Skip to main content

Advertisement

Log in

Cell Death Mechanisms in Cerebral Ischemia–Reperfusion Injury

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ischemic stroke is one of the major causes of morbidity and mortality, affecting millions of people worldwide. Inevitably, the interruption of cerebral blood supply after ischemia may promote a cascade of pathophysiological processes. Moreover, the subsequent restoration of blood flow and reoxygenation may further aggravate brain tissue injury. Although recombinant tissue plasminogen activator (rt-PA) is the only approved therapy for restoring blood perfusion, the reperfusion injury and the narrow therapeutic time window restrict its application for most stroke patients. Increasing evidence indicates that multiple cell death mechanisms are relevant to cerebral ischemia–reperfusion injury, including apoptosis, necrosis, necroptosis, autophagy, pyroptosis, ferroptosis, and so on. Therefore, it is crucial to comprehend various cell death mechanisms and their interactions. In this review, we summarize the various signaling pathways underlying cerebral ischemia–reperfusion injury and elaborate on the crosstalk between the different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

There are no data associated with this article.

Abbreviations

AIF:

Apoptosis-inducing factor

AMPK:

AMP-activated protein kinase

Bcl-2:

B-cell lymphoma 2

CMA:

Chaperone-mediated autophagy

CypD:

Cyclophilin D

DISC:

Death-inducing signaling complex

ER:

Endoplasmic reticulum

FADD:

Fas-associated death domain

FasL:

Fas ligand

GPX4:

Glutathione peroxidase 4

GSH:

Glutathione

HMGB1:

High mobility group box-1

HSP90:

Heat shock protein 90

IL-1β:

Interleukin-1β

I/R:

Ischemia–reperfusion

JNK1:

C-Jun N-termin

3-MA:

3-Methyladenine

MAPK:

Mitogen-activated protein kinase

MCAO/R:

Middle cerebral artery occlusion/reperfusion

MLKL:

Mixed lineage kinase domain-like protein

MPT:

Mitochondrial permeability transition

MPTP:

Mitochondrial permeability transition pore

mTORC1:

Mammalian targets of rapamycin complex 1

NLRP3:

NOD-like receptor thermal protein domain associated protein

OGD/R:

Oxygen–glucose deprivation and reperfusion

PARP-1:

Poly(ADP-ribose) polymerase-1

PCD:

Programmed cell death

PI3K:

Phosphatidylinositol 3-kinase

RIPK1:

Receptor-interacting protein kinase-1

RIPK3:

Receptor-interacting protein kinase-3

ROS:

Reactive oxygen species

rt-PA:

Recombinant tissue plasminogen activator

SD:

Sprague–Dawley

TNF:

Tumor necrosis

TNFR1:

TNF-α receptor 1

TRADD:

TNF-α receptor-associated death domain

TRAIL:

TNF-related apoptosis-inducing ligand

ULK:

Unc-51-like kinase

References

  1. GBD (2016) Stroke Collaborators (2019) Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:439–458. https://doi.org/10.1016/S1474-4422(19)30034-1

    Article  Google Scholar 

  2. Powers WJ (2020) Acute ischemic stroke. N Engl J Med 383:252–260. https://doi.org/10.1056/NEJMcp1917030

    Article  PubMed  Google Scholar 

  3. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP, Council AHAS (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/ American Stroke Association. Stroke 40:2945–2948. https://doi.org/10.1161/STROKEAHA.109.192535

    Article  PubMed  PubMed Central  Google Scholar 

  4. IST-3 Collaborative Group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, Innes K, Venables G, Czlonkowska A, Kobayashi A, Ricci S, Murray V, Berge E, Slot KB, Hankey GJ, Correia M, Peeters A, Matz K, Lyrer P, Gubitz G, Phillips SJ, Arauz A (2012) The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): A randomised controlled trial. Lancet 379:2352–2363. https://doi.org/10.1016/S0140-6736(12)60768-5

    Article  CAS  Google Scholar 

  5. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, Veeresh P, Kotian V, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P (2020) Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res 11:1185–1202. https://doi.org/10.1007/s12975-020-00806-z

    Article  PubMed  Google Scholar 

  7. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7:a006080. https://doi.org/10.1101/cshperspect.a006080

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS (2012) miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 60:1888–1895. https://doi.org/10.1002/glia.22404

    Article  PubMed  Google Scholar 

  10. Volkmann N, Marassi FM, Newmeyer DD, Hanein D (2014) The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ 21:206–215. https://doi.org/10.1038/cdd.2013.153

    Article  PubMed  CAS  Google Scholar 

  11. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63. https://doi.org/10.1038/nrm3722

    Article  PubMed  CAS  Google Scholar 

  12. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809. https://doi.org/10.1038/35037739

    Article  PubMed  CAS  Google Scholar 

  13. Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T (2016) Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J 283:2690–2700. https://doi.org/10.1111/febs.13527

    Article  PubMed  CAS  Google Scholar 

  14. Pang Q, Zhao Y, Chen X, Zhao K, Zhai Q, Tu F (2018) Apigenin protects the brain against ischemia/reperfusion injury via caveolin-1/VEGF in vitro and in vivo. Oxid Med Cell Longev 2018:7017204. https://doi.org/10.1155/2018/7017204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wu L, Jiang C, Kang Y, Dai Y, Fang W, Huang P (2020) Curcumin exerts protective effects against hypoxia-reoxygenation injury via the enhancement of apurinic/apyrimidinic endonuclease 1 in SH-SY5Y cells: Involvement of the PI3K/AKT pathway. Int J Mol Med 45:993–1004. https://doi.org/10.3892/ijmm.2020.4483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Adams JM, Cory S (2007) Bcl-2-regulated apoptosis switch: mechanism and therapeutic potential. Curr Opin Immunol 19:448–496. https://doi.org/10.1016/j.coi.2007.05.004

    Article  CAS  Google Scholar 

  17. Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: Multiple neuroprotective opportunities. Mol Neurobiol 37:7–38. https://doi.org/10.1007/s12035-007-8013-9

    Article  PubMed  CAS  Google Scholar 

  18. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470. https://doi.org/10.1016/s1097-2765(02)00482-3

    Article  PubMed  CAS  Google Scholar 

  19. Liu J, Li J, Yang Y, Wang X, Zhang Z, Zhang L (2014) Neuronal apoptosis in cerebral ischemia/reperfusion area following electrical stimulation of fastigial nucleus. Neural Regen Res 9:727–734. https://doi.org/10.4103/1673-5374.131577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Luo Y, Cao G, Pei W, O’Horo C, Graham SH, Chen J (2002) Induction of caspase-activated deoxyribonuclease activity after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 22:15–20. https://doi.org/10.1097/00004647-200201000-00002

    Article  PubMed  CAS  Google Scholar 

  21. Cao G, Luo Y, Nagayama T, Pei W, Stetler RA, Graham SH, Chen J (2002) Cloning and characterization of rat caspase-9: Implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia. J Cereb Blood Flow Metab 22:534–546. https://doi.org/10.1097/00004647-200205000-00005

    Article  PubMed  CAS  Google Scholar 

  22. Wang GY, Wang TZ, Zhang YY, Li F, Yu BY, Kou JP (2020) NMMHC IIA inhibition ameliorates cerebral ischemic/reperfusion-induced neuronal apoptosis through Caspase-3/ROCK1/MLC pathway. Drug Des Devel Ther 14:13–25. https://doi.org/10.2147/DDDT.S230882

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xu F, Ma R, Zhang G, Wang S, Yin J, Wang E, Xiong E, Zhang Q, Li Y (2018) Estrogen and propofol combination therapy inhibits endoplasmic reticulum stress and remarkably attenuates cerebral ischemia-reperfusion injury and OGD injury in hippocampus. Biomed Pharmacother 108:1596–1606. https://doi.org/10.1016/j.biopha.2018.09.167

    Article  PubMed  CAS  Google Scholar 

  24. Mokhtari Sangdehi SR, Hajizadeh Moghaddam A, Ranjbar M (2021) Anti-apoptotic effect of silymarin-loaded chitosan nanoparticles on hippocampal caspase-3 and Bcl-2 expression following cerebral ischemia/reperfusion injury. Int J Neurosci 21:1–8. https://doi.org/10.1080/00207454.2020.1860971

    Article  CAS  Google Scholar 

  25. Wen L, Liu L, Tong L, Li J, Zhang K, Zhang Q, Li C (2019) NDRG4 prevents cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis. Genes Dis 6:448–454. https://doi.org/10.1016/j.gendis.2019.01.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Luo SY, Li R, Le ZY, Li QL, Chen ZW (2017) Anfibatide protects against rat cerebral ischemia/reperfusion injury via TLR4/JNK/caspase-3 pathway. Eur J Pharmacol 807:127–137. https://doi.org/10.1016/j.ejphar.2017.04.002

    Article  PubMed  CAS  Google Scholar 

  27. Teertam SK, Jha S, Prakash babu P (2020) Up-regulation of Sirt1/miR-149-5p signaling may play a role in resveratrol induced protection against ischemia via p53 in rat brain. J Clin Neurosci 72:402–411. https://doi.org/10.1016/j.jocn.2019.11.043

    Article  PubMed  CAS  Google Scholar 

  28. Wang X, Simpson ER, Brown KA (2015) p53: Protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res 75:5001–5007. https://doi.org/10.1158/0008-5472.CAN-15-0563

    Article  PubMed  CAS  Google Scholar 

  29. Uzdensky AB (2019) Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24:687–702. https://doi.org/10.1007/s10495-019-01556-6

    Article  PubMed  CAS  Google Scholar 

  30. Liu Y, Fu N, Su J, Wang X, Li X (2019) Rapid enkephalin delivery using exosomes to promote neurons recovery in ischemic stroke by inhibiting neuronal p53/caspase-3. Biomed Res Int 2019:4273290. https://doi.org/10.1155/2019/4273290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhao J, Dong Y, Chen X, Xiao X, Tan B, Chen G, Hu J, Qi D, Li X, Xie R (2021) p53 inhibition protects against neuronal ischemia/reperfusion injury by the p53/PRAS40/mTOR pathway. Oxid Med Cell Longev 2021:4729465. https://doi.org/10.1155/2021/4729465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shao X, Yang X, Shen J, Chen S, Jiang X, Wang Q, Di Q (2020) TNF-α-induced p53 activation induces apoptosis in neurological injury. J Cell Mol Med 24:6796–6803. https://doi.org/10.1111/jcmm.15333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yan H, Huang W, Rao J, Yuan J (2021) miR-21 regulates ischemic neuronal injury via the p53/Bcl-2/Bax signaling pathway. Aging (Albany NY) 13:22242–22255. https://doi.org/10.18632/aging.203530

    Article  PubMed  CAS  Google Scholar 

  34. Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29:684–688. https://doi.org/10.1042/0300-5127:0290684

    Article  PubMed  CAS  Google Scholar 

  35. Tisato V, Gonelli A, Voltan R, Secchiero P, Zauli G (2016) Clinical perspectives of TRAIL: Insights into central nervous system disorders. Cell Mol Life Sci 73:2017–2027. https://doi.org/10.1007/s00018-016-2164-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Raghay K, Akki R, Bensaid D, Errami M (2020) Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides 124:170226. https://doi.org/10.1016/j.peptides.2019.170226

    Article  PubMed  CAS  Google Scholar 

  37. Esposito E, Cuzzocrea S (2009) TNF-alpha as a therapeutic target in inflammatory diseases, ischemia- reperfusion injury and trauma. Curr Med Chem 16:3152–3167. https://doi.org/10.2174/092986709788803024

    Article  PubMed  CAS  Google Scholar 

  38. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65. https://doi.org/10.1038/sj.cdd.4401189

    Article  PubMed  CAS  Google Scholar 

  39. Shi Y, Chen X, Liu J, Fan X, Jin Y, Gu J, Liang J, Liang X, Wang C (2021) Isoquercetin improves inflammatory response in rats following ischemic stroke. Front Neurosci 15:555543. https://doi.org/10.3389/fnins.2021.555543

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhi SM, Fang GX, Xie XM, Liu LH, Yan J, Liu DB, Yu HY (2020) Melatonin reduces OGD/R-induced neuron injury by regulating redox/inflammation/ apoptosis signaling. Eur Rev Med Pharmacol Sci 24:1524–1536. https://doi.org/10.26355/eurrev_202002_20211

    Article  PubMed  Google Scholar 

  41. Ferrarese C, Mascarucci P, Zoia C, Cavarretta R, Frigo M, Begni B, Sarinella F, Frattola L, De Simoni MG (1999) Increased cytokine release from peripheral blood cells after acute stroke. J Cereb Blood Flow Metab 19:1004–1009. https://doi.org/10.1097/00004647-199909000-00008

    Article  PubMed  CAS  Google Scholar 

  42. Deb P, Sharma S, Hassan KM (2010) Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 17:197–218. https://doi.org/10.1016/j.pathophys.2009.12.001

    Article  PubMed  CAS  Google Scholar 

  43. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548. https://doi.org/10.1016/j.cell.2012.05.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lu LQ, Tian J, Luo XJ, Peng J (2021) Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci 78:63–78. https://doi.org/10.1007/s00018-020-03587-8

    Article  PubMed  CAS  Google Scholar 

  45. Xie W, Zhou P, Sun Y, Meng X, Dai Z, Sun G, Sun X (2018) Protective effects and target network analysis of ginsenoside Rg1 in cerebral ischemia and reperfusion injury: a comprehensive overview of experimental studies. Cells 7:270. https://doi.org/10.3390/cells7120270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Meng X, Xie W, Xu Q, Liang T, Xu X, Sun G, Sun X (2018) Neuroprotective effects of Radix Scrophulariae on cerebral ischemia and reperfusion injury via MAPK pathways. Molecules 23:2401. https://doi.org/10.3390/molecules23092401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669. https://doi.org/10.1016/j.ceb.2004.09.011

    Article  PubMed  CAS  Google Scholar 

  48. de Almagro MC, Vucic D (2015) Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol 39:56–62. https://doi.org/10.1016/j.semcdb.2015.02.002

    Article  PubMed  CAS  Google Scholar 

  49. Chen Y, Zhang L, Yu H, Song K, Shi J, Chen L, Cheng J (2018) Necrostatin-1 improves long-term functional recovery through protecting oligodendrocyte precursor cells after transient focal cerebral ischemia in mice. Neuroscience 371:229–241. https://doi.org/10.1016/j.neuroscience.2017.12.007

    Article  PubMed  CAS  Google Scholar 

  50. Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY (2015) Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res 1609:63–71. https://doi.org/10.1016/j.brainres.2015.03.024

    Article  PubMed  CAS  Google Scholar 

  51. Amani H, Mostafavi E, Alebouyeh MR, Arzaghi H, Akbarzadeh A, Pazoki-Toroudi H, Webster TJ (2019) Would colloidal gold nanocarriers present an effective diagnosis or treatment for ischemic stroke? Int J Nanomed 14:8013–8031. https://doi.org/10.2147/IJN.S210035

    Article  CAS  Google Scholar 

  52. Zhang S, Tang MB, Luo HY, Shi CH, Xu YM (2017) Necroptosis in neurodegenerative diseases: a potential therapeutic target. Cell Death Dis 8:e2905. https://doi.org/10.1038/cddis.2017.286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yang M, Lv Y, Tian X, Lou J, An R, Zhang Q, Li M, Xu L, Dong Z (2017) Neuroprotective effect of β-caryophyllene on cerebral ischemia-reperfusion injury via regulation of necroptotic neuronal death and inflammation: in vivo and in vitro. Front Neurosci 11:583. https://doi.org/10.3389/fnins.2017.00583

    Article  PubMed  PubMed Central  Google Scholar 

  54. Grootjans S, Vanden Berghe T, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 24:1184–1195. https://doi.org/10.1038/cdd.2017.65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Liao S, Apaijai N, Chattipakorn N, Chattipakorn SC (2020) The possible roles of necroptosis during cerebral ischemia and ischemia/reperfusion injury. Arch Biochem Biophys 695:108629. https://doi.org/10.1016/j.abb.2020.108629

    Article  PubMed  CAS  Google Scholar 

  56. Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, Bernreuther C, Glatzel M, Cheng YL, Thundyil J, Widiapradja A, Lok KZ, Foo SL, Wang YC, Li YI, Drummond GR, Basta M, Magnus T, Jo DG, Mattson MP, Sobey CG, Arumugam TV (2013) Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 4:1–10. https://doi.org/10.1038/cddis.2013.326

    Article  CAS  Google Scholar 

  57. Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, Bitto A, Crea G, Pisani A, Squadrito F, Trichilo V, Bruschetta D, Micali A, Altavilla D (2016) ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev 2016:2183026. https://doi.org/10.1155/2016/2183026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Teng X, Chen W, Liu Z, Feng T, Li H, Ding S, Chen Y, Zhang Y, Tang X, Geng D (2018) NLRP3 inflammasome is involved in Q-VD-OPH induced necroptosis following cerebral ischemia-reperfusion injury. Neurochem Res 43:1200–1209. https://doi.org/10.1007/s11064-018-2537-4

    Article  PubMed  CAS  Google Scholar 

  59. Deng XX, Li SS, Sun FY (2019) Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis 10:807–817. https://doi.org/10.14336/AD.2018.0728

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhan L, Lu Z, Zhu X, Xu W, Li L, Li X, Chen S, Sun W, Xu E (2019) Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIa inactivation in adult rats. FASEB J 33:1313–1329. https://doi.org/10.1096/fj.201800111RR

    Article  PubMed  CAS  Google Scholar 

  61. Yang XS, Yi TL, Zhang S, Xu ZW, Yu ZQ, Sun HT, Yang C, Tu Y, Cheng SX (2017) Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury. Sci Rep 7:5818. https://doi.org/10.1038/s41598-017-06088-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Naito MG, Xu D, Amin P, Lee J, Wang H, Li W, Kelliher M, Pasparakis M, Yuan J (2020) Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci USA 117:4959–4970. https://doi.org/10.1073/pnas.1916427117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Li X, Cheng S, Hu H, Zhang X, Xu J, Wang R, Zhang P (2020) Progranulin protects against cerebral ischemia-reperfusion (I/R) injury by inhibiting necroptosis and oxidative stress. Biochem Biophys Res Commun 521:569–576. https://doi.org/10.1016/j.bbrc.2019.09.111

    Article  PubMed  CAS  Google Scholar 

  64. Hu W, Wu X, Yu D, Zhao L, Zhu X, Li X, Huang T, Chu Z, Xu Y (2020) Regulation of JNK signaling pathway and RIPK3/AIF in necroptosis-mediated global cerebral ischemia/ reperfusion injury in rats. Exp Neurol 331:113374. https://doi.org/10.1016/j.expneurol.2020.113374

    Article  PubMed  CAS  Google Scholar 

  65. Xu Y, Wang J, Song X, Qu L, Wei R, He F, Wang K, Luo B (2016) RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep 6:29362. https://doi.org/10.1038/srep29362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yang R, Hu K, Chen J, Zhu S, Li L, Lu H, Li P, Dong R (2017) Necrostatin-1 protects hippocampal neurons against ischemia/reperfusion injury via the RIP3/DAXX signaling pathway in rats. Neurosci Lett 651:207–215. https://doi.org/10.1016/j.neulet.2017.05.016

    Article  PubMed  CAS  Google Scholar 

  67. Tian J, Guo S, Chen H, Peng JJ, Jia MM, Li NS, Zhang XJ, Yang J, Luo XJ, Peng J (2018) Combination of Emricasan with Ponatinib synergistically reduces ischemia/reperfusion injury in rat brain through simultaneous prevention of apoptosis and necroptosis. Transl Stroke Res 9:382–392. https://doi.org/10.1007/s12975-017-0581-z

    Article  PubMed  CAS  Google Scholar 

  68. Nikseresht S, Khodagholi F, Ahmadiani A (2019) Protective effects of ex-527 on cerebral ischemia-reperfusion injury through necroptosis signaling pathway attenuation. J Cell Physiol 234:1816–1826. https://doi.org/10.1002/jcp.27055

    Article  PubMed  CAS  Google Scholar 

  69. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY (2018) Autophagy in ischemic stroke. Prog Neurobiol 163–164:98–117. https://doi.org/10.1016/j.pneurobio.2018.01.001

    Article  PubMed  CAS  Google Scholar 

  71. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  PubMed  CAS  Google Scholar 

  72. Chen WQ, Sun YY, Liu KY, Sun XJ (2014) Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res 9:1210–1216. https://doi.org/10.4103/1673-5374.135329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Feng J, Chen X, Shen J (2017) Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke. Expert Opin Ther Targets 21:305–317. https://doi.org/10.1080/14728222.2017.1281250

    Article  PubMed  CAS  Google Scholar 

  74. Yang H, Li L, Zhou K, Wang Y, Guan T, Chai C, Kou J, Yu B, Yan Y (2016) Shengmai injection attenuates the cerebral ischemia/reperfusion induced autophagy via modulation of the AMPK, mTOR and JNK pathways. Pharm Biol 54:2288–2297. https://doi.org/10.3109/13880209.2016.1155625

    Article  PubMed  CAS  Google Scholar 

  75. Huang YG, Tao W, Yang SB, Wang JF, Mei ZG, Feng ZT (2019) Autophagy: novel insights into therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury. Neural Regen Res 14:954–961. https://doi.org/10.4103/1673-5374.250569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Fan YY, Hu WW, Nan F, Chen Z (2017) Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int 107:43–56. https://doi.org/10.1016/j.neuint.2017.01.006

    Article  PubMed  CAS  Google Scholar 

  77. Pan J, Li X, Guo F, Yang Z, Zhang L, Yang C (2019) Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep. https://doi.org/10.1042/BSR20191452

  78. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, Wang G, Chen Z (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9:1321–1333. https://doi.org/10.4161/auto.25132

    Article  PubMed  CAS  Google Scholar 

  79. Poh L, Kang SW, Baik SH, Ng GYQ, She DT, Balaganapathy P, Dheen ST, Magnus T, Gelderblom M, Sobey CG, Koo EH, Fann DY, Arumugam TV (2019) Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun 75:34–47. https://doi.org/10.1016/j.bbi.2018.09.001

    Article  PubMed  CAS  Google Scholar 

  80. Kono H, Kimura Y, Latz E (2014) Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol 30:91–98. https://doi.org/10.1016/j.coi.2014.09.001

    Article  PubMed  CAS  Google Scholar 

  81. Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265:35–52. https://doi.org/10.1111/imr.12286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Thakkar R, Wang R, Sareddy G, Wang J, Thiruvaiyaru D, Vadlamudi R, Zhang Q, Brann D (2016) NLRP3 inflammasome activation in the brain after global cerebral ischemia and regulation by 17β-estradiol. Oxid Med Cell Longev 2016:8309031. https://doi.org/10.1155/2016/8309031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Dong Z, Pan K, Pan J, Peng Q, Wang Y (2018) The possibility and molecular mechanisms of cell pyroptosis after cerebral ischemia. Neurosci Bull 34:1131–1136. https://doi.org/10.1007/s12264-018-0294-7

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ma C, Liu S, Zhang S, Xu T, Yu X, Gao Y, Zhai C, Li C, Lei C, Fan S, Chen Y, Tian H, Wang Q, Cheng F, Wang X (2018) Evidence and perspective for the role of the NLRP3 inflammasome signaling pathway in ischemic stroke and its therapeutic potential (Review). Int J Mol Med 42:2979–2990. https://doi.org/10.3892/ijmm.2018.3911

    Article  PubMed  CAS  Google Scholar 

  85. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34:660–667. https://doi.org/10.1038/jcbfm.2013.242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260. https://doi.org/10.1111/j.1755-5949.2012.00295.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286. https://doi.org/10.1038/nature10759

    Article  PubMed  CAS  Google Scholar 

  88. Sun H, Li JJ, Feng ZR, Liu HY, Meng AG (2020) MicroRNA-124 regulates cell pyroptosis during cerebral ischemia-reperfusion injury by regulating STAT3. Exp Ther Med 20:227. https://doi.org/10.3892/etm.2020.9357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Liu H, Wu X, Luo J, Zhao L, Li X, Guo H, Bai H, Cui W, Guo W, Feng D, Qu Y (2020) Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Exp Neurol 329:113302. https://doi.org/10.1016/j.expneurol.2020.113302

    Article  PubMed  CAS  Google Scholar 

  90. Qiu J, Wang M, Zhang J, Cai Q, Lu D, Li Y, Dong Y, Zhao T, Chen H (2016) The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol 40:492–500. https://doi.org/10.1016/j.intimp.2016.09.024

    Article  PubMed  CAS  Google Scholar 

  91. García-Yébenes I, Sobrado M, Moraga A, Zarruk JG, Romera VG, Pradillo JM, Perez de la Ossa N, Moro MA, Dávalos A, Lizasoain I (2012) Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int 61:1364–1369. https://doi.org/10.1016/j.neuint.2012.09.014

    Article  PubMed  CAS  Google Scholar 

  92. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379. https://doi.org/10.1038/cdd.2015.158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209. https://doi.org/10.1007/s00018-016-2194-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  PubMed  CAS  Google Scholar 

  95. Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, Barros PL, Levy D, Bydlowski SP (2020) Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci 21:1–27. https://doi.org/10.3390/ijms21228765

    Article  CAS  Google Scholar 

  96. Guo XW, Lu Y, Zhang H, Huang JQ, Li YW (2021) PIEZO1 might be involved in cerebral ischemia-reperfusion injury through ferroptosis regulation: a hypothesis. Med Hypotheses 146:110327. https://doi.org/10.1016/j.mehy.2020.110327

    Article  PubMed  CAS  Google Scholar 

  97. Yuan Y, Zhai Y, Chen J, Xu X, Wang H (2021) Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating nrf2/slc7a11/gpx4 axis. Biomolecules 11:923. https://doi.org/10.3390/biom11070923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Guan X, Li X, Yang X, Yan J, Shi P, Ba L, Cao Y, Wang P (2019) The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci 235:116795. https://doi.org/10.1016/j.lfs.2019.116795

    Article  PubMed  CAS  Google Scholar 

  99. Guan X, Li Z, Zhu S, Cheng M, Ju Y, Ren L, Yang G, Min D (2021) Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils. Life Sci 264:118660. https://doi.org/10.1016/j.lfs.2020.118660

    Article  PubMed  CAS  Google Scholar 

  100. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, Hondal RJ, Mukherjee S, Cave JW, Sagdullaev BT, Karuppagounder SS, Ratan RR (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177:1262-1279.e25. https://doi.org/10.1016/j.cell.2019.03.032

    Article  PubMed  CAS  Google Scholar 

  101. Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, Wang H, Kochanek PM, Dixon CE, Kagan VE, Bayir H (2019) Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med 47:410–418. https://doi.org/10.1097/CCM.0000000000003555

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X, Li G (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother 127:110108. https://doi.org/10.1016/j.biopha.2020.110108

    Article  PubMed  CAS  Google Scholar 

  103. Linkermann A, Stockwell BR, Krautwald S, Anders H (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14:759–767. https://doi.org/10.1038/nri3743

    Article  PubMed  CAS  Google Scholar 

  104. Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J, Tian X (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26:2284–2299. https://doi.org/10.1038/s41418-019-0299-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Chen W, Jiang L, Hu Y, Tang N, Liang N, Li XF, Chen YW, Qin H, Wu L (2021) Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis. Brain Res 1752:147216. https://doi.org/10.1016/j.brainres.2020.147216

    Article  PubMed  CAS  Google Scholar 

  106. Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A (2002) Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 22:520–525. https://doi.org/10.1097/00004647-200205000-00003

    Article  PubMed  CAS  Google Scholar 

  107. Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, Marti DL, Hoekman JD, Matthews RB, Frey WH 2nd, Panter SS (2009) Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther 330:679–686. https://doi.org/10.1124/jpet.108.149807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22:1520–1530. https://doi.org/10.1038/mp.2017.171

    Article  PubMed  CAS  Google Scholar 

  109. Bi M, Gladbach A, Van Eersel J, Ittner A, Przybyla M, van Hummel A, Chua SW, van der Hoven J, Lee WS, Müller J, Parmar J, Jonquieres GV, Stefen H, Guccione E, Fath T, Housley GD, Klugmann M, Ke YD, Ittner LM (2017) Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun 8:473. https://doi.org/10.1038/s41467-017-00618-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171:2000–2016. https://doi.org/10.1111/bph.12416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263. https://doi.org/10.1126/science.1072221

    Article  PubMed  CAS  Google Scholar 

  112. Zhong H, Song R, Pang Q, Liu Y, Zhuang J, Chen Y, Hu J, Hu J, Liu Y, Liu Z, Tang J (2018) Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis 9:932. https://doi.org/10.1038/s41419-018-0996-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Narne P, Pandey V, Simhadri PK, Phanithi PB (2017) Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: the death knell tolls for neurons. Semin Cell Dev Biol 63:154–166. https://doi.org/10.1016/j.semcdb.2016.11.007

    Article  PubMed  CAS  Google Scholar 

  114. Li X, Ling Y, Cao Z, Shen J, Chen S, Liu W, Yuan B, Wen S (2018) Targeting intestinal epithelial cell–programmed necrosis alleviates tissue injury after intestinal ischemia/reperfusion in rats. J Surg Res 225:108–117. https://doi.org/10.1016/j.jss.2018.01.007

    Article  PubMed  CAS  Google Scholar 

  115. Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: Parthanatos. Ann N Y Acad Sci 1147:233–241. https://doi.org/10.1196/annals.1427.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Krietsch J, Rouleau M, Pic É, Ethier C, Dawson TM, Dawson VL, Masson JY, Poirier GG, Gagné JP (2020) Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol Aspects Med 34:1066–1087. https://doi.org/10.1016/j.mam.2012.12.005

    Article  CAS  Google Scholar 

  117. Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, Chen R, Wang JE, Kam TI, Jeong JS, Xie Z, Neifert S, Qian J, Andrabi SA, Blackshaw S, Zhu H, Song H, Ming GL, Dawson VL, Dawson TM (2016) A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. https://doi.org/10.1126/science.aad6872

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhao H, Tang J, Chen H, Gu W, Geng H, Wang L, Wang Y (2021) 14,15-EET reduced brain injury from cerebral ischemia and reperfusion via suppressing neuronal parthanatos. Int J Mol Sci 22:9660. https://doi.org/10.3390/ijms22189660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Chen G, Li C, Zhang L, Yang J, Meng H, Wan H, He Y (2022) Hydroxysafflor yellow A and anhydrosafflor yellow B alleviate ferroptosis and parthanatos in PC12 cells injured by OGD/R. Free Radic Biol Med 179:1–10. https://doi.org/10.1016/j.freeradbiomed.2021.12.262

    Article  PubMed  CAS  Google Scholar 

  120. Hamby AM, Suh SW, Kauppinen TM, Swanson RA (2007) Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 38:632–636. https://doi.org/10.1161/01.STR.0000250742.61241.79

    Article  PubMed  CAS  Google Scholar 

  121. Li WH, Yang YL, Cheng X, Liu M, Zhang SS, Wang YH, Du GH (2020) Baicalein attenuates caspase-independent cells death via inhibiting PARP-1 activation and AIF nuclear translocation in cerebral ischemia/reperfusion rats. Apoptosis 25:354–369. https://doi.org/10.1007/s10495-020-01600-w

    Article  PubMed  CAS  Google Scholar 

  122. Hu G, Wu Z, Yang F, Zhao H, Liu X, Deng Y, Shi M, Zhao G (2013) Ginsenoside Rd blocks AIF mitochondrio-nuclear translocation and NF-κB nuclear accumulation by inhibiting poly(ADP-ribose) polymerase-1 after focal cerebral ischemia in rats. Neurol Sci 34:2101–2106. https://doi.org/10.1007/s10072-013-1344-6

    Article  PubMed  Google Scholar 

  123. Ghafouri-Fard S, Shoorei H, Taheri M (2020) Non-coding RNAs participate in the ischemia-reperfusion injury. Biomed Pharmacother 129:110419. https://doi.org/10.1016/j.biopha.2020.110419

    Article  PubMed  CAS  Google Scholar 

  124. Kinnally KW, Peixoto PM, Ryu SY, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813:616–622. https://doi.org/10.1016/j.bbamcr.2010.09.013

    Article  PubMed  CAS  Google Scholar 

  125. Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13:7254–7263. https://doi.org/10.1158/1078-0432.CCR-07-1598

    Article  PubMed  CAS  Google Scholar 

  126. Antignani A, Youle RJ (2006) How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 18:685–689. https://doi.org/10.1016/j.ceb.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  127. Puyal J, Ginet V, Clarke PGH (2013) Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage : a challenge for neuroprotection. Prog Neurobiol 105:24–48. https://doi.org/10.1016/j.pneurobio.2013.03.002

    Article  PubMed  Google Scholar 

  128. Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470. https://doi.org/10.1016/s0006-291x(03)00618-1

    Article  PubMed  CAS  Google Scholar 

  129. Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142. https://doi.org/10.1016/s0378-4274(98)00298-7

    Article  PubMed  Google Scholar 

  130. Eguchi Y, Shimizu S (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    PubMed  CAS  Google Scholar 

  131. Li X, Chen M, Yang Z, Wang W, Lin H, Xu S (2018) Selenoprotein S silencing triggers mouse hepatoma cells apoptosis and necrosis involving in intracellular calcium imbalance and ROS-mPTP-ATP. Biochim Biophys Acta 1862:2113–2123. https://doi.org/10.1016/j.bbagen.2018.07.005

    Article  CAS  Google Scholar 

  132. Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149. https://doi.org/10.1038/ni.2159

    Article  PubMed  CAS  Google Scholar 

  133. Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, Fernández-López A, Duarte CB, Carvalho AL, Santos AE (2014) Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis 68:26–36. https://doi.org/10.1016/j.nbd.2014.04.002

    Article  PubMed  CAS  Google Scholar 

  134. Arslan SÇ, Scheidereit C (2011) The prevalence of TNFα-induced necrosis over apoptosis is determined by TAK1-RIP1 interplay. PLoS ONE 6:e26069. https://doi.org/10.1371/journal.pone.0026069

    Article  PubMed  CAS  Google Scholar 

  135. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123. https://doi.org/10.1016/j.cell.2009.05.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372. https://doi.org/10.1038/nature09857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Goodall ML, Fitzwalter BE, Zahedi S, Wu M, Rodriguez D, Mulcahy-Levy JM, Green DR, Morgan M, Cramer SD, Thorburn A (2017) The autophagy machinery controls cell death switching between apoptosis and necroptosis. Dev Cell 37:337–349. https://doi.org/10.1016/j.devcel.2016.04.018

    Article  CAS  Google Scholar 

  138. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PP, Sadiq O, Rubinsztein DC (2012) Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol Cell 47:359–370. https://doi.org/10.1016/j.molcel.2012.05.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, Cao QQ, Ni H, Qin ZH, Tao LY (2010) Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res 88:2847–2858. https://doi.org/10.1002/jnr.22453

    Article  PubMed  CAS  Google Scholar 

  141. Xu M, Yang L, Rong JG, Ni Y, Gu WW, Luo Y, Ishidoh K, Katunuma N, Li ZS, Zhang HL (2014) Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia 62:855–880. https://doi.org/10.1002/glia.22645

    Article  PubMed  Google Scholar 

  142. Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer KJ, Cedillo L, Zhang Y, Li S, Kacergis MC, Webster CM, Fejes-Toth G, Naray-Fejes-Toth A, Das S, Hansen M, Haas W, Soukas AA (2019) Mitochondrial permeability uncouples elevated autophagy and lifespan extension. Cell 177:299–314. https://doi.org/10.1016/j.cell.2019.02.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Shen HM, Codogno P (2012) Autophagy is a survival force via suppression of necrotic cell death. Exp Cell Res 318:1304–1308. https://doi.org/10.1016/j.yexcr.2012.02.006

    Article  PubMed  CAS  Google Scholar 

  144. Ullman E, Fan Y, Stawowczyk M, Chen HM, Yue Z, Zong WX (2008) Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ 15:422–425. https://doi.org/10.1038/sj.cdd.4402234

    Article  PubMed  CAS  Google Scholar 

  145. Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B, Zhu YJ, Wang Q, Wang K, Luo BY (2011) Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 70:314–322. https://doi.org/10.1097/NEN.0b013e31821352bd

    Article  PubMed  CAS  Google Scholar 

  146. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100. https://doi.org/10.1016/j.semcancer.2019.03.002

    Article  PubMed  CAS  Google Scholar 

  147. Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D (2020) Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol 27:420–435. https://doi.org/10.1016/j.chembiol.2020.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y, Yang Y (2020) Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci 14:577403. https://doi.org/10.3389/fncel.2020.577403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–109. https://doi.org/10.1038/nature13148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Lonati E, Corsetto PA, Montorfano G, Zava S, Carrozzini T, Brambilla A, Botto L, Palestini P, Rizzo AM, Bulbarelli A (2019) Lipid reshaping and lipophagy are induced in a modeled ischemia-reperfusion injury of blood brain barrier. Int J Mol Sci 20:3752. https://doi.org/10.3390/ijms20153752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, Kang R, Wang X, Tang D, Dai E (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508:997–1003. https://doi.org/10.1016/j.bbrc.2018.12.039

    Article  PubMed  CAS  Google Scholar 

  152. Kang R, Zhu S, Zeh HJ, Klionsky DJ, Tang D (2018) BECN1 is a new driver of ferroptosis. Autophagy 14:2173–2175. https://doi.org/10.1080/15548627.2018.1513758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, Xie Y, Liu J, Klionsky DJ, Kroemer G, Lotze MT, Zeh HJ, Kang R, Tang D (2018) AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-activity. Curr Biol 28:2388-2399.e5. https://doi.org/10.1016/j.cub.2018.05.094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zhu S, Zhang Q, Sun X, Zeh HJ 3rd, Lotze MT, Kang R, Tang D (2017) HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res 77:1–14. https://doi.org/10.1158/0008-5472.CAN-16-1979

    Article  CAS  Google Scholar 

  155. Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H, Yuan J (2019) Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA 116:2996–3005. https://doi.org/10.1073/pnas.1819728116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Zahra Aqeela in Wuhan University of Technology for her helpful suggestions and improvements to this manuscript English editing.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81870935, JW), the Natural Science Foundation of Beijing (7214224, MJ), the Beijing Natural Science Foundation (Z200024, QW), and the Capital Health Research and Development of Special grants (2020-1-2013, QW).

Author information

Authors and Affiliations

Authors

Contributions

QZ conducted the literature review and wrote the initial draft of the manuscript. MJ, YW and QW made preliminary revisions to the manuscript. JW made critical revisions and approved the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jianping Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest concerning the work described.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Jia, M., Wang, Y. et al. Cell Death Mechanisms in Cerebral Ischemia–Reperfusion Injury. Neurochem Res 47, 3525–3542 (2022). https://doi.org/10.1007/s11064-022-03697-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03697-8

Keywords

Navigation