Skip to main content
Log in

Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Leaf morphology is an important agronomic trait in rice breeding. We isolated three allelic mutants of NARROW AND ROLLED LEAF 1 (nrl1) which showed phenotypes of reduced leaf width and semi-rolled leaves and different degrees of dwarfism. Microscopic analysis indicated that the nrl1-1 mutant had fewer longitudinal veins and smaller adaxial bulliform cells compared with the wild-type. The NRL1 gene was mapped to the chromosome 12 and encodes the cellulose synthase-like protein D4 (OsCslD4). Sequence analyses revealed single base substitutions in the three allelic mutants. Genetic complementation and over-expression of the OsCslD4 gene confirmed the identity of NRL1. The gene was expressed in all tested organs of rice at the heading stage and expression level was higher in vigorously growing organs, such as roots, sheaths and panicles than in elsewhere. In the mutant leaves, however, the expression level was lower than that in the wild-type. We conclude that OsCslD4 encoded by NRL1 plays a critical role in leaf morphogenesis and vegetative development in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arioli T, Peng L, Betzner SA, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazenski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  CAS  PubMed  Google Scholar 

  • Bernal AJ, Jensen JK, Harholt J, Sørensen S, Moller L, Blaukopf C, Johansen B, Lotto R, Pauly M, Scheller HV, Willats WGT (2007) Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J 52:791–802

    Article  CAS  PubMed  Google Scholar 

  • Bernal AJ, Yoo CM, Mutwil M, Jensen JK, Hou G, Blaukopf C, Sorensen I, Blancaflor EB, Scheller HV, Willats WG (2008) Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant Physiol 148:1238–1253

    Article  CAS  PubMed  Google Scholar 

  • Bosca S, Barton CJ, Taylor NG, Ryden P, Neumetzler L, Pauly M, Roberts K, Seifert GJ (2006) Interactions between MUR10 CesA7-dependent secondary cellulose biosynthesis and primary cell wall structure. Plant Physiol 142:1353–1363

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Eched Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18:134–141

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3;1, 4)-b-d-glucans. Science 311:1940–1942

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, Fincher GB (2008) The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol 146:1821–1833

    Article  CAS  PubMed  Google Scholar 

  • Carpita N, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the wall during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Chu Z, Chen H, Zhang Y, Zhang Z, Zheng N, Yin B, Yan H, Zhu L, Zhao X, Yuan M, Zhang X, Xie Q (2007) Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol 143:213–224

    Article  CAS  PubMed  Google Scholar 

  • Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson C (2007) A gene from the cellulose synthase-like C family encodes a b-1, 4 glucan synthase. Proc Natl Acad Sci USA 104:8550–8555

    Article  CAS  PubMed  Google Scholar 

  • Cutler S, Somerville C (1997) Cellulose synthesis: cloning in silico. Curr Biol 7:R108–R111

    Article  CAS  PubMed  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  CAS  PubMed  Google Scholar 

  • Desprez T, Vernhettes S, Fagard M, Refregier G, Desnos T, Aletti E, Py N, Pelletier S, Hofte H (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 128:482–490

    Article  CAS  PubMed  Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Article  CAS  PubMed  Google Scholar 

  • Doblin MS, De Melis L, Newbigin E, Bacic A, Read SM (2001) Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families. Plant Physiol 125:2040–2052

    Article  CAS  PubMed  Google Scholar 

  • Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1, 3;1, 4)-beta-d-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA 106:5996–6001

    Article  CAS  PubMed  Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103:6518–6523

    Article  CAS  PubMed  Google Scholar 

  • Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Hofte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2424

    Article  CAS  PubMed  Google Scholar 

  • Favery B, Ryan E, Foreman F, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev 15:79–89

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2007) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 279:499–507

    Article  Google Scholar 

  • Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose syntheses-like genes of rice. Plant Physiol 128:336–340

    Article  CAS  PubMed  Google Scholar 

  • Henderson DC, Muehlbauer GJ, Scanlon MJ (2005) Radial leaves of the maize mutant ragged seedling2 retain dorsiventral anatomy. Dev Biol 282:455–466

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC, O’Toole JC, Yambao B, Turner NC (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice. Plant Physiol 75:338–341

    Article  PubMed  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: leaf rolling. Bot Rev 73(4):290–302

    Article  Google Scholar 

  • Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han C (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair. Plant Physiol 143:1220–1230

    Article  CAS  PubMed  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226

    Article  CAS  PubMed  Google Scholar 

  • Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, Keegstra K (2007) Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants. Plant Physiol 143:1881–1893

    Article  CAS  PubMed  Google Scholar 

  • Manfield IW, Orfila C, McCartney L, Harholt J, Bernal AJ, Scheller HV, Gilmartin PM, Mikkelsen JD, Knox JP, Willats WG (2004) Novel cell wall architecture of isoxabenhabituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant J 40(2):260–275

    Article  CAS  PubMed  Google Scholar 

  • McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942

    CAS  PubMed  Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663

    Article  CAS  PubMed  Google Scholar 

  • Minorsky PV (2002) The wall becomes surmountable. Plant Physiol 128:345–353

    Article  CAS  PubMed  Google Scholar 

  • Nelson JM, Lane B, Freeding M (2002) Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf’s dorsoventral axis. Development 129:4581–4589

    CAS  PubMed  Google Scholar 

  • Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subnit of cellulouse synthase. Proc Natl Acad Sci USA 93:12637–12642

    Article  CAS  PubMed  Google Scholar 

  • Price AH, Young EM, Tomos AD (1997) Quantitative trait loci associated with stomatal conductance leaf rolling and heading date mapped in upland rice (Oryza sativa L.). New Phytol 137:83–91

    Article  CAS  Google Scholar 

  • Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C (2008) Mutation of the rice NARROW LEAF1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147:1947–1959

    Article  CAS  PubMed  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  CAS  PubMed  Google Scholar 

  • Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M (2009) A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant J 60:227–241

    Article  CAS  PubMed  Google Scholar 

  • Scanlon MJ (2000) Developmental complexities of simple leaves. Curr Opin Plant Biol 3:3l–36

    Article  Google Scholar 

  • Scanlon MJ, Schneeberger RG, Freeling M (1996) The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122:1683–1691

    CAS  PubMed  Google Scholar 

  • Scanlon MJ, Chen KD, McKnight CC (2000) The narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development. Genetics 155:1379–1389

    CAS  PubMed  Google Scholar 

  • Serrano-Cartagena J, Candela H, Robles P, Ponce MR, Perez-Perez JM, Piqueras P, Micol JL (2000) Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis. Genetics 156:1363–1377

    CAS  PubMed  Google Scholar 

  • Shi ZY, Wan Wang J, XS Shen GZ, Wang XQ, Zhang JL (2007) Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226:99–108

    Article  CAS  PubMed  Google Scholar 

  • Takeda K (1977) Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp 16:1–18

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Taylor NG, Scheible W-R, Cutler S, Someville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase equired for secondary cell wall synthesis. Plant Cell 11:769–779

    Article  CAS  PubMed  Google Scholar 

  • Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthasecatalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2540

    Article  CAS  PubMed  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455

    Article  CAS  PubMed  Google Scholar 

  • Telfer A, Poethig RS (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125:1889–1898

    CAS  PubMed  Google Scholar 

  • Timmermans MC, Schultes NP, Jankovsky JP, Nelson T (1998) Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development 125:2813–2823

    CAS  PubMed  Google Scholar 

  • Tsiantis M (2001) Control of shoot cell fate: beyond homeoboxes. Plant Cell 13:733–738

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122:1589–1600

    CAS  PubMed  Google Scholar 

  • Waites R, Hudson A (1995) Phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Wang X, Cnops G, Vanderhaeghen R, Block SD, Montagu MV, Lijsebettens MV (2001) AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol 126:575–586

    Article  CAS  PubMed  Google Scholar 

  • Williamson R, Burn J, Birch R, Baskin T, Arioli T, Betzner A, Cork A (2001) Morphology of rsw1, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma 215:116–127

    Article  CAS  PubMed  Google Scholar 

  • Woo YM, Park HJ, Su’udi M, Yang JY, Park JJ, Back K, Park YM, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Yan CJ, Zeng XH, Yang YC, Fang YW, Tian CY, Sun YW, Cheng ZK, Gu MH (2008) ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. Plant Mol Biol 68:239–250

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Yu XH, Shen RJ, He YK (2005) HYL1 gene maintains venation and polarity of leaves. Planta 221:231–422

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Keegstra K (2008) AtCSLD2 is an integral golgi membrane protein with its N-terminus facing the cytosol. Planta 228:823–838

    Article  CAS  PubMed  Google Scholar 

  • Zhang BC, Deng LW, Qian Q, Xiong GY, Zeng DL, Li R, Guo LB, Li JY, Zhou YH (2009a) A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol 71:509–524

    Article  CAS  PubMed  Google Scholar 

  • Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW (2009b) SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell 21:719–735

    Article  PubMed  Google Scholar 

  • Zhong R, Morrison WHIII, Freshour GD, Hahn MG, Ye ZH (2003) Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol 132:786–795

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Bin Han (National Center for Gene Research and Institute of Plant Physiology and Ecology, Chinese Academy of Sciences) for providing BAC clones, Dr. Sheng Teng (Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences) for assisting in leaf sectioning, and Honglan Yan for photography. This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 30710103903, 30870145 and 30770127), China National Basic Research Priorities (Program 973), the Zhejiang Province Key Sci-Teach Project (2007c22018), Zhejiang Natural Science Foundation (Y307108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Qian.

Additional information

Jiang Hu and Li Zhu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Zhu, L., Zeng, D. et al. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol 73, 283–292 (2010). https://doi.org/10.1007/s11103-010-9614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9614-7

Keywords

Navigation