fu JX, Li J, Cheng XL, Li F, Dong JF, Liu ZL, Zhuang CX (2014) A novel co-immunoprecipitation protocol based on protoplast transient gene expression for studying protein-protein interactions in rice. Plant Mol Biol Rep 32:153–161

    Article  CAS  Google Scholar 

  • Yang SQ, Li WQ, Miao H, Gan PF, Qiao L, Chang YL, Shi CH, Chen KM (2016) REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice (n y) 9(1):37

    Article  Google Scholar 

  • Yi JC, Liu LN, Cao YP, Li JZ, Mei MT (2013) Cloning, characterization and expression of OsFMO(t) in rice encoding a flavin monooxygenase. J Genet 92(3):471–480

    Article  CAS  PubMed  Google Scholar 

  • You J, Zong W, Hu HH, Li XH, Xiao JH, Xiong LZ (2014) A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice Protein Phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice. Plant Physiol 166(4):2100–2114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang GH, Hou X, Wang L, Xu J, Chen J, Fu X, Shen NW, Nian JQ, Jiang ZZ, Hu J, Zhu L, Rao YC, Shi YF, Ren DY, Dong GJ, Gao ZY, Guo LB, Qian Q, Luan S (2021) PHOTO-SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytol 229:890–901

    Article  CAS  PubMed  Google Scholar 

  • Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW (2009) SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell 21:719–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao SS, Zhao L, Liu FX, Wu YZ, Zhu ZF, Sun CQ, Tan LB (2016) NARROW AND ROLLED LEAF 2 regulates leaf shape, male fertility, and seed size in rice. J Integr Plant Biol 58(12):983–996

    Article  CAS  PubMed  Google Scholar 

  • Zou LP, Sun XH, Zhang ZG, Liu P, Wu JX, Tian CJ, Qiu JL, Lu TG (2011) Leaf rolling controlled by the homeodomain Leucine Zipper Class IV gene Roc5 in rice. Plant Physiol 156(3):1589–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yuanling Chen at South China Agricultural University for providing rice seeds of Rolled Leaf-Dominant (RL-D) mutant.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 30671279 and 31071070), the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010906), and the Special Fund for Scientific Innovation Strategy-construction of High Level Academy of Agriculture Science (No. R2019PY-JX001).

Author information

Authors and Affiliations

Authors

Contributions

XMG and FHW carried out the experiment and prepared the figures and tables. JCY designed the research, analyzed the data, and wrote the manuscript. HMC, XLL, and SCZ contributed to plant materials management and data evaluation. JLZ contributed for critically analyzing the data and reading this manuscript. All authors approved the final version of manuscript.

Corresponding authors

Correspondence to Junliang Zhao or Jicai Yi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

• This study investigated the dominant rolled-leaf (RL-D) rice mutant and presented a novel dominant rolled-leaf germplasm that may help to improve rice leaf morphology. The results also suggested that the RL-D phenotype might result from abnormal sclerenchyma tissues, possibly regulated by a protein phosphatase encoding gene OsPP2C via the dephosphorylation pathway.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Wang, F., Chen, H. et al. Genetic Mapping and Transcriptomic Analysis Revealed the Molecular Mechanism Underlying Leaf-Rolling and a Candidate Protein Phosphatase Gene for the Rolled Leaf-Dominant (RL-D) Mutant in Rice. Plant Mol Biol Rep 40, 256–270 (2022). https://doi.org/10.1007/s11105-021-01318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-021-01318-2

Keywords

Navigation