Skip to main content

Advertisement

Log in

Nimodipine Attenuates Early Brain Injury by Protecting the Glymphatic System After Subarachnoid Hemorrhage in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The glymphatic system (GS) plays an important role in subarachnoid hemorrhage (SAH). Nimodipine treatment provides SAH patients with short-term neurological benefits. However, no trials have been conducted to quantify the relationship between nimodipine and GS. We hypothesized that nimodipine could attenuate early brain injury (EBI) after SAH by affecting the function of the GS. In this study, we assessed the effects of nimodipine, a dihydropyridine calcium channel antagonist, on mice 3 days after SAH. The functions of GS were assessed by immunofluorescence and western blot. The effects of nimodipine were assessed behaviorally. Concurrently, correlation analysis was performed for the functions of GS, immunofluorescence and behavioral function. Our results indicated that nimodipine improved GS function and attenuated neurological deficits and brain edema in mice with SAH. Activation of the cAMP/PKA pathway was involved in this process. GS function was closely associated with perivascular AQP4 polarization, cortical GFAP/AQP4 expression, brain edema and neurobehavioral function. In conclusion, this study shows for the first time that nimodipine plays a neuroprotective role in the period of EBI after SAH in mice through the GS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet (London, England) 389(10069):655–666

    Article  Google Scholar 

  2. Petridis AK, Kamp MA, Cornelius JF, Beez T, Beseoglu K, Turowski B, Steiger HJ (2017) Aneurysmal Subarachnoid Hemorrhage. Deutsches Arzteblatt Int 114(13):226–236

    Google Scholar 

  3. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4(4):432–446

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sabri M, Lass E, Macdonald RL (2013) Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat 2013:394036

    PubMed  PubMed Central  Google Scholar 

  5. Gris T, Laplante P, Thebault P, Cayrol R, Najjar A, Joannette-Pilon B, Brillant-Marquis F, Magro E, English SW, Lapointe R et al (2019) Innate immunity activation in the early brain injury period following subarachnoid hemorrhage. J Neuroinflammation 16(1):253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97(1):14–37

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schampel A, Volovitch O, Koeniger T, Scholz CJ, Jörg S, Linker RA, Wischmeyer E, Wunsch M, Hell JW, Ergün S et al (2017) Nimodipine fosters remyelination in a mouse model of multiple sclerosis and induces microglia-specific apoptosis. Proc Natl Acad Sci USA 114(16):E3295-e3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lawton MT, Vates GE (2017) Subarachnoid hemorrhage. N Engl J Med 377(3):257–266

    Article  PubMed  Google Scholar 

  9. Carlson AP, Hänggi D, Wong GK, Etminan N, Mayer SA, Aldrich F, Diringer MN, Schmutzhard E, Faleck HJ, Ng D et al (2020) Single-dose intraventricular nimodipine microparticles versus oral nimodipine for aneurysmal subarachnoid hemorrhage. Stroke 51(4):1142–1149

    Article  CAS  PubMed  Google Scholar 

  10. Carlson AP, Hänggi D, Macdonald RL, Shuttleworth CW (2020) Nimodipine reappraised: an old drug with a future. Curr Neuropharmacol 18(1):65–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Macdonald RL (2016) Origins of the concept of vasospasm. Stroke 47(1):e11-15

    Article  PubMed  Google Scholar 

  12. Maher M, Schweizer TA, Macdonald RL (2020) Treatment of spontaneous subarachnoid hemorrhage: guidelines and gaps. Stroke 51(4):1326–1332

    Article  PubMed  Google Scholar 

  13. Neifert SN, Chapman EK, Martini ML, Shuman WH, Schupper AJ, Oermann EK, Mocco J, Macdonald RL (2021) Aneurysmal subarachnoid hemorrhage: the last decade. Transl Stroke Res 12(3):428–446

    Article  PubMed  Google Scholar 

  14. Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mestre H, Mori Y, Nedergaard M (2020) The brain’s glymphatic system: current controversies. Trends Neurosci 43(7):458–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rasmussen MK, Mestre H, Nedergaard M (2018) The glymphatic pathway in neurological disorders. Lancet Neurol 17(11):1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hablitz LM, Pla V, Giannetto M, Vinitsky HS, Staeger FF, Metcalfe T, Nguyen R, Benrais A, Nedergaard M (2020) Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 11(1):4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34(49):16180–16193

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, Regan S, Kasper T, Peng S, Ding F et al (2016) Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 93:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang M, Ding F, Deng S, Guo X, Wang W, Iliff JJ, Nedergaard M (2017) Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci 37(11):2870–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pu T, Zou W, Feng W, Zhang Y, Wang L, Wang H, Xiao M (2019) Persistent malfunction of glymphatic and meningeal lymphatic drainage in a mouse model of subarachnoid hemorrhage. Exp Neurobiol 28(1):104–118

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, Alper SL, Lundgaard I, Nedergaard M, Kahle KT (2020) Glymphatic system impairment in Alzheimer’s Disease And Idiopathic Normal Pressure Hydrocephalus. Trends Mol Med 26(3):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33(46):18190–18199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scriabine A, van den Kerckhoff W (1988) Pharmacology of nimodipine: A review. Ann NY Acad Sci 522:698–706

    Article  CAS  PubMed  Google Scholar 

  27. Lin CL, Calisaneller T, Ukita N, Dumont AS, Kassell NF, Lee KS (2003) A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosci Methods 123(1):89–97

    Article  PubMed  Google Scholar 

  28. Marcantoni M, Fuchs A, Löw P, Bartsch D, Kiehn O, Bellardita C (2020) Early delivery and prolonged treatment with nimodipine prevents the development of spasticity after spinal cord injury in mice. Sci Transl Med 12:539

    Article  Google Scholar 

  29. Liu FY, Cai J, Wang C, Ruan W, Guan GP, Pan HZ, Li JR, Qian C, Chen JS, Wang L et al (2018) Fluoxetine attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage: a possible role for the regulation of TLR4/MyD88/NF-κB signaling pathway. J Neuroinflammation 15(1):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsumura K, Kumar TP, Guddanti T, Yan Y, Blackburn SL, McBride DW (2019) Neurobehavioral deficits after subarachnoid hemorrhage in mice: sensitivity analysis and development of a new composite score. J Am Heart Assoc 8(8):11699

    Article  Google Scholar 

  31. Goulay R, Flament J, Gauberti M, Naveau M, Pasquet N, Gakuba C, Emery E, Hantraye P, Vivien D, Aron-Badin R et al (2017) Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke 48(8):2301–2305

    Article  PubMed  Google Scholar 

  32. Gaberel T, Gakuba C, Goulay R, De Lizarrondo SM, Hanouz JL, Emery E, Touze E, Vivien D, Gauberti M (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45(10):3092–3096

    Article  CAS  PubMed  Google Scholar 

  33. Fang Y, Shi H, Ren R, Huang L, Okada T, Lenahan C, Gamdzyk M, Travis ZD, Lu Q, Tang L et al (2020) Pituitary adenylate cyclase-activating polypeptide attenuates brain edema by protecting blood-brain barrier and glymphatic system after subarachnoid hemorrhage in rats. Neurotherapeutics 17(4):1954–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, Ahmed Z, Fisher A, Meftah S, Murray TK et al (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143(8):2576–2593

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nedergaard M, Goldman SA (2020) Glymphatic failure as a final common pathway to dementia. Science (New York, NY) 370(6512):50–56

    Article  CAS  Google Scholar 

  36. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, Park JW, Bankiewicz K (2006) The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Therapy 14(1):69–78

    Article  CAS  Google Scholar 

  37. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326(1):47–63

    Article  CAS  PubMed  Google Scholar 

  38. Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ et al (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Life 7:e40070

    Google Scholar 

  39. Liu E, Peng X, Ma H, Zhang Y, Yang X, Zhang Y, Sun L, Yan J (2020) The Involvement of Aquaporin-4 in the Interstitial Fluid Drainage Impairment Following Subarachnoid Hemorrhage. Front Aging Neurosc 12:611494

    Article  CAS  Google Scholar 

  40. Vandebroek A, Yasui M (2020) Regulation of AQP4 in the central nervous system. Int J Mol Sci 21(5):1603

    Article  CAS  PubMed Central  Google Scholar 

  41. Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278(1):F13-28

    Article  CAS  PubMed  Google Scholar 

  42. Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72(2):262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Warth A, Mittelbronn M, Wolburg H (2005) Redistribution of the water channel protein aquaporin-4 and the K+ channel protein Kir4.1 differs in low- and high-grade human brain tumors. Acta Neuropathol 109(4):418–426

    Article  CAS  PubMed  Google Scholar 

  44. Maugeri R, Schiera G, Di Liegro CM, Fricano A, Iacopino DG, Di Liegro I (2016) Aquaporins and brain tumors. Int J Mol Sci 17(7):1029

    Article  PubMed Central  Google Scholar 

  45. Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S, Logan A, Kreida S et al (2020) Targeting aquaporin-4 subcellular localization to treat central nervous system Edema. Cell 181(4):784-799.e719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (No. 20JCZDJC00300), Tianjin Medical University Clinical Research Program (No. 2018kylc008).

Author information

Authors and Affiliations

Authors

Contributions

(I) Experimental design: XY; (II) Functional measurement of the glymphatic system: CH and QL; (III) Immunofluorescence and WB of AQP4 and GFAP: HZ and WW; (IV) SAH Mouse modeling: BQ; (V) Behavioral experiments in mice and measure the Blood Pressure: JL; (VI) Statistical analysis: XC and WR; (VII) Manuscript writing: All authors; (VIII) Final approval of manuscript: All authors.

Corresponding author

Correspondence to Xinyu Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Liu, Q., Zhang, H. et al. Nimodipine Attenuates Early Brain Injury by Protecting the Glymphatic System After Subarachnoid Hemorrhage in Mice. Neurochem Res 47, 701–712 (2022). https://doi.org/10.1007/s11064-021-03478-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03478-9

Keywords

Navigation