Skip to main content
Log in

Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Most agronomically important traits, including resistance against pathogens, are governed by quantitative trait loci (QTL). QTL-mediated resistance shows promise of being effective and long-lasting against diverse pathogens. Identification of genes controlling QTL-based disease resistance contributes to breeding for cultivars that exhibit high and stable resistance. Several defense response genes have been successfully used as good predictors and contributors to QTL-based resistance against several devastating rice diseases. In this study, we identified and characterized a rice (Oryza sativa) mutant line containing a 750 bp deletion in the second exon of OsPAL4, a member of the phenylalanine ammonia-lyase gene family. OsPAL4 clusters with three additional OsPAL genes that co-localize with QTL for bacterial blight and sheath blight disease resistance on rice chromosome 2. Self-pollination of heterozygous ospal4 mutant lines produced no homozygous progeny, suggesting that homozygosity for the mutation is lethal. The heterozygous ospal4 mutant line exhibited increased susceptibility to three distinct rice diseases, bacterial blight, sheath blight, and rice blast. Mutation of OsPAL4 increased expression of the OsPAL2 gene and decreased the expression of the unlinked OsPAL6 gene. OsPAL2 function is not redundant because the changes in expression did not compensate for loss of disease resistance. OsPAL6 co-localizes with a QTL for rice blast resistance, and is down-regulated in the ospal4 mutant line; this may explain enhanced susceptibility to Magnoporthe oryzae. Overall, these results suggest that OsPAL4 and possibly OsPAL6 are key contributors to resistance governed by QTL and are potential breeding targets for improved broad-spectrum disease resistance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achnine L, Blancaflor EB, Rasmussen S et al (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109. doi:10.1105/tpc.104.024406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bagali PG, Hittalmani S, Srinivasachary KS et al (1998) Genetic markers associated with field resistance to leaf and neck blast across locations in rice (Oryza sativa L.). Rice Genet Newsl 15:128–131

    Google Scholar 

  • Ballini E, Morel J-B, Droc G et al (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868. doi:10.1094/MPMI-21-7-0859

    Article  CAS  PubMed  Google Scholar 

  • Bate NJ, Orr J, Ni W et al (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci USA 91:7608–7612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker-Andre M, Schulze-Lefert P, Hahlbrock K (1991) Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate:CoA ligase genes in potato. J Biol Chem 266:8551–8559

    CAS  PubMed  Google Scholar 

  • Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol (Stuttg) 8:1–10. doi:10.1055/s-2005-872705

    Article  CAS  Google Scholar 

  • Bhat WW, Razdan S, Rana S et al (2014) A phenylalanine ammonia-lyase ortholog (PkPAL1) from Picrorhiza kurrooa Royle ex. Benth: molecular cloning, promoter analysis and response to biotic and abiotic elicitors. Gene 547:245–256. doi:10.1016/j.gene.2014.06.046

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi:10.1146/annurev.arplant.54.031902.134938

    Article  CAS  PubMed  Google Scholar 

  • Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907

    Article  CAS  PubMed  Google Scholar 

  • Boyd L, Ridout C, O’Sullivan DM et al (2013) Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet 29:233–240. doi:10.1016/j.tig.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  • Calabrese JC, Jordan DB, Boodhoo A et al (2004) Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry 43:11403–11416. doi:10.1021/bi049053

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Dixon R (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761. doi:10.1038/nbt1316

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Srinivasa Reddy MS, Temple S et al (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124. doi:10.1111/j.1365-313X.2006.02857.x

    Article  CAS  PubMed  Google Scholar 

  • Chen L-N, Yang Y, Yan C-Q et al (2012) Identification of quantitative trait loci for bacterial blight resistance derived from Oryza meyeriana and agronomic traits in recombinant inbred lines of Oryza sativa. J Phytopathol 160:461–468. doi:10.1111/j.1439-0434.2012.01931.x

    Article  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814. doi:10.1016/j.cell.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  • Coquoz J, Buchala A, Metraux J (1998) The biosynthesis of salicylic acid in potato plants. Plant Physiol 117:1095–1101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cramer CL, Ryder TB, Bell JN et al (1985) Rapid switching of plant gene-expression induced by fungal elicitor. Science 80(227):1240–1243. doi:10.1126/science.227.4691.1240

    Google Scholar 

  • Craven-Bartle B, Pascual MB, Cánovas FM, Avila C (2013) A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J 74:755–766. doi:10.1111/tpj.12158

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Magill J, Frederiksen R, Magill C (1996) Chalcone synthase and phenylalanine ammonia-lyase mRNA levels following exposure of sorghum seedlings to three fungal pathogens. Physiol Mol Plant Pathol 49:187–199. doi:10.1006/pmpp.1996.0048

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N Y) 39:783–791

    Google Scholar 

  • Fu D, Chen L, Yu G et al (2011) QTL mapping of sheath blight resistance in a deep-water rice cultivar. Euphytica 180:209–218. doi:10.1007/s10681-011-0366-5

    Article  Google Scholar 

  • Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190. doi:10.1007/s001220100611

    Article  CAS  Google Scholar 

  • Gassmann W, Bhattacharjee S (2012) Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks. Mol Plant Microbe Interact 25:862–868

    Article  CAS  PubMed  Google Scholar 

  • Giberti S, Bertea CM, Narayana R et al (2012) Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. J Plant Physiol 169:249–254. doi:10.1016/j.jplph.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  • Gruner K, Griebel T, Návarová H et al (2013) Reprogramming of plants during systemic acquired resistance. Front Plant Sci 4:1–28. doi:10.3389/fpls.2013.00252

    Article  Google Scholar 

  • Gupta SK, Rai AK, Kanwar SS et al (2012) The single functional blast resistance gene Pi54 activates a complex defence mechanism in rice. J Exp Bot 63:757–772. doi:10.1093/jxb/err297

    Article  CAS  PubMed  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Havir EA, Hanson KR (1973) L-phenylalanine ammonia-lyase (maize and potato). Evidence that the enzyme is composed of four subunits. Biochemistry 12:1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhao X, Cheng K, Jiang Y, Ouyang Y, Xu C, Li X, Xiao J, Zhang Q (2013) OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth. J Exp Bot 64:3351–3360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651. doi:10.1016/j.bbrc.2006.04.140

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Valent B, Lee FN (2003) Determination of host responses to Magnaporthe grisea on detached rice leaves. Plant Dis 87:129–133

    Article  Google Scholar 

  • Jia Y, Liu G, Park D, Yang Y (2013) Inoculation and scoring methods for rice sheath blight disease. In: Yang Y (ed) Rice Protoc. Humana Press, Totowa, NJ, pp 257–268

    Chapter  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Joos HJ, Hahlbrock K (1992) Phenylalanine ammonia-lyase in potato (Solanum tuberosum L): genomic complexity, structural comparison of 2 selected genes and modes of expression. Eur J Biochem 204:621–629

    Article  CAS  PubMed  Google Scholar 

  • Kauffman HE, Reddy APK, Hsiek SPV, Marca SD (1973) An improved technique for evaluating resistance of race varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541

    Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306. doi:10.1093/jxb/eru109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y, Tsuda K, Igarashi D et al (2014) Signaling mechanisms underlying the robustness and tunability of the plant immune network. Cell Host Microbe 15:84–94. doi:10.1016/j.chom.2013.12.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185. doi:10.1016/j.pbi.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  • La Camera S, Gouzerh G, Dhondt S et al (2004) Metabolic reprogramming in plant innate immunity : the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    Article  PubMed  Google Scholar 

  • Lee H, Leon J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92:4076–4079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li ZK, Luo LJ, Mei HW et al (1999) A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet 261:58–63

    Article  CAS  PubMed  Google Scholar 

  • Li B, Liu B, Shan C et al (2013) Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Pest Manag Sci 69:312–320. doi:10.1002/ps.3399

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Li H, Kreuzaler F, Fischer R (1996) Nucleotide sequence of one of two tandem genes (Accesion No.X99705) encoding phenylalanine ammonia-lyase in Triticum aestivum. Plant Physiol 112:1398

    Google Scholar 

  • Liu B, Zhang S, Zhu X et al (2004) Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant Microbe Interact 17:1146–1152. doi:10.1094/MPMI.2004.17.10.1146

    Article  CAS  PubMed  Google Scholar 

  • Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA 92:5905–5909. doi:10.1073/pnas.92.13.5905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maher E, Bate NJ, Ni W et al (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci USA 91:7802–7806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (2014) Salicylic acid : a likely endogenous signal in the resistance response of tobacco to viral infection. Science 80(250):1002–1004

    Google Scholar 

  • Manosalva PM, Davidson RM, Liu B et al (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296. doi:10.1104/pp.108.128348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauch-Mani B, Slusarenko J (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212. doi:10.1105/tpc.8.2.203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moffitt MC, Louie GV, Bowman ME et al (2007) Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry 46:1004–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallego-giraldo L et al (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846. doi:10.1111/J.1364-3703.2010.00648.X

    CAS  PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887. doi:10.1093/nar/gkl976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pallas JA, Paiva NL, Lamb C, Dixon RA (1996) Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J 10:281–293

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pinson SRM, Capdevielle FM, Oard JH (2005) Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci 45:503–510

    Article  CAS  Google Scholar 

  • Ramalingam J, Vera Cruz CM, Kukreja K et al (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24. doi:10.1094/MPMI.2003.16.1.14

    Article  CAS  PubMed  Google Scholar 

  • Rawal HC, Singh NK, Sharma TR (2013) Conservation, divergence, and genome-wide distribution of PAL and POX A gene families in plants. Int J Genomics 2013:1–10. doi:10.1155/2013/678969

    Article  Google Scholar 

  • Reichert AI, He X-Z, Dixon R (2009) Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J 424:233–242. doi:10.1042/BJ20090620

    Article  CAS  PubMed  Google Scholar 

  • Reimers P, Leach JE (1991) Race-specific resistance to Xanthomonas oryzae pv. oryzae conferred by bacterial blight resistance gene Xa-10 in rice (Oryza sativa) involves accumulation of a lignin-like substance in host tissues. Physiol Mol Plant Pathol 38:39–55

    Article  CAS  Google Scholar 

  • Rensing S (2014) Gene duplication as a driver of plant morphogenetic evolution. Curr Opin Plant Biol 17:43–48. doi:10.1016/j.pbi.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  • Riaz A, Riaz A, Rattu AUR et al (2014) Phenylalanine ammonia-lyase (PAL) and peroxidase activity in brown rust infected tissues of Pakistani wheat cultivars. Pak J Bot 46:1101–1107

    Google Scholar 

  • Ride JP (1983) Cell walls and other structural barriers in defence. Biochem Plant Pathol (Callow, JA, ed) pp 215–236

  • Ritter H, Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16:3426–3436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rohde A, Morreel K, Ralph J et al (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771. doi:10.1105/tpc.104.023705.phospho

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saghai-Maroof M, Soliman KM, Jorgensen R, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sana TR, Fischer S, Wohlgemuth G, Fiehn O (2010) Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics 6:451–465. doi:10.1007/s11306-010-0218-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarma AD, Sharma R (1999) Purification and characterization of UV-B induced phenylalanine ammonia-lyase from rice seedlings. Phytochemistry 50:729–737

    Article  CAS  Google Scholar 

  • Savary S, Mila A, Willocquet L et al (2011) Risk factors for crop health under global change and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model. Phytopathology 101:696–709. doi:10.1094/PHYTO-07-10-0183

    Article  CAS  PubMed  Google Scholar 

  • Schatz MC, Maron LG, Stein JC, et al (2014) New whole genome de novo assemblies of three divergent strains of rice (O. sativa) documents novel gene space of aus and indica. BioRxiv http://biorxiv.org

  • Schuler GD (1997) Sequence mapping by electronic PCR. Genome Res 7:541–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shang Q-M, Li L, Dong C-J (2012) Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta 236:1093–1105. doi:10.1007/s00425-012-1659-1

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi T, Yamada T, Nicholson RL, Kunoh H (1995) Phenylalanine ammonia-lyase in barley: activity enhancement in response to Erysiphe graminis f.sp. hordei (race 1) a pathogen, and Erysiphe-pisi, a nonpathogen. Physiol Mol Plant Pathol 46:153–162. doi:10.1006/pmpp.1995.1012

    Article  CAS  Google Scholar 

  • Sommssich IE, Hahlbrock K (1998) Pathogen defence in plants: a paradigm of biological complexity. Trends Plant Sci 3:86–90

    Article  Google Scholar 

  • Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14:751–764. doi:10.1038/nrg3483

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka N, Che F-S, Watanabe N et al (2003) Flagellin from an incompatible strain of Acidovorax avenae mediates H2O2 generation accompanying hypersensitive cell death and expression of PAL, Cht-1, and PBZ1, but not of Lox in rice. Mol Plant Microbe Interact 16:422–428. doi:10.1094/MPMI.2003.16.5.422

    Article  CAS  PubMed  Google Scholar 

  • Tanger P, Field JL, Jahn CE et al (2013) Biomass for thermochemical conversion: targets and challenges. Front Plant Sci 4:218. doi:10.3389/fpls.2013.00218

  • Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515. doi:10.1038/nbt.1621

  • Trognitz F, Manosalva P, Gysin R et al (2002) Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja x dihaploid S. tuberosum hybrids. Mol Plant Microbe Interact 15:587–597. doi:10.1094/MPMI.2002.15.6.587

  • Vanholme R, Storme V, Vanholme B et al (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–3529. doi:10.1105/tpc.112.102574

  • Venere RJ (1980) Role of peroxidase in cotton resistant to bacterial blight. Plant Sci Lett 20:47–56

  • Venu RC, Yulin J, Gowda M et al (2007) RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection. Mol Genet Genomics 278:421–431. doi:10.1007/s00438-007-0260-y

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. doi:10.1093/mp/ssp106

  • Wamishe YA, Yulin J, Singh P, Cartwright RD (2007) Identification of field isolates of Rhizoctonia solani to detect quantitative resistance in rice under greenhouse conditions. Front Agric China 1:361–367. doi:10.1007/s11703-007-0061-4

  • Wang GL, Mackill DJ, Bonman JM et al (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

  • Wang Z, Taramino G, Yang D et al (2001) Rice ESTs with disease-resistance gene- or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Genet Genomics 265:302–310. doi:10.1007/s004380000415

  • Wu JL, Sinha PK, Variar M et al (2004) Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 108:1024–1032

  • Wu J-L, Wu C, Lei C et al (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97. doi:10.1007/s11103-004-5112-0

  • Zhang G, Cui Y, Ding X, Dai Q (2013) Stimulation of phenolic metabolism by silicon contributes to rice resistance to sheath blight. J Plant Nutr Soil Sci 176:118—124. doi:10.1002/jpln.201200008

  • Zhou Y-L, Xie X-W, Xu M-R et al (2012) Genetic overlap in the quantitative resistance of rice at the seedling and adult stages to Xanthomonas oryzae pv. oryzae. J Plant Biol 55:102–113

  • Zhu Q, Dabi T, Beeche A et al (1995) Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol Biol 29:535–550

  • Zhu M, Wang L, Pan Q (2004) Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. Phytopathology 94:515–519. doi:10.1094/PHYTO.2004.94.5.515

  • Zuckerlandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

Download references

Acknowledgments

This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy (DOE-BER, contract No. DE-FG02-08ER64629), an International Rice Research Institute (IRRI) and U.S. Agency for International Development (USAID) Linkage grant (DRPC2011-42), a USDA-CSREES-NRI-Rice-CAP grant 2004-35317-14867, and a National Institute of Food and Agriculture (USDA-NIFA) 2008-35504-0485. Tonnessen was supported by a fellowship from the CSU Program in Molecular Plant Biology, and Leach was supported by the Colorado State Experiment Station.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Leach.

Additional information

Bradley W. Tonnessen and Patricia Manosalva have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonnessen, B.W., Manosalva, P., Lang, J.M. et al. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Mol Biol 87, 273–286 (2015). https://doi.org/10.1007/s11103-014-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0275-9

Keywords

Navigation