Skip to main content
Log in

Global Existence, Regularity and Boundedness in a Higher-dimensional Chemotaxis-Navier-Stokes System with Nonlinear Diffusion and General Sensitivity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider an incompressible chemotaxis-Navier-Stokes system with nonlinear diffusion and rotational flux

$$\begin{aligned} \left\{ \begin{array}{l} n_t+u\cdot \nabla n=\Delta n^m-\nabla \cdot (nS(x,n,c)\cdot \nabla c),\quad x\in \Omega , t>0,\\ c_t+u\cdot \nabla c=\Delta c-nc,\quad x\in \Omega , t>0,\\ u_t+\kappa (u \cdot \nabla )u+\nabla P=\Delta u+n\nabla \phi ,\quad x\in \Omega , t>0,\\ \nabla \cdot u=0,\quad x\in \Omega , t>0\\ \end{array}\right. \end{aligned}$$

in a bounded domain \(\Omega \subset {\mathbb {R}}^N(N=2,3)\) with smooth boundary \(\partial \Omega \), where \(\kappa \in {\mathbb {R}}\). The chemotaxtic sensitivity S is a given tensor-valued function fulfilling \(|S(x,n,c)| \le S_0(c)\) for all \((x,n,c)\in {\bar{\Omega }} \times [0, \infty )\times [0, \infty )\) with \(S_0(c)\) nondecreasing on \([0,\infty )\). By introducing some new methods (see Sect. 4 and Sect. 5), we prove that under the condition \(m >1\) and some other proper regularity hypotheses on initial data, the corresponding initial-boundary problem possesses at least one global weak solution. The present work also shows that the weak solution could be bounded provided that \(N= 2\). Since S is tensor-valued, it is easy to see that the restriction on m here is optimal, which answers the left question in Bellomo-Belloquid-Tao-Winkler (Math Models Methods Appl Sci 25:1663–1763, 2015) and Tao-Winkler (Ann Inst H Poincaré Anal Non Linéaire 30:157–178, 2013). And obviously, this work improves previous results of several other authors (see Remark 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Belloquid, A., Tao, Y., Winkler, M.: Toward a Mathematical Theory of Keller-Segel Models of Pattern Formation in Biological Tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Black, T.: Global Solvability of Chemotaxis-fluid Systems with Nonlinear Diffusion and Matrix-valued Sensitivities in Three Dimensions. Nonlinear Anal. 180, 129–153 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, X.: Global Classical Solutions in Chemotaxis(-Navier)-Stokes System with Rotational Flux Term. J. Differential Equations 261, 6883–6914 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, X., Lankeit, J.: Global Classical Small-data Solutions for a 3D Chemotaxis Navier-Stokes System Involving Matrix-valued Sensitivities. Calc. Var. Partial Differential Equations 55, 55–107 (2016)

    Article  MATH  Google Scholar 

  5. Chae, M., Kang, K., Lee, J.: Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations. Comm. Partial Differential Equations. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cieślak, T., Winkler, M.: Finite-time blow-up in a Quasilinear System of Chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duan, R., Lorz, A., Markowich, P.A.: Global Solutions to the Coupled Chemotaxis-fluid Equations. Comm. Partial Differential Equations. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan, R., Xiang, Z.: A Note on Global Existence for the Chemotaxis-Stokes Model with Nonlinear Diffusion. Int. Math. Res. Not. IMRN, 1833–1852 (2014)

  9. Di Francesco, M., Lorz, A., Markowich, P.: Chemotaxis-fluid Coupled Model for Swimming Bacteria with Nonlinear Diffusion: Global Existence and Asymptotic Behavior, Discrete Cont. Dyn. Syst. 28, 1437–1453 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  11. Giga, Y.: Solutions for Semilinear Parabolic Equations in \(L^p\) and Regularity of Weak Solutions of the Navier-Stokes System. J. Differential Equations 61, 186–212 (1986)

    Article  MATH  Google Scholar 

  12. Herrero, M., Velázquez, J.: A Blow-up Mechanism for a Chemotaxis Model. Ann. Scuola Norm. Super. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Hillen, T., Painter, K.: A User’s Guide to PDE Models for Chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horstmann, D., Winkler, M.: Boundedness vs. Blow-up in a Chemotaxis System. J. Differential Equations 215, 52–107 (2005)

  15. Ishida, S., Seki, K., Yokota, T.: Boundedness in Quasilinear Keller-Segel Systems of Parabolic-parabolic Type on Non-convex Bounded Domains. J. Differential Equations 256, 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ke, Y., Zheng, J.: An Optimal Result for Global Existence in a Three-dimensional Keller-Segel-Navier-Stokes System Involving Tensor-valued Sensitivity with Saturation. Calc. Var. Partial Differential Equations 58, 58–109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keller, E., Segel, L.: Initiation of Slime Mold Aggregation Viewed as an Instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kowalczyk, R.: Preventing Blow-up in a Chemotaxis Model. J. Math. Anal. Appl. 305, 566–585 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’eva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. Amer. Math. Soc. Transl. 23, AMS, Providence, RI, (1968)

  20. Lankeit, J.: Long-term Behaviour in a Chemotaxis-fluid System with Logistic Source. Math. Models Methods Appl. Sci. 26, 2071–2109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lankeit, J.: Locally Bounded Global Solutions to a Chemotaxis Consumption Model with Singular Sensitivity and Nonlinear Diffusion. J. Differential Equations 262, 4052–4084 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, J., Lorz, A.: A Coupled Chemotaxis-fluid Model: Global Existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, J., Wang, Y.: Global Existence and Boundedness in a Keller-Segel-(Navier-)Stokes System with Signaldependent Sensitivity. J. Math. Anal. Appl. 447, 499–528 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, J., Wang, Y.: Boundedness and Decay Property in a Three-dimensional Keller-Segel-Stokes System Involving Tensor-valued Sensitivity with Saturation. J. Differential Equations 261, 967–999 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J., Wang, Y.: Global Weak Solutions in a Three-dimensional Keller-Segel-Navier-Stokes System Involving a Tensor-valued Sensitivity with Saturation. J. Differential Equations 262(10), 5271–5305 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lorz, A.: Global Solutions to the Coupled Chemotaxis-fluid Equations. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Miyakawa, T., Sohr, H.: On Energy Inequality, Smoothness and Large Time Behaviour in L2 for Weak Solutions of the Navier-Stokes Equations. Math. Z. 199, 465–478 (1988)

    Article  MATH  Google Scholar 

  28. Mizoguchi, N., Souplet, P.: Nondegeneracy of Blow-up Points for the Parabolic Keller-Segel System. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Simon, J.: Compact Sets in the Space \(L^{p}(O, T;B)\). Annali di Matematica Pura ed Applicata 146, 65–96 (1986)

    Article  Google Scholar 

  30. Sohr, H.: The Navier-Stokes equations. Birkhäuser Verlag, Basel, An elementary functional analytic approach (2001)

  31. Tao, Y., Winkler, M.: A Chemotaxis-haptotaxis Model: The Roles of Porous Medium Diffusion and Logistic Source. SIAM J. Math. Anal. 43, 685–704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tao, Y., Winkler, M.: Boundedness in a Quasilinear Parabolic-parabolic Keller-Segel System with Subcritical Sensitivity. J. Differential Equations 252, 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tao, Y., Winkler, M.: Global Existence and Boundedness in a Keller-Segel-Stokes Model with Arbitrary Porous Medium Diffusion, Discrete Cont. Dyn. Syst. 32, 1901–1914 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Tao, Y., Winkler, M.: Locally Bounded Global Solutions in a Three-dimensional Chemotaxis-Stokes System with Nonlinear Diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 157–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tello, J.I., Winkler, M.: A Chemotaxis System with Logistic Source. Comm. Partial Differential Equations. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tuval, I., Cisneros, L., Dombrowski, C., et al.: Bacterial Swimming and Oxygen Transport Near Contact Lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  37. Wang, L., Mu, C., Zheng, P.: On a Quasilinear Parabolic-elliptic Chemotaxis System with Logistic Source. J. Differential Equations 256, 1847–1872 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, W.: Global Boundedness of Weak Solutions for a Three-dimensional Chemotaxis-Stokes System with Nonlinear Diffusion and Rotation. J. Differential Equations 268, 7047–7091 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Y.: Global Weak Solutions in a Three-dimensional Keller-Segel-Navier-Stokes System with Subcritical Sensitivity. Math. Models Methods Appl. Sci. 27, 2745–2780 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Y., Li, X.: Boundedness for a 3D Chemotaxis-Stokes System with Porous Medium Diffusion and Tensor-valued Chemotactic Sensitivity. Z. Angew. Math. Phys., 68, Art. 29, 23 (2017)

  41. Winkler, M.: Boundedness in the Higher-dimensional Parabolic-parabolic Chemotaxis System with Logistic Source. Comm. Partial Differential Equations 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Does a Volume-filling Effect Always Prevent Chemotactic Collapse. Math. Methods Appl. Sci. 33, 12–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Aggregation vs. Global Diffusive Behavior in the Higher-dimensional Keller-Segel Model. J. Differential Equations 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: Global Large-data Solutions in a Chemotaxis-(Navier-)Stokes System Modeling Cellular Swimming in Fluid Drops. Comm. Partial Differential Equations. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Winkler, M.: Finite-time blow-up in the Higher-dimensional Parabolic-parabolic Keller-Segel System. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Winkler, M.: Stabilization in a Two-dimensional Chemotaxis-Navier-Stokes System. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Winkler, M.: Boundedness and Large Time Behavior in a Three-dimensional Chemotaxis-Stokes System with Nonlinear Diffusion and General Sensitivity. Calc. Var. Partial Differential Equations 54, 3789–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Winkler, M.: Large-data Global Generalized Solutions in a Chemotaxis System with Tensor-valued Sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: Global Weak Solutions in a Three-dimensional Chemotaxis-Navier-Stokes System. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Winkler, M.: How Far do Chemotaxis-driven Forces Influence Regularity in the Navier-Stokes System? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Winkler, M.: Global Existence and Stabilization in a Degenerate Chemotaxis-Stokes System with Mildly Strong Diffusion Enhancement. J. Differential Equations 264, 6109–6151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Winkler, M.: Global Mass-preserving Solutions in a Two-dimensional Chemotaxis-Stokes System with Rotation Flux Components. J. Evol. Eqns. 18, 1267–1289 (2018)

    Article  MATH  Google Scholar 

  53. Winkler, M.: Can Rotational Fluxes Impede the Tendency Toward Spatial Homogeneity in Nutrient taxis(-Stokes) Systems? Int. Math. Res. Not. IMRN 2021, 8106–8152 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, Q., Li, Y.: Global Weak Solutions for the Three-dimensional Chemotaxis-Navier-Stokes System with Nonlinear Diffusion. J. Differential Equations 259, 3730–3754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, Q., Zheng, X.: Global Well-posedness for the Two-dimensional Incompressible Chemotaxis-Navier-Stokes Equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zheng, J.: Boundedness of Solutions to a Quasilinear Parabolic-elliptic Keller-Segel System with Logistic Source. J. Differential Equations 259, 120–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zheng, J.: A Note on Boundedness of Solutions to a Higher-dimensional Quasi-linear Chemotaxis System with Logistic Source. Z. Angew. Math. Phys. 97, 414–421 (2017)

    Article  MathSciNet  Google Scholar 

  58. Zheng, J.: Global Weak Solutions in a Three-dimensional Keller-Segel-Navier-Stokes System with Nonlinear Diffusion. J. Differential Equations 263, 2606–2629 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zheng, J.: An Optimal Result for Global Existence and Boundedness in a Three-dimensional Keller-Segel-Stokes System with Nonlinear Diffusion. J. Differential Equations 267, 2385–2415 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zheng, J., Ke, Y.: Blow-up Prevention by Nonlinear Diffusion in a 2D Keller-Segel-Navier-Stokes System with Rotational Flux. J. Differential Equations 268, 7092–7120 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zheng, J., Ke, Y.: Large Time Behavior of Solutions to a Fully Parabolic Chemotaxis-haptotaxis Model in \(N\) Dimensions. J. Differential Equations 266, 1969–2018 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zheng, J., Wang, Y.: A Note on Global Existence to a Higher-dimensional Quasilinear Chemotaxis System with Consumption of Chemoattractant. Discrete Contin. Dyn. Syst. Ser. B 22, 669–686 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Zheng, J.: A New Result for the Global Existence (and boundedness) and Regularity of a Three-dimensional Keller-Segel-Navier-Stokes System Modeling Coral Fertilization. J. Differential Equations 272, 164–202 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zheng, J.: Global Existence and Boundedness in a Three-dimensional Chemotaxis-Stokes System with Nonlinear Diffusion and General Sensitivity. Annali di Matematica Pura ed Applicata 201, 243–288 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zheng, J.: Eventual Smoothness and Stabilization in a Three-dimensional Keller-Segel-Navier-Stokes System with Rotational Flux. Calc. Var. Partial Differential Equations 61, 52 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zheng, J., Ke, Y.: Global Bounded Weak Solutions for a Chemotaxis-Stokes System with Nonlinear Diffusion and Rotation. J. Differential Equations 289, 182–235 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for numerous remarks which significantly improved this work. This work is supported by Beijing Natural Science Foundation (Z210002), the Shandong Provincial Science Foundation for Outstanding Youth (No. ZR2018JL005), the National Natural Science Foundation of China (12071030) and Project funded by China Postdoctoral Science Foundation (2019M650927, 2019T120168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Ke.

Additional information

Communicated by Luis Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Qi, D. & Ke, Y. Global Existence, Regularity and Boundedness in a Higher-dimensional Chemotaxis-Navier-Stokes System with Nonlinear Diffusion and General Sensitivity. Calc. Var. 61, 150 (2022). https://doi.org/10.1007/s00526-022-02268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02268-7

Mathematics Subject Classification

Navigation