Skip to main content

Advertisement

Log in

Early Brain Injury, an Evolving Frontier in Subarachnoid Hemorrhage Research

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH), predominantly caused by a ruptured aneurysm, is a devastating neurological disease that has a morbidity and mortality rate higher than 50 %. Most of the traditional in vivo research has focused on the pathophysiological or morphological changes of large arteries after intracisternal blood injection. This was due to a widely held assumption that delayed vasospasm following SAH was the major cause of delayed cerebral ischemia and poor outcome. However, the results of the CONSCIOUS-1 trial implicated some other pathophysiological factors, independent of angiographic vasospasm, in contributing to the poor clinical outcome. The term early brain injury (EBI) has been coined and describes the immediate injury to the brain after SAH, before onset of delayed vasospasm. During the EBI period, a ruptured aneurysm brings on many physiological derangements such as increasing intracranial pressure, decreased cerebral blood flow, and global cerebral ischemia. These events initiate secondary injuries such as blood–brain barrier disruption, inflammation, and oxidative cascades that all ultimately lead to cell death. Given the fact that the reversal of vasospasm does not appear to improve patient outcome, it could be argued that the treatment of EBI may successfully attenuate some of the devastating secondary injuries and improve the outcome of patients with SAH. In this review, we provide an overview of the major advances in EBI after SAH research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369:306–18.

    Article  PubMed  Google Scholar 

  2. King Jr JT. Epidemiology of aneurysmal subarachnoid hemorrhage. Neuroimaging Clin N Am. 1997;7:659–68.

    PubMed  Google Scholar 

  3. Kassell NF, Sasaki T, Colohan AR, Nazar G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke. 1985;16:562–72.

    Article  PubMed  CAS  Google Scholar 

  4. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25:1342–7.

    Article  PubMed  CAS  Google Scholar 

  5. Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:399–414.

    Article  PubMed  CAS  Google Scholar 

  6. Ecker A, Riemenschneider PA. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. J Neurosurg. 1951;8:660–7.

    Article  PubMed  CAS  Google Scholar 

  7. Wilkins RH. Cerebral vasospasm. Crit Rev Neurobiol. 1990;6:51–77.

    PubMed  CAS  Google Scholar 

  8. Fergusen S, Macdonald RL. Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2007;60(4):658–67.

    Article  PubMed  Google Scholar 

  9. Fisher CM, Roberson GH, Ojemann RG. Cerebral vasospasm with ruptured saccular aneurysm—the clinical manifestations. Neurosurgery. 1977;1:245–8.

    Article  PubMed  CAS  Google Scholar 

  10. Rabinstein AA, Friedman JA, Weigand SD, McClelland RL, Fulgham JR, Manno EM, et al. Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke. 2004;35:1862–6.

    Article  PubMed  Google Scholar 

  11. Dorsch NW. Cerebral arterial spasm—a clinical review. Br J Neurosurg. 1995;9:403–12.

    Article  PubMed  CAS  Google Scholar 

  12. Megyesi JF, Vollrath B, Cook DA, Findlay JM. In vivo animal models of cerebral vasospasm: a review. Neurosurgery. 2000;46:448–61.

    Article  PubMed  CAS  Google Scholar 

  13. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou Y, Martin RD, Zhang JH. Advances in experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110:15–21.

    PubMed  Google Scholar 

  15. Koźniewska E, Michalik R, Rafałowska J, Gadamski R, Walski M, Frontczak-Baniewicz M, et al. Mechanisms of vascular dysfunction after subarachnoid hemorrhage. J Physiol Pharmacol. 2006;57 Suppl 11:145–60.

    PubMed  Google Scholar 

  16. Haley Jr EC, Kassell NF, Torner JC. A randomized trial of nicardipine in subarachnoid hemorrhage: angiographic and transcranial Doppler ultrasound results. A report of the Cooperative Aneurysm Study. J Neurosurg. 1993;78:548–53.

    Article  PubMed  Google Scholar 

  17. Neil-Dwyer G, Mee E, Dorrance D, Lowe D. Early intervention with nimodipine in subarachnoid haemorrhage. Eur Heart J. 1987;8(Suppl K):41–7.

    Article  PubMed  Google Scholar 

  18. Petruk KC, West M, Mohr G, Weir BK, Benoit BG, Gentili F, et al. Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial. J Neurosurg. 1988;68:505–17.

    Article  PubMed  CAS  Google Scholar 

  19. Philippon J, Grob R, Dagreou F, Guggiari M, Rivierez M, Viars P. Prevention of vasospasm in subarachnoid haemorrhage. A controlled study with nimodipine. Acta Neurochir (Wien). 1986;82:110–4.

    Article  CAS  Google Scholar 

  20. Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39:3015–21.

    Article  PubMed  CAS  Google Scholar 

  21. Vajkoczy P, Meyer B, Weidauer S, Raabe A, Thome C, Ringel F, et al. Clazosentan (AXV-034343), a selective endothelin A receptor antagonist, in the prevention of cerebral vasospasm following severe aneurysmal subarachnoid hemorrhage: results of a randomized, double-blind, placebo-controlled, multicenter phase IIa study. J Neurosurg. 2005;103:9–17.

    Article  PubMed  CAS  Google Scholar 

  22. Vergouwen MD. Effect of endothelin-receptor antagonists on delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage remains unclear. Stroke. 2009;40:e714–6.

    Article  PubMed  Google Scholar 

  23. Springborg JB, Møller C, Gideon P, Jørgensen OS, Juhler M, Olsen NV. Erythropoietin in patients with aneurysmal subarachnoid haemorrhage: a double blind randomised clinical trial. Acta Neurochir (Wien). 2007;149:1089–101.

    Article  CAS  Google Scholar 

  24. Shibuya M, Suzuki Y, Sugita K, Saito I, Sasaki T, Takakura K, et al. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J Neurosurg. 1992;76:571–7.

    Article  PubMed  CAS  Google Scholar 

  25. Wong GK, Chan MT, Boet R, Poon WS, Gin T. Intravenous magnesium sulfate after aneurysmal subarachnoid hemorrhage: a prospective randomized pilot study. J Neurosurg Anesthesiol. 2006;18:142–8.

    Article  PubMed  Google Scholar 

  26. Chou SH, Smith EE, Badjatia N, Nogueira RG, Sims 2nd JR, Ogilvy CS, et al. A randomized, double-blind, placebo-controlled pilot study of simvastatin in aneurysmal subarachnoid hemorrhage. Stroke. 2008;39:2891–3.

    Article  PubMed  CAS  Google Scholar 

  27. Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36:1627–32.

    Article  PubMed  CAS  Google Scholar 

  28. Haley Jr EC, Kassell NF, Apperson-Hansen C, Maile MH, Alves WM. A randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in North America. J Neurosurg. 1997;86:467–74.

    Article  PubMed  CAS  Google Scholar 

  29. Kassell NF, Haley Jr EC, Apperson-Hansen C, Alves WM. Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg. 1996;84:221–8.

    Article  PubMed  CAS  Google Scholar 

  30. Findlay JM, Kassell NF, Weir BK, Haley Jr EC, Kongable G, Germanson T, et al. A randomized trial of intraoperative, intracisternal tissue plasminogen activator for the prevention of vasospasm. Neurosurgery. 1995;37:168–78.

    Article  PubMed  CAS  Google Scholar 

  31. Otten ML, Mocco J, Connolly Jr ES, Solomon RA. A review of medical treatments of cerebral vasospasm. Neurol Res. 2008;30:444–9.

    Article  PubMed  CAS  Google Scholar 

  32. Liao JK, Seto M, Noma K. Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol. 2007;50:17–24.

    Article  PubMed  CAS  Google Scholar 

  33. Bederson JB, Connolly Jr ES, Batjer HH, Dacey RG, Dion JE, Diringer MN, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  34. Dorsch NW. Therapeutic approaches to vasospasm in subarachnoid hemorrhage. Curr Opin Crit Care. 2002;8:128–33.

    Article  PubMed  Google Scholar 

  35. Roux S, Breu V, Giller T, Neidhart W, Ramuz H, Coassolo P, et al. Ro 61–1790, a new hydrosoluble endothelin antagonist: general pharmacology and effects on experimental cerebral vasospasm. J Pharmacol Exp Ther. 1997;28:1110–8.

    Google Scholar 

  36. Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.

    Article  PubMed  CAS  Google Scholar 

  37. Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1341–53.

    Article  PubMed  CAS  Google Scholar 

  38. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:916–25.

    Article  PubMed  CAS  Google Scholar 

  39. Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105:23–56.

    Article  PubMed  CAS  Google Scholar 

  40. Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 1995;26:1086–92.

    Article  PubMed  CAS  Google Scholar 

  41. Veelken JA, Laing RJ, Jakubowski J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke. 1995;26:1279–84.

    Article  PubMed  CAS  Google Scholar 

  42. Duris K, Manaenko A, Suzuki H, Rolland W, Tang J, Zhang JH. Sampling of CSF via the cisterna magna and blood collection via the heart affects brain water content in a rat SAH model. Transl Stroke Res. 2011;2:232–7.

    Article  PubMed  CAS  Google Scholar 

  43. Keep RF, Hua Y, Xi G. Brain water content. A misunderstood measurement? Transl Stroke Res. 2012;3:263–5.

    Article  PubMed  Google Scholar 

  44. Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25:554–71.

    Article  PubMed  CAS  Google Scholar 

  45. Yatsushige H, Calvert JW, Cahill J, Zhang JH. Limited role of inducible nitric oxide synthase in blood–brain barrier function after experimental subarachnoid hemorrhage. J Neurotrauma. 2006;23:1874–82.

    Article  PubMed  Google Scholar 

  46. Harada S, Kamiya K, Masago A, Iwata A, Yamada K. Subarachnoid hemorrhage induces c-fos, c-jun and hsp70 mRNA expression in rat brain. Neuroreport. 1997;8:3399–404.

    Article  PubMed  CAS  Google Scholar 

  47. Sehba FA, Schwartz AY, Chereshnev I, Bederson JB. Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2000;20:604–11.

    Article  PubMed  CAS  Google Scholar 

  48. Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH. Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke. 2001;32:506–15.

    Article  PubMed  CAS  Google Scholar 

  49. Cambj-Sapunar L, Yu M, Harder DR, Roman RJ. Contribution of 5-hydroxytryptamine1B receptors and 20-hydroxyeiscosatetraenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage. Stroke. 2003;34:1269–75.

    Article  PubMed  Google Scholar 

  50. Shin HK, Lee JH, Kim CD, Kim YK, Hong JY, Hong KW. Prevention of impairment of cerebral blood flow autoregulation during acute stage of subarachnoid hemorrhage by gene transfer of Cu/Zn SOD-1 to cerebral vessels. J Cereb Blood Flow Metab. 2003;23:111–20.

    Article  PubMed  CAS  Google Scholar 

  51. Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35:2412–7.

    Article  PubMed  CAS  Google Scholar 

  52. Zausinger S, Thal SC, Kreimeier U, Messmer K, Schmid-Elsaesser R. Hypertonic fluid resuscitation from subarachnoid hemorrhage in rats. Neurosurgery. 2004;55:679–87.

    Article  PubMed  Google Scholar 

  53. Bermueller C, Thal SC, Plesnila N, Schmid-Elsaesser R, Kreimeier U, Zausinger S. Hypertonic fluid resuscitation from subarachnoid hemorrhage in rats: a comparison between small volume resuscitation and mannitol. J Neurol Sci. 2006;241:73–82.

    Article  PubMed  Google Scholar 

  54. Gao J, Wang H, Sheng H, Lynch JR, Warner DS, Durham L, et al. A novel apoE-derived therapeutic reduces vasospasm and improves outcome in a murine model of subarachnoid hemorrhage. Neurocrit Care. 2006;4:25–31.

    Article  PubMed  CAS  Google Scholar 

  55. Sun BL, An W, Xia ZL, Zheng CB, Li WX, Yang MF, et al. Zinc protoporphyrin aggravates cerebral ischemic injury following experimental subarachnoid hemorrhage. Clin Hemorheol Microcirc. 2006;34:241–6.

    PubMed  CAS  Google Scholar 

  56. Ostrowski RP, Tang J, Zhang JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke. 2006;37:1314–8.

    Article  PubMed  CAS  Google Scholar 

  57. Ostrowski RP, Colohan AR, Zhang JH. Neuroprotective effect of hyperbaric oxygen in a rat model of subarachnoid hemorrhage. Acta Neurochir Suppl. 2006;96:188–93.

    Article  PubMed  CAS  Google Scholar 

  58. Endo H, Nito C, Kamada H, Yu F, Chan PH. Akt/GSK3beta survival signaling is involved in acute brain injury after subarachnoid hemorrhage in rats. Stroke. 2006;37:2140–6.

    Article  PubMed  CAS  Google Scholar 

  59. Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27:975–82.

    PubMed  CAS  Google Scholar 

  60. Cahill J, Calvert JW, Marcantonio S, Zhang JH. p53 may play an orchestrating role in apoptotic cell death after experimental subarachnoid hemorrhage. Neurosurgery. 2007;60:531–45.

    Article  PubMed  Google Scholar 

  61. Yatsushige H, Ostrowski RP, Tsubokawa T, Colohan A, Zhang JH. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res. 2007;85:1436–48.

    Article  PubMed  CAS  Google Scholar 

  62. Sehba FA, Friedrich Jr V, Makonnen G, Bederson JB. Acute cerebral vascular injury after subarachnoid hemorrhage and its prevention by administration of a nitric oxide donor. J Neurosurg. 2007;106:321–9.

    Article  PubMed  CAS  Google Scholar 

  63. Germanò A, Caffo M, Angileri FF, Arcadi F, Newcomb-Fernandez J, Caruso G, et al. NMDA receptor antagonist felbamate reduces behavioral deficits and blood–brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat. J Neurotrauma. 2007;24:732–44.

    Article  PubMed  Google Scholar 

  64. Liu S, Tang J, Ostrowski RP, Titova E, Monroe C, Chen W, et al. Oxidative stress after subarachnoid hemorrhage in gp91phox knockout mice. Can J Neurol Sci. 2007;34:356–61.

    PubMed  Google Scholar 

  65. Ayer RE, Sugawara T, Zhang JH. Effects of melatonin in early brain injury following subarachnoid hemorrhage. Acta Neurochir Suppl. 2008;102:327–30.

    Article  PubMed  Google Scholar 

  66. Lee S, Stier G, Marcantonio S, Lekic T, Allard M, Martin R, et al. 3 % hypertonic saline following subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2008;102:405–8.

    Article  PubMed  Google Scholar 

  67. Mori K, Miyazaki M, Iwata J, Yamamoto T, Nakao Y. Intracisternal infusion of magnesium sulfate solution improved reduced cerebral blood flow induced by experimental subarachnoid hemorrhage in the rat. Neurosurg Rev. 2008;31:197–203.

    Article  PubMed  Google Scholar 

  68. Ayer RE, Sugawara T, Chen W, Tong W, Zhang JH. Melatonin decreases mortality following severe subarachnoid hemorrhage. J Pineal Res. 2008;44:197–204.

    Article  PubMed  CAS  Google Scholar 

  69. Gao C, Liu X, Liu W, Shi H, Zhao Z, Chen H, et al. Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following subarachnoid hemorrhage in rats. Auton Neurosci. 2008;141:22–30.

    Article  PubMed  CAS  Google Scholar 

  70. Yan J, Chen C, Hu Q, Yang X, Lei J, Yang L, et al. The role of p53 in brain edema after 24 h of experimental subarachnoid hemorrhage in a rat model. Exp Neurol. 2008;214:37–46.

    Article  PubMed  CAS  Google Scholar 

  71. Schubert GA, Schilling L, Thomé C. Clazosentan, an endothelin receptor antagonist, prevents early hypoperfusion during the acute phase of massive experimental subarachnoid hemorrhage: a laser Doppler flowmetry study in rats. J Neurosurg. 2008;109:1134–40.

    Article  PubMed  CAS  Google Scholar 

  72. Cosar M, Eser O, Fidan H, Sahin O, Buyukbas S, Ela Y, et al. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage. Surg Neurol. 2009;71:54–9.

    Article  PubMed  Google Scholar 

  73. Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.

    Article  PubMed  CAS  Google Scholar 

  74. Cheng G, Wei L, Zhi-Dan S, Shi-Guang Z, Xiang-Zhen L. Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci. 2009;10:7.

    Article  PubMed  CAS  Google Scholar 

  75. Ersahin M, Toklu HZ, Cetinel S, Yüksel M, Yeğen BC, Sener G. Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res. 2009;46:324–32.

    Article  PubMed  CAS  Google Scholar 

  76. Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH. Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke. 2009;40:1530–2.

    Article  PubMed  Google Scholar 

  77. Lu H, Zhang DM, Chen HL, Lin YX, Hang CH, Yin HX, et al. N-acetylcysteine suppresses oxidative stress in experimental rats with subarachnoid hemorrhage. J Clin Neurosci. 2009;16:684–8.

    Article  PubMed  CAS  Google Scholar 

  78. Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, et al. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke. 2009;40:2519–25.

    Article  PubMed  CAS  Google Scholar 

  79. Sun BL, Hu DM, Yuan H, Ye WJ, Wang XC, Xia ZL, et al. Extract of Ginkgo biloba promotes the expression of VEGF following subarachnoid hemorrhage in rats. Int J Neurosci. 2009;119:995–1005.

    Article  PubMed  CAS  Google Scholar 

  80. Thal SC, Sporer S, Schmid-Elsaesser R, Plesnila N, Zausinger S. Inhibition of bradykinin B2 receptors before, not after onset of experimental subarachnoid hemorrhage prevents brain edema formation and improves functional outcome. Crit Care Med. 2009;37:2228–34.

    Article  PubMed  CAS  Google Scholar 

  81. Gao Y, Ding XS, Xu S, Wang W, Zuo QL, Kuai F. Neuroprotective effects of edaravone on early brain injury in rats after subarachnoid hemorrhage. Chin Med J (Engl). 2009;122:1935–40.

    CAS  Google Scholar 

  82. Guo Z, Sun X, He Z, Jiang Y, Zhang X, Zhang JH. Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurol Res. 2010;32:715–20.

    Article  PubMed  CAS  Google Scholar 

  83. Erşahin M, Toklu HZ, Cetinel S, Yüksel M, Erzik C, Berkman MZ, et al. Alpha lipoic acid alleviates oxidative stress and preserves blood brain permeability in rats with subarachnoid hemorrhage. Neurochem Res. 2010;35:418–28.

    Article  PubMed  CAS  Google Scholar 

  84. Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, et al. Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2010;38:612–8.

    Article  PubMed  CAS  Google Scholar 

  85. Sehba FA, Flores R, Muller A, Friedrich V, Chen JF, Britz GW, et al. Adenosine A(2A) receptors in early ischemic vascular injury after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg. 2010;113:826–34.

    Article  PubMed  Google Scholar 

  86. Cheng G, Chunlei W, Pei W, Zhen L, Xiangzhen L. Simvastatin activates Akt/glycogen synthase kinase-3beta signal and inhibits caspase-3 activation after experimental subarachnoid hemorrhage. Vascul Pharmacol. 2010;52:77–83.

    Article  PubMed  CAS  Google Scholar 

  87. Ayer R, Chen W, Sugawara T, Suzuki H, Zhang JH. Role of gap junctions in early brain injury following subarachnoid hemorrhage. Brain Res. 2010;1315:150–8.

    Article  PubMed  CAS  Google Scholar 

  88. Ansar S, Larsen C, Maddahi A, Edvinsson L. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries. Brain Res. 2010;1316:163–72.

    Article  PubMed  CAS  Google Scholar 

  89. Tait MJ, Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience. 2010;167:60–7.

    Article  PubMed  CAS  Google Scholar 

  90. Jedrzejowska-Szypułka H, Straszak G, Larysz-Brysz M, Karpe J, Marcol W, Olakowska E, et al. Interleukin-1beta plays a role in the activation of peripheral leukocytes after blood–brain barrier rupture in the course of subarachnoid hemorrhage. Curr Neurovasc Res. 2010;7:39–48.

    Article  PubMed  Google Scholar 

  91. Erşahin M, Toklu HZ, Erzik C, Cetinel S, Akakin D, Velioğlu-Oğünç A, et al. The anti-inflammatory and neuroprotective effects of ghrelin in subarachnoid hemorrhage-induced oxidative brain damage in rats. J Neurotrauma. 2010;27:1143–55.

    Article  PubMed  Google Scholar 

  92. Li Y, Tang J, Khatibi NH, Zhu M, Chen D, Zheng W, et al. Ginsenoside Rbeta1 reduces neurologic damage, is anti-apoptotic, and down-regulates p53 and BAX in subarachnoid hemorrhage. Curr Neurovasc Res. 2010;7:85–94.

    Article  PubMed  Google Scholar 

  93. Suzuki H, Hasegawa Y, Kanamaru K, Zhang JH. Mechanisms of osteopontin-induced stabilization of blood–brain barrier disruption after subarachnoid hemorrhage in rats. Stroke. 2010;41:1783–90.

    Article  PubMed  CAS  Google Scholar 

  94. Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010;30:1793–803.

    Article  PubMed  CAS  Google Scholar 

  95. Zhang J, Zhu Y, Zhou D, Wang Z, Chen G. Recombinant human erythropoietin (rhEPO) alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Nrf2-ARE pathway. Cytokine. 2010;52:252–7.

    Article  PubMed  CAS  Google Scholar 

  96. Luo C, Yi B, Tao G, Li M, Chen Z, Tang W, et al. Adenosine A3 receptor agonist reduces early brain injury in subarachnoid haemorrhage. Neuroreport. 2010;21:892–6.

    Article  PubMed  CAS  Google Scholar 

  97. Hasegawa Y, Suzuki H, Sherchan P, Zhan Y, Duris K, Zhang JH. Tyrosine phosphatase inhibition attenuates early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2011;110:67–70.

    PubMed  Google Scholar 

  98. Guo ZD, Wu HT, Sun XC, Zhang XD, Zhang JH. Protection of minocycline on early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2011;110:71–4.

    PubMed  Google Scholar 

  99. Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, et al. Role of osteopontin in early brain injury after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2011;110:75–9.

    PubMed  Google Scholar 

  100. Guo ZD, Zhang XD, Wu HT, Lin B, Sun XC, Zhang JH. Matrix metalloproteinase 9 inhibition reduces early brain injury in cortex after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110:81–4.

    PubMed  Google Scholar 

  101. Li Y, Tang J, Khatibi NH, Zhu M, Chen D, Tu L, et al. Treatment with ginsenoside rb1, a component of panax ginseng, provides neuroprotection in rats subjected to subarachnoid hemorrhage-induced brain injury. Acta Neurochir Suppl. 2011;110:75–9.

    PubMed  Google Scholar 

  102. Hasegawa Y, Suzuki H, Altay O, Zhang JH. Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats. Stroke. 2011;42:477–83.

    Article  PubMed  CAS  Google Scholar 

  103. Sheng H, Reynolds JD, Auten RL, Demchenko IT, Piantadosi CA, Stamler JS, et al. Pharmacologically augmented S-nitrosylated hemoglobin improves recovery from murine subarachnoid hemorrhage. Stroke. 2011;42:471–6.

    Article  PubMed  CAS  Google Scholar 

  104. Chen G, Fang Q, Zhang J, Zhou D, Wang Z. Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res. 2011;89:515–23.

    Article  PubMed  CAS  Google Scholar 

  105. Barry CM, Helps SC, den Heuvel C, Vink R. Characterizing the role of the neuropeptide substance P in experimental subarachnoid hemorrhage. Brain Res. 2011;1389:143–51.

    Article  PubMed  CAS  Google Scholar 

  106. Chen D, Tang J, Khatibi NH, Zhu M, Li Y, Wang C, et al. Treatment with Z-ligustilide, a component of Angelica sinensis, reduces brain injury after a subarachnoid hemorrhage in rats. J Pharmacol Exp Ther. 2011;337:663–72.

    Article  PubMed  CAS  Google Scholar 

  107. Wang Z, Zuo G, Shi XY, Zhang J, Fang Q, Chen G. Progesterone administration modulates cortical TLR4/NF-κB signaling pathway after subarachnoid hemorrhage in male rats. Mediators Inflamm. 2011;2011:848309.

    Article  PubMed  CAS  Google Scholar 

  108. Sabri M, Ai J, Macdonald RL. Dissociation of vasospasm and secondary effects of experimental subarachnoid hemorrhage by clazosentan. Stroke. 2011;42:1454–60.

    Article  PubMed  CAS  Google Scholar 

  109. Chen G, Tariq A, Ai J, Sabri M, Jeon HJ, Tang EJ, et al. Different effects of clazosentan on consequences of subarachnoid hemorrhage in rats. Brain Res. 2011;1392:132–9.

    Article  PubMed  CAS  Google Scholar 

  110. Yan J, Li L, Khatibi NH, Yang L, Wang K, Zhang W, et al. Blood–brain barrier disruption following subarachnoid hemorrhage may be facilitated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp Neurol. 2011;230:240–7.

    Article  PubMed  CAS  Google Scholar 

  111. Suzuki H, Hasegawa Y, Ayer R, Sugawara T, Chen W, Sozen T, et al. Effects of recombinant osteopontin on blood–brain barrier disruption after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2011;111:231–6.

    Article  PubMed  Google Scholar 

  112. Ayer R, Jadhav V, Sugawara T, Zhang JH. The neuroprotective effects of cyclooxygenase-2 inhibition in a mouse model of aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;111:145–9.

    Article  PubMed  CAS  Google Scholar 

  113. Lee JY, Keep RF, Hua Y, Ernestus RI, Xi G. Deferoxamine reduces early brain injury following subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;112:101–6.

    Article  PubMed  Google Scholar 

  114. Duris K, Manaenko A, Suzuki H, Rolland WB, Krafft PR, Zhang JH. α7 Nicotinic acetylcholine receptor agonist PNU-282987 attenuates early brain injury in a perforation model of subarachnoid hemorrhage in rats. Stroke. 2011;42:3530–6.

    Article  PubMed  CAS  Google Scholar 

  115. Sherchan P, Lekic T, Suzuki H, Hasegawa Y, Rolland W, Duris K, et al. Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J Neurotrauma. 2011;28:2503–12.

    Article  PubMed  Google Scholar 

  116. Fujii M, Duris K, Altay O, Soejima Y, Sherchan P, Zhang JH. Inhibition of Rho kinase by hydroxyfasudil attenuates brain edema after subarachnoid hemorrhage in rats. Neurochem Int. 2012;60:327–33.

    Article  PubMed  CAS  Google Scholar 

  117. He Z, Ostrowski RP, Sun X, Ma Q, Huang B, Zhan Y, et al. CHOP silencing reduces acute brain injury in the rat model of subarachnoid hemorrhage. Stroke. 2012;43:484–90.

    Article  PubMed  Google Scholar 

  118. Zhan Y, Chen C, Suzuki H, Hu Q, Zhi X, Zhang JH. Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2012;40:1291–6.

    Article  PubMed  CAS  Google Scholar 

  119. Zhuang Z, Zhou ML, You WC, Zhu L, Ma CY, Sun XJ, et al. Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci. 2012;13:47.

    Article  PubMed  CAS  Google Scholar 

  120. Altay O, Hasegawa Y, Sherchan P, Suzuki H, Khatibi NH, Tang J, et al. Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice. Crit Care Med. 2012;40:1908–13.

    Article  PubMed  CAS  Google Scholar 

  121. Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G. Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience. 2012;213:144–53.

    Article  PubMed  CAS  Google Scholar 

  122. Simard JM, Tosun C, Ivanova S, Kurland DB, Hong C, Radecki L, et al. Heparin reduces neuroinflammation and transsynaptic neuronal apoptosis in a model of subarachnoid hemorrhage. Transl Stroke Res. 2012;3:155–65.

    Article  PubMed  CAS  Google Scholar 

  123. Chen D, Wei XT, Guan JH, Yuan JW, Peng YT, Song L, et al. Inhibition of c-Jun N-terminal kinase prevents blood–brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1 in a rat model of subarachnoid hemorrhage. Acta Neurochir (Wien). 2012;154:1469–76.

    Article  Google Scholar 

  124. Wang Z, Ma C, Meng CJ, Zhu GQ, Sun XB, Huo L, et al. Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res. 2012;53:129–37.

    Article  PubMed  CAS  Google Scholar 

  125. Wang Z, Meng CJ, Shen XM, Shu Z, Ma C, Zhu GQ, et al. Potential contribution of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 to blood–brain barrier disruption and brain edema after experimental subarachnoid hemorrhage. J Mol Neurosci. 2012;48:273–80.

    Article  PubMed  CAS  Google Scholar 

  126. Xie Z, Lei B, Huang Q, Deng J, Wu M, Shen W, et al. Neuroprotective effect of Cyclosporin A on the development of early brain injury in a subarachnoid hemorrhage model: a pilot study. Brain Res. 2012;1472:113–23.

    Article  PubMed  CAS  Google Scholar 

  127. Zhao H, Ji Z, Tang D, Yan C, Zhao W, Gao C. Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol Biol Rep. 2013;40(2):819–27.

    Article  PubMed  CAS  Google Scholar 

  128. Grote E, Hassler W. The critical first minutes after subarachnoid hemorrhage. Neurosurgery. 1988;22:654–61.

    Article  PubMed  CAS  Google Scholar 

  129. Keep RF, Andjelkovic AV, Stamatovic SM, Shakui P, Ennis SR. Ischemia-induced endothelial cell dysfunction. Acta Neurochir Suppl. 2005;95:399–402.

    Article  PubMed  CAS  Google Scholar 

  130. Murakami K, Koide M, Dumont TM, Russell SR, Tranmer BI, Wellman GC. Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl Stroke Res. 2011;2:72–9.

    Article  PubMed  CAS  Google Scholar 

  131. Prunell GF, Svendgaard NA, Alkass K, Mathiesen T. Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery. 2005;56:1082–92.

    PubMed  Google Scholar 

  132. Ayer R, Zhang J. Connecting the early brain injury of aneurysmal subarachnoid hemorrhage to clinical practice. Turk Neurosurg. 2010;20:159–66.

    PubMed  Google Scholar 

  133. Chou SH, Feske SK, Simmons SL, Konigsberg RG, Orzell SC, Marckmann A, et al. Elevated peripheral neutrophils and matrix metalloproteinase 9 as biomarkers of functional outcome following subarachnoid hemorrhage. Transl Stroke Res. 2011;2:600–7.

    Article  PubMed  CAS  Google Scholar 

  134. Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol. 2011;43:27–40.

    Article  PubMed  CAS  Google Scholar 

  135. Yuan J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis. 2009;14:469–77.

    Article  PubMed  Google Scholar 

  136. Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH. Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110:43–8.

    PubMed  Google Scholar 

  137. Ostrowski RP, Zhang JH. Hyperbaric oxygen for cerebral vasospasm and brain injury following subarachnoid hemorrhage. Transl Stroke Res. 2011;2:316–27.

    Article  PubMed  Google Scholar 

  138. Lee JY, Sagher O, Keep R, Hua Y, Xi G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 2009;65:331–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by grants from the National Institutes of Health NS 053407 to JHZ.

Conflict of Interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, M., Yan, J., Rolland, W.B. et al. Early Brain Injury, an Evolving Frontier in Subarachnoid Hemorrhage Research. Transl. Stroke Res. 4, 432–446 (2013). https://doi.org/10.1007/s12975-013-0257-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0257-2

Keywords

Navigation