Skip to main content
Log in

An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper focuses on the following Keller–Segel–Navier–Stokes system with rotational flux:

in a bounded domain \(\Omega \subset {\mathbb {R}}^3\) with a smooth boundary, where \(\kappa \in {\mathbb {R}}\) is a given constant, \(\phi \in W^{1,\infty }(\Omega )\), \(|S(x,n,c)|\le C_S(1+n)^{-\alpha }\), and the parameter \(\alpha \ge 0\). If \(\alpha >\frac{1}{3}\), then, for all reasonable regular initial data, a corresponding initial-boundary value problem for (KSNF) possesses a globally defined weak solution. This result improves upon the result of Wang (Math Models Methods Appl Sci 27(14):2745–2780, 2017), in which the global very weak solution for the system (KSNF) is obtained. In comparison with the result of the corresponding fluid-free system, the optimal condition on the parameter \(\alpha \) for global (weak) existence is established. Our proofs rely on a variant of the natural gradient-like energy functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Belloquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(9), 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cao, X.: Global classical solutions in chemotaxis(-Navier)–Stokes system with rotational flux term. J. Differ. Equ. 261(12), 6883–6914 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    Article  MathSciNet  Google Scholar 

  6. Duan, R., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  Google Scholar 

  7. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  Google Scholar 

  8. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  9. Horstmann, D.: From \(1970\) until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresberichte der Deutschen Mathematiker-Vereinigung 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  11. Ishida, S.: Global existence and boundedness for chemotaxis-Navier–Stokes system with position-dependent sensitivity in \(2d\) bounded domains. Discrete Contin. Dyn. Syst. Ser. A 32, 3463–3482 (2015)

    Article  MathSciNet  Google Scholar 

  12. Keller, E., Segel, L.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1970)

    Article  Google Scholar 

  13. Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: gGobal existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 643–652 (2011)

    Article  MathSciNet  Google Scholar 

  14. Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 262(10), 5271–5305 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lorz, A.: Coupled chemotaxis fluid equations. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  Google Scholar 

  16. Painter, K., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Peng, Y., Xiang, Z.: Global existence and boundedness in a 3D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68, 68 (2017)

    Article  MathSciNet  Google Scholar 

  18. Simon, J.: Compact sets in the space \(L^{p}(O, T;B)\). Annali di Matematica Pura ed Applicata 146(1), 65–96 (1986)

    Article  Google Scholar 

  19. Sohr, H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    Book  Google Scholar 

  20. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  21. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. Ser. A 32, 1901–1914 (2012)

    Article  MathSciNet  Google Scholar 

  22. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 157–178 (2013)

    Article  MathSciNet  Google Scholar 

  23. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  Google Scholar 

  24. Tuval, I., Cisneros, L., Dombrowski, C., et al.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  Google Scholar 

  25. Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27(14), 2745–2780 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wang, Y., Cao, X.: Global classical solutions of a \(3d\) chemotaxis-Stokes system with rotation. Discrete Contin. Dyn. Syst. Ser. B 20, 3235–3254 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze. XVII I, 2036–2145 (2018)

    MATH  Google Scholar 

  28. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wiegner, M.: The Navier–S-tokes equations: a neverending challenge? Jahresber. Deutsch. Math.-Verein. 101(1), 1–25 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Winkler, M.: Does a volume-filling effect always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    Article  MathSciNet  Google Scholar 

  36. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calculus Var. Partial Differ. Equ. 54, 3789–3828 (2015)

    Article  MathSciNet  Google Scholar 

  37. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1329–1352 (2016)

    Article  MathSciNet  Google Scholar 

  38. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 369(5), 3067–3125 (2017)

    Article  MathSciNet  Google Scholar 

  39. Winkler, M.: Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement. J. Differ. Equ. 264(10), 6109–6151 (2018)

    Article  MathSciNet  Google Scholar 

  40. Winkler, M.: Does fluid interaction affect regularity in the three-dimensional Keller–Segel System with saturated sensitivity? J. Math. Fluid Mech. 20(4), 1889–1909 (2018)

    Article  MathSciNet  Google Scholar 

  41. Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. TMA 72, 1044–1064 (2010)

    Article  MathSciNet  Google Scholar 

  42. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70(1), 133–167 (2009)

    Article  MathSciNet  Google Scholar 

  43. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier–Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  Google Scholar 

  44. Zheng, J.: Boundedness of solutions to a quasilinear parabolic-elliptic Keller–Segel system with logistic source. J. Differ. Equ. 259(1), 120–140 (2015)

    Article  MathSciNet  Google Scholar 

  45. Zheng, J.: Boundedness of solutions to a quasilinear parabolic-parabolic Keller–Segel system with logistic source. J. Math. Anal. Appl. 431(2), 867–888 (2015)

    Article  MathSciNet  Google Scholar 

  46. Zheng, J.: A note on boundedness of solutions to a higher-dimensional quasi-linear chemotaxis system with logistic source. Z. Angew. Math. Mech. 97(4), 414–421 (2017)

    Article  MathSciNet  Google Scholar 

  47. Zheng, J.: Boundedness and global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with nonlinear logistic source. J. Math. Anal. Appl. 450(2), 1047–1061 (2017)

    Article  MathSciNet  Google Scholar 

  48. Zheng, J.: A new result for global existence and boundedness in a three-dimensional Keller–Segel(–Navier)–Stokes system with nonlinear diffusion, Preprint

  49. Zheng, J.: An optimal result for global existence and boundedness in a three-dimensional Keller–Segel–Stokes system with nonlinear diffusion. J. Differ. Equ. https://doi.org/10.1016/j.jde.2019.03.013

  50. Zheng, J., Wang, Y.: Boundedness and decay behavior in a higher-dimensional quasilinear chemotaxis system with nonlinear logistic source. Comput. Math. Appl. 72(10), 2604–2619 (2016)

    Article  MathSciNet  Google Scholar 

  51. Zheng, J., Wang, Y.: A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Discrete Contin. Dyn. Syst. Ser. B 22(2), 669–686 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (No. 11601215) and the Shandong Provincial Science Foundation for Outstanding Youth (No. ZR2018JL005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashan Zheng.

Additional information

Communicated by L. Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, Y., Zheng, J. An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation. Calc. Var. 58, 109 (2019). https://doi.org/10.1007/s00526-019-1568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1568-2

Mathematics Subject Classification

Navigation