Skip to main content

Advertisement

Log in

An overview of surface roughness enhancement of additively manufactured metal parts: a path towards removing the post-print bottleneck for complex geometries

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Since the advent of additive manufacturing (AM) (also called 3D-printing), substantial progress has been achieved in technological advances in the processes and micro/macro characteristics of the components. However, this rapidly evolving field is faced with some barriers to industrial adoption, especially in the case of metals processing. Poor surface quality and surface topography imperfections, which are inherent in metal AM, are among the main drawbacks hindering AM broad industrial adoption. This issue cannot be addressed only by AM process optimization due to the intrinsic complexity of the process. Therefore, effective surface post-treatment methods are required to enhance the surface quality of the final parts for both external and hard-to-reach internal surfaces. Considering the importance and urgent need for surface modification of AM metals, this review aims to provide a broad overview of the existing research endeavors as well as gaps and opportunities in the surface enhancement of AM metals, with a focus on solution-based approaches to improve surface roughness of complex metal 3D-printed parts with intricate surfaces and evaluate the effect of these approaches on the functional properties for end-use applications. Assessing the effectiveness of the surface modification techniques, the present paper further provides the research needs to fulfill the performance-impacting knowledge gap for AM industrial adoption and further expansion of surface treatment methodologies for improved surface finish of complex metal printed parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New York

    Book  Google Scholar 

  2. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, US

    Book  Google Scholar 

  3. Gao W, Zhang Y, Ramanujan D et al (2015) The status, challenges, and future of additive manufacturing in engineering. CAD Comput Aided Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  4. Kruth JP (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann - Manuf Technol 40:603–614. https://doi.org/10.1016/S0007-8506(07)61136-6

    Article  Google Scholar 

  5. The whole RP family tree. http://shatura.laser.ru/rapid/rptree/rptree.html. Accessed 9 Dec 2021

  6. Williams CB, Mistree F, Rosen DW (2011) A functional classification framework for the conceptual design of additive manufacturing technologies. J Mech Des Trans ASME 133:1–11. https://doi.org/10.1115/1.4005231

    Article  Google Scholar 

  7. Standard Terminology for Additive Manufacturing Technologies

  8. Monzón MD, Ortega Z, Martínez A, Ortega F (2015) Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol 76:1111–1121. https://doi.org/10.1007/s00170-014-6334-1

    Article  Google Scholar 

  9. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  10. Fayazfar H, Salarian M, Rogalsky A et al (2018) A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des 144:98–128. https://doi.org/10.1016/j.matdes.2018.02.018

    Article  Google Scholar 

  11. Pyka G, Kerckhofs G, Papantoniou I et al (2013) Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials (Basel) 6:4737–4757. https://doi.org/10.3390/ma6104737

    Article  Google Scholar 

  12. Schaub DA, Chu KR, Montgomery DC (1997) Optimizing stereolithography throughput. J Manuf Syst 16:290–303. https://doi.org/10.1016/s0278-6125(97)89099-1

    Article  Google Scholar 

  13. Schaub DA, Montgomery DC (1997) Using experimental design to optimize the stereolithography process. Qual Eng 9:575–585. https://doi.org/10.1080/08982119708919079

    Article  Google Scholar 

  14. Vasudevarao B, Natarajan DP, Henderson M (2000) Sensitivity of Rp surface finish to process parameter variation. Solid Free Form Fabr Proc. https://doi.org/10.26153/tsw/3045

  15. Pandey PM, Reddy NV, Dhande SG (2003) Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol 132:323–331. https://doi.org/10.1016/S0924-0136(02)00953-6

    Article  Google Scholar 

  16. Barari A, Kishawy HA, Kaji F, Elbestawi MA (2017) On the surface quality of additive manufactured parts. Int J Adv Manuf Technol 89:1969–1974. https://doi.org/10.1007/s00170-016-9215-y

    Article  Google Scholar 

  17. Huckstepp A (2019) Surface Roughness – A guide to metal additive manufacturing by digital alloys. https://manufactur3dmag.com/surface-roughness-a-guide-to-metal-additive-manufacturing-by-digital-alloys/. Accessed 17 Dec 2021

  18. Pyka G, Burakowski A, Kerckhofs G et al (2012) Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv Eng Mater 14:363–370. https://doi.org/10.1002/adem.201100344

    Article  Google Scholar 

  19. Yadroitsev I, Smurov I (2011) Surface morphology in selective laser melting of metal powders. Phys Procedia 12:264–270. https://doi.org/10.1016/j.phpro.2011.03.034

    Article  Google Scholar 

  20. Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol 213:589–597. https://doi.org/10.1016/j.jmatprotec.2012.11.011

    Article  Google Scholar 

  21. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports 47:49–121. https://doi.org/10.1016/j.mser.2004.11.001

    Article  Google Scholar 

  22. Fukuda A, Takemoto M, Saito T et al (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7:2327–2336. https://doi.org/10.1016/j.actbio.2011.01.037

    Article  Google Scholar 

  23. Yang L, Gu H, Lassell A (2014) Surface treatment of Ti6Al4V parts made by powder bed fusion additive manufacturing processes using electropolishing. Int Solid Free Fabr Symp 2014:268–277

    Google Scholar 

  24. Teo AQA, Yan L, Chaudhari A, O’neill GK (2021) Post-processing and surface characterization of additively manufactured stainless steel 316l lattice: implications for biomedical use. Materials (Basel) 14:1–23. https://doi.org/10.3390/ma14061376

    Article  Google Scholar 

  25. Löber L, Flache C, Petters R et al (2013) Comparison of different post processing technologies for SLM generated 316l steel parts. Rapid Prototyp J 19:173–179. https://doi.org/10.1108/13552541311312166

    Article  Google Scholar 

  26. Bagehorns S, Mertens T, Greitemeier D et al (2015) Surface finishing of additive manufactured Ti-6Al-4V - a comparison of electrochemical and mechanical treatments. 6th Eur conf aerosp sci

  27. Bagehorn S, Wehr J, Maier HJ (2017) Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int J Fatigue 102:135–142. https://doi.org/10.1016/j.ijfatigue.2017.05.008

    Article  Google Scholar 

  28. Lee S, Shao S, Wells DN et al (2022) Fatigue behavior and modeling of additively manufactured IN718: The effect of surface treatments and surface measurement techniques. J Mater Process Technol 302:117475. https://doi.org/10.1016/j.jmatprotec.2021.117475

    Article  Google Scholar 

  29. Jamal M, Morgan MN (2017) Design process control for improved surface finish of metal additive manufactured parts of complex build geometry. Inventions 2:1–18. https://doi.org/10.3390/inventions2040036

    Article  Google Scholar 

  30. Kaynak Y, Kitay O (2019) The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit Manuf 26:84–93. https://doi.org/10.1016/j.addma.2018.12.021

    Article  Google Scholar 

  31. Atapour M, Wang X, Persson M et al (2020) Corrosion of binder jetting additively manufactured 316L stainless steel of different surface finish. J Electrochem Soc 167:131503. https://doi.org/10.1149/1945-7111/abb6cd

    Article  Google Scholar 

  32. Balan ASS, Chidambaram K, Kumar AV et al (2021) Effect of cryogenic grinding on fatigue life of additively manufactured maraging steel. Materials (Basel) 14:1–16. https://doi.org/10.3390/ma14051245

    Article  Google Scholar 

  33. Guo J, Goh MH, Wang P et al (2021) Investigation on surface integrity of electron beam melted Ti-6Al-4 V by precision grinding and electropolishing. Chin J Aeronaut 34:28–38. https://doi.org/10.1016/j.cja.2020.08.014

    Article  Google Scholar 

  34. Demirci S, Dalmış R, Dikici T et al (2021) Effect of surface modifications of additively manufactured Ti-6Al-4V alloys on apatite formation ability for biomedical applications. J Alloys Compd 887:161445. https://doi.org/10.1016/j.jallcom.2021.161445

    Article  Google Scholar 

  35. Beaucamp AT, Namba Y, Charlton P et al (2015) Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG). Surf Topogr Metrol Prop 3. https://doi.org/10.1088/2051-672X/3/2/024001

  36. Longhitanoa GA, Larosaa MA, Munhoza ALJ et al (2015) Surface finishes for Ti-6Al-4V alloy produced by direct metal laser sintering. Mater Res 18:838–842. https://doi.org/10.1590/1516-1439.014415

    Article  Google Scholar 

  37. Mohammadian N, Turenne S, Brailovski V (2018) Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J Mater Process Technol 252:728–738. https://doi.org/10.1016/j.jmatprotec.2017.10.020

    Article  Google Scholar 

  38. Peng C, Fu Y, Wei H et al (2018) Study on improvement of surface roughness and induced residual stress for additively manufactured metal parts by abrasive flow machining. Procedia CIRP 71:386–389. https://doi.org/10.1016/j.procir.2018.05.046

    Article  Google Scholar 

  39. Zhu P, Zhang G, Teng X et al (2022) Investigation and process optimization for magnetic abrasive finishing additive manufacturing samples with different forming angles. Int J Adv Manuf Technol 118:2355–2371. https://doi.org/10.1007/s00170-021-08083-2

    Article  Google Scholar 

  40. Tan KL, Yeo SH (2017) Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing. Wear 378–379:90–95. https://doi.org/10.1016/j.wear.2017.02.030

    Article  Google Scholar 

  41. Wang J, Zhu J, Liew PJ (2019) Material removal in ultrasonic abrasive polishing of additive manufactured components. Appl Sci 9. https://doi.org/10.3390/app9245359

  42. Tan KL, Yeo SH (2020) Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion. Addit Manuf 31:100938. https://doi.org/10.1016/j.addma.2019.100938

    Article  Google Scholar 

  43. Karakurt I, Ho KY, Ledford C et al (2018) Development of a magnetically driven abrasive polishing process for additively manufactured copper structures. Procedia Manuf 26:798–805. https://doi.org/10.1016/j.promfg.2018.07.097

    Article  Google Scholar 

  44. Zhang J, Tai WG, Wang H et al (2018) Magnetic abrasive polishing of additively manufactured 316L stainless steel parts. Proc Euspen’s 18th Int Conf Venice, Italy 401–402

  45. Wu PY, Yamaguchi H (2018) Material removal mechanism of additively manufactured components finished using magnetic abrasive finishing. Procedia Manuf 26:394–402. https://doi.org/10.1016/j.promfg.2018.07.047

    Article  Google Scholar 

  46. Zhang J, Chaudhari A, Wang H (2019) Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J Manuf Process 45:710–719. https://doi.org/10.1016/j.jmapro.2019.07.044

    Article  Google Scholar 

  47. Teng X, Zhang G, Zhao Y et al (2021) Study on magnetic abrasive finishing process of AlSi10Mg alloy curved surface formed by selective laser melting. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-08138-4

    Article  Google Scholar 

  48. Han S, Salvatore F, Rech J, Bajolet J (2020) Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precis Eng 64:20–33. https://doi.org/10.1016/j.precisioneng.2020.03.006

    Article  Google Scholar 

  49. Duval-Chaneac MS, Han S, Claudin C et al (2018) Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM). Precis Eng 54:1–6. https://doi.org/10.1016/j.precisioneng.2018.03.006

    Article  Google Scholar 

  50. Bouland C, Urlea V, Beaubier K et al (2019) Abrasive flow machining of laser powder bed-fused parts: numerical modeling and experimental validation. J Mater Process Technol 273:116262. https://doi.org/10.1016/j.jmatprotec.2019.116262

    Article  Google Scholar 

  51. Mingareev I, Bonhoff T, El-Sherif AF et al (2013) Femtosecond laser post-processing of metal parts produced by laser additive manufacturing. J Laser Appl 25:052009. https://doi.org/10.2351/1.4824146

    Article  Google Scholar 

  52. Lamikiz A, Sánchez JA, López de Lacalle LN, Arana JL (2007) Laser polishing of parts built up by selective laser sintering. Int J Mach Tools Manuf 47:2040–2050. https://doi.org/10.1016/j.ijmachtools.2007.01.013

    Article  Google Scholar 

  53. Rosa B, Mognol P, Hascoët JY (2016) Modelling and optimization of laser polishing of additive laser manufacturing surfaces. Rapid Prototyp J 22:956–964. https://doi.org/10.1108/RPJ-12-2014-0168

    Article  Google Scholar 

  54. Bhaduri D, Penchev P, Batal A et al (2017) Laser polishing of 3D printed mesoscale components. Appl Surf Sci 405:29–46. https://doi.org/10.1016/j.apsusc.2017.01.211

    Article  Google Scholar 

  55. Gora WS, Tian Y, Cabo AP et al (2016) Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing. Phys Procedia 83:258–263. https://doi.org/10.1016/j.phpro.2016.08.021

    Article  Google Scholar 

  56. Ma CP, Guan YC, Zhou W (2017) Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng 93:171–177. https://doi.org/10.1016/j.optlaseng.2017.02.005

    Article  Google Scholar 

  57. Zhihao F, Libin L, Longfei C, Yingchun G (2018) Laser polishing of additive manufactured superalloy. Procedia CIRP 71:150–154. https://doi.org/10.1016/j.procir.2018.05.088

    Article  Google Scholar 

  58. Li YH, Wang B, Ma CP et al (2019) Material characterization, thermal analysis, and mechanical performance of a laser-polished Ti Alloy prepared by selective laser melting. Metals (Basel) 9:1–11. https://doi.org/10.3390/met9020112

    Article  Google Scholar 

  59. Wang WJ, Yung KC, Choy HS et al (2018) Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys. Appl Surf Sci 443:167–175. https://doi.org/10.1016/j.apsusc.2018.02.246

    Article  Google Scholar 

  60. Dos Santos SJ, Seifert HJ, Pfleging W (2018) Laser surface modification and polishing of additive manufactured metallic parts. Procedia CIRP 74:280–284. https://doi.org/10.1016/j.procir.2018.08.111

    Article  Google Scholar 

  61. Arrizubieta JI, Cortina M, Ruiz JE, Lamikiz A (2018) Combination of laser material deposition and laser surface processes for the holistic manufacture of inconel 718 Components. Materials (Basel) 11:1247. https://doi.org/10.3390/ma11071247

    Article  Google Scholar 

  62. Ghorbani J, Li J, Srivastava AK (2020) Application of optimized laser surface re-melting process on selective laser melted 316L stainless steel inclined parts. J Manuf Process 56:726–734. https://doi.org/10.1016/j.jmapro.2020.05.025

    Article  Google Scholar 

  63. Dadbakhsh S, Hao L, Kong CY (2010) Surface finish improvement of LMD samples using laser polishing. Virtual Phys Prototyp 5:215–221. https://doi.org/10.1080/17452759.2010.528180

    Article  Google Scholar 

  64. Yung KC, Xiao TY, Choy HS et al (2018) Laser polishing of additive manufactured CoCr alloy components with complex surface geometry. J Mater Process Technol 262:53–64. https://doi.org/10.1016/j.jmatprotec.2018.06.019

    Article  Google Scholar 

  65. Hallmann S, Wolny T, Emmelmann C (2018) Post-processing of additively manufactured cutting edges by laser ablation. Procedia CIRP 74:276–279. https://doi.org/10.1016/j.procir.2018.08.110

    Article  Google Scholar 

  66. Lohser J (2018) Evaluation of electrochemical and laser polishing of selectively LaserMelted 316L stainless steel

  67. Raja K, Nathan M, Patil Balram T, Naiju CD (2018) Study of surface integrity and effect of laser peening on maraging steel produced by lasercusing technique. SAE Tech Pap 2018-July. https://doi.org/10.4271/2018-28-0094

  68. Yung KC, Zhang SS, Duan L et al (2019) Laser polishing of additive manufactured tool steel components using pulsed or continuous-wave lasers. Int J Adv Manuf Technol 105:425–440. https://doi.org/10.1007/s00170-019-04205-z

    Article  Google Scholar 

  69. Sarkar S, Kumar CS, Nath AK (2019) Effects of different surface modifications on the fatigue life of selective laser melted 15–5 PH stainless steel. Mater Sci Eng A 762:138109. https://doi.org/10.1016/j.msea.2019.138109

    Article  Google Scholar 

  70. Obeidi MA, McCarthy E, O’Connell B et al (2019) Laser polishing of additive manufactured 316L stainless steel synthesized by selective laser melting. Materials (Basel) 12. https://doi.org/10.3390/ma12060991

  71. Li Y, Zhang Z, Guan Y (2020) Thermodynamics analysis and rapid solidification of laser polished Inconel 718 by selective laser melting. Appl Surf Sci 511:145423. https://doi.org/10.1016/j.apsusc.2020.145423

    Article  Google Scholar 

  72. Bures M, Zetek M (2020) Application of laser surface polishing on additive manufactured parts of inconel 718 nickel-based superalloy. MM Sci J 2020:3873–3877. https://doi.org/10.17973/MMSJ.2020_03_2019141

  73. Chen L, Richter B, Zhang X et al (2020) Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing. Addit Manuf 32:101013. https://doi.org/10.1016/j.addma.2019.101013

    Article  Google Scholar 

  74. Yasa E, Deckers J, Kruth JP (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17:312–327. https://doi.org/10.1108/13552541111156450

    Article  Google Scholar 

  75. Solheid JS, Mohanty S, Bayat M et al (2020) Laser polishing of additively manufactured Ti-6Al-4V: microstructure evolution and material properties. J Laser Appl 32:022019. https://doi.org/10.2351/7.0000065

    Article  Google Scholar 

  76. Kumar A, Saha S, Kumar CS, Nath AK (2019) Laser surface re-melting of additive manufactured samples with a line focused beam. Mater Today Proc 26:1221–1225. https://doi.org/10.1016/j.matpr.2020.02.245

    Article  Google Scholar 

  77. Kahlin M, Ansell H, Basu D et al (2020) Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. Int J Fatigue 134:105497. https://doi.org/10.1016/j.ijfatigue.2020.105497

    Article  Google Scholar 

  78. Liang C, Hu Y, Liu N et al (2020) Laser polishing of Ti6Al4V fabricated by selective laser melting. Metals (Basel) 10:1–13. https://doi.org/10.3390/met10020191

    Article  Google Scholar 

  79. Zhang D, Yu J, Li H et al (2020) Investigation of laser polishing of four selective laser melting alloy samples. Appl Sci 10. https://doi.org/10.3390/app10030760

  80. Thakur VS, Manikandan M, Singh S et al (2020) Laser polishing of wire arc additive manufactured SS316L. 127–135. https://doi.org/10.1007/978-981-32-9433-2_10

  81. Hofele M, Roth A, Schanz J et al (2021) Laser polishing of laser powder bed fusion AlSi10Mg parts—influence of initial surface roughness on achievable surface quality. Mater Sci Appl 12:15–41. https://doi.org/10.4236/msa.2021.121002

    Article  Google Scholar 

  82. Park SH, Liu P, Yi K et al (2021) Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing. Int J Mach Tools Manuf 166:103745. https://doi.org/10.1016/j.ijmachtools.2021.103745

    Article  Google Scholar 

  83. Shen H, Liao C, Zhou J, Zhao K (2021) Two-step laser based surface treatments of laser metal deposition manufactured Ti6Al4V components. J Manuf Process 64:239–252. https://doi.org/10.1016/j.jmapro.2021.01.028

    Article  Google Scholar 

  84. Zhou J, Han X, Li H et al (2021) In-situ laser polishing additive manufactured alsi10mg: effect of laser polishing strategy on surface morphology, roughness and microhardness. Materials (Basel) 14:1–19. https://doi.org/10.3390/ma14020393

    Article  Google Scholar 

  85. Alrbaey K, Wimpenny D, Tosi R et al (2014) On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J Mater Eng Perform 23:2139–2148. https://doi.org/10.1007/s11665-014-0993-9

    Article  Google Scholar 

  86. Lee S, Ahmadi Z, Pegues JW et al (2021) Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts. Opt Laser Technol 134:106639. https://doi.org/10.1016/j.optlastec.2020.106639

    Article  Google Scholar 

  87. Souza AM, Ferreira R, Barragán G et al (2021) Effects of laser polishing on surface characteristics and wettability of directed energy-deposited 316L stainless steel. J Mater Eng Perform 30:6752–6765. https://doi.org/10.1007/s11665-021-05991-y

    Article  Google Scholar 

  88. Ribeiro KSB, Mariani FE, Idogava HT et al (2021) Evaluation of laser polishing as post-processing of Inconel 625 produced by directed energy deposition. Procedia Manuf 53:368–374. https://doi.org/10.1016/j.promfg.2021.06.040

    Article  Google Scholar 

  89. Kuisat F, Lasagni F, Lasagni AF (2021) Smoothing additive manufactured parts using ns-pulsed laser radiation. Prog Addit Manuf 6:297–306. https://doi.org/10.1007/s40964-021-00168-4

    Article  Google Scholar 

  90. Obeidi MA, Mussatto A, Dogu MN et al (2022) Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion. Surf Coat Technol 434:128179. https://doi.org/10.1016/j.surfcoat.2022.128179

    Article  Google Scholar 

  91. Hofele M, Roth A, Hegele P et al (2022) Influence of laser polishing on the material properties of aluminium L-PBF components. Metals (Basel) 12:750. https://doi.org/10.3390/MET12050750

    Article  Google Scholar 

  92. Liu Y, Ouyang W, Wu H et al (2022) Improving surface quality and superficial microstructure of LDED Inconel 718 superalloy processed by hybrid laser polishing. J Mater Process Technol 300:117428. https://doi.org/10.1016/j.jmatprotec.2021.117428

    Article  Google Scholar 

  93. Maleki E, Bagherifard S, Unal O et al (2022) On the effects of laser shock peening on fatigue behavior of V-notched AlSi10Mg manufactured by laser powder bed fusion. Int J Fatigue 163:107035. https://doi.org/10.1016/j.ijfatigue.2022.107035

    Article  Google Scholar 

  94. Marimuthu S, Triantaphyllou A, Antar M et al (2015) Laser polishing of selective laser melted components. Int J Mach Tools Manuf 95:97–104. https://doi.org/10.1016/j.ijmachtools.2015.05.002

    Article  Google Scholar 

  95. Rosa B, Mognol P, Hascoët J et al (2015) Laser polishing of additive laser manufacturing surfaces. J Laser Appl 27. https://doi.org/10.2351/1.4906385

  96. Schanz J, Hofele M, Hitzler L et al (2016) Laser polishing of additive manufactured alsi10mg parts with an oscillating laser beam. Adv Struct Mater 61:159–169. https://doi.org/10.1007/978-981-10-1082-8_16

    Article  Google Scholar 

  97. Witkin D, Helvajian H, Steffeney L, Hansen W (2016) Laser post-processing of Inconel 625 made by selective laser melting. Laser 3D Manuf III 9738:106–115. https://doi.org/10.1117/12.2213745

  98. Alfieri V, Argenio P, Caiazzo F, Sergi V (2016) Reduction of surface roughness by means of laser processing over additive manufacturing metal parts. Materials (Basel) 10:30. https://doi.org/10.3390/ma10010030

    Article  Google Scholar 

  99. Boschetto A, Bottini L, Macera L, Veniali F (2020) Post-processing of complex SLM parts by barrel finishing. Appl Sci 10. https://doi.org/10.3390/app10041382

  100. Atzeni E, Balestrucci A, Catalano AR et al (2020) Performance assessment of a vibro-finishing technology for additively manufactured components. Procedia CIRP 88:427–432. https://doi.org/10.1016/j.procir.2020.05.074

    Article  Google Scholar 

  101. Grigoriev SN, Metel AS, Tarasova TV et al (2020) Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties. Metals (Basel) 10:1540. https://doi.org/10.3390/met10111540

    Article  Google Scholar 

  102. Melia MA, Duran JG, Koepke JR et al (2020) How build angle and post-processing impact roughness and corrosion of additively manufactured 316L stainless steel. NPJ Mater Degrad 4:1–11. https://doi.org/10.1038/s41529-020-00126-5

    Article  Google Scholar 

  103. Boschetto A, Bottini L, Veniali F (2018) Surface roughness and radiusing of Ti6Al4V selective laser melting-manufactured parts conditioned by barrel finishing. Int J Adv Manuf Technol 94:2773–2790. https://doi.org/10.1007/s00170-017-1059-6

    Article  Google Scholar 

  104. Żebrowski R, Walczak M (2018) The effect of shot peening on the corrosion behaviour of Ti-6Al-4V alloy made by DMLS. Adv Mater Sci 18:43–54. https://doi.org/10.1515/adms-2017-0040

    Article  Google Scholar 

  105. AlMangour B, Yang JM (2016) Improving the surface quality and mechanical properties by shot-peening of 17–4 stainless steel fabricated by additive manufacturing. Mater Des 110:914–924. https://doi.org/10.1016/j.matdes.2016.08.037

    Article  Google Scholar 

  106. Sugavaneswaran M, Jebaraj AV, Kumar MDB et al (2018) Enhancement of surface characteristics of direct metal laser sintered stainless steel 316L by shot peening. Surf Interfaces 12:31–40. https://doi.org/10.1016/j.surfin.2018.04.010

    Article  Google Scholar 

  107. Lesyk DA, Dzhemelinskyi VV, Martinez S et al (2021) Surface shot peening post-processing of Inconel 718 alloy parts printed by laser powder bed fusion additive manufacturing. J Mater Eng Perform 30:6982–6995. https://doi.org/10.1007/s11665-021-06103-6

    Article  Google Scholar 

  108. Uzan NE, Ramati S, Shneck R et al (2018) On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). Addit Manuf 21:458–464. https://doi.org/10.1016/j.addma.2018.03.030

    Article  Google Scholar 

  109. Sagbas B (2020) Post-processing effects on surface properties of direct metal laser sintered AlSi10Mg Parts. Met Mater Int 26:143–153. https://doi.org/10.1007/s12540-019-00375-3

    Article  Google Scholar 

  110. Maamoun A, Elbestawi M, Veldhuis S (2018) Influence of shot peening on AlSi10Mg parts fabricated by additive manufacturing. J Manuf Mater Process 2:40. https://doi.org/10.3390/jmmp2030040

    Article  Google Scholar 

  111. Damon J, Dietrich S, Vollert F et al (2018) Process dependent porosity and the influence of shot peening on porosity morphology regarding selective laser melted AlSi10Mg parts. Addit Manuf 20:77–89. https://doi.org/10.1016/j.addma.2018.01.001

    Article  Google Scholar 

  112. Cho SY, Kim MS, Pyun YS, Shim DS (2021) Strategy for surface post‐processing of aisi 316l additively manufactured by powder bed fusion using ultrasonic nanocrystal surface modification. Metals (Basel) 11. https://doi.org/10.3390/met11050843

  113. Ma C, Dong Y, Ye C (2016) Improving surface finish of 3D-printed metals by ultrasonic nanocrystal surface modification. Procedia CIRP 45:319–322. https://doi.org/10.1016/j.procir.2016.02.339

    Article  Google Scholar 

  114. Zhang H, Chiang R, Qin H et al (2017) The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64. Int J Fatigue 103:136–146. https://doi.org/10.1016/j.ijfatigue.2017.05.019

    Article  Google Scholar 

  115. Amanov A (2020) Effect of local treatment temperature of ultrasonic nanocrystalline surface modification on tribological behavior and corrosion resistance of stainless steel 316L produced by selective laser melting. Surf Coat Technol 398:126080. https://doi.org/10.1016/j.surfcoat.2020.126080

    Article  Google Scholar 

  116. Denti L, Bassoli E, Gatto A et al (2019) Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes. Mater Sci Eng A 755:1–9. https://doi.org/10.1016/j.msea.2019.03.119

    Article  Google Scholar 

  117. Bai Y, Zhao C, Yang J et al (2021) Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment. J Mater Process Technol 288:116906. https://doi.org/10.1016/j.jmatprotec.2020.116906

    Article  Google Scholar 

  118. Bruschi S, Bertolini R, Bordin A et al (2016) Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured Ti6Al4V for biomedical applications. Tribol Int 102:133–142. https://doi.org/10.1016/j.triboint.2016.05.036

    Article  Google Scholar 

  119. Iquebal AS, El AS, Shrestha S et al (2017) Longitudinal milling and fine abrasive finishing operations to improve surface integrity of metal AM components. Procedia Manuf 10:990–996. https://doi.org/10.1016/j.promfg.2017.07.090

    Article  Google Scholar 

  120. Ni C, Zhu L, Zheng Z et al (2020) Effects of machining surface and laser beam scanning strategy on machinability of selective laser melted Ti6Al4V alloy in milling. Mater Des 194:108880. https://doi.org/10.1016/j.matdes.2020.108880

    Article  Google Scholar 

  121. Dabwan A, Anwar S, Al-Samhan AM et al (2021) Investigations on the effect of layers’ thickness and orientations in the machining of additively manufactured stainless steel 316l. Materials (Basel) 14. https://doi.org/10.3390/ma14071797

  122. Fortunato A, Lulaj A, Melkote S et al (2018) Milling of maraging steel components produced by selective laser melting. Int J Adv Manuf Technol 94:1895–1902. https://doi.org/10.1007/s00170-017-0922-9

    Article  Google Scholar 

  123. Lopes JG, Machado CM, Duarte VR et al (2020) Effect of milling parameters on HSLA steel parts produced by wire and arc additive manufacturing (WAAM). J Manuf Process 59:739–749. https://doi.org/10.1016/j.jmapro.2020.10.007

    Article  Google Scholar 

  124. Brown D, Li C, Liu ZY et al (2018) Surface integrity of Inconel 718 by hybrid selective laser melting and milling. Virtual Phys Prototyp 13:26–31. https://doi.org/10.1080/17452759.2017.1392681

    Article  Google Scholar 

  125. Oliveira AR, Jardini AL, Del Conte EG (2020) Effects of cutting parameters on roughness and residual stress of maraging steel specimens produced by additive manufacturing. Int J Adv Manuf Technol 111:2449–2459. https://doi.org/10.1007/s00170-020-06309-3

    Article  Google Scholar 

  126. Tyagi P, Goulet T, Riso C et al (2019) Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit Manuf 25:32–38. https://doi.org/10.1016/j.addma.2018.11.001

    Article  Google Scholar 

  127. Longhitano GA, Conde A, Arenas MA et al (2021) Corrosion resistance improvement of additive manufactured scaffolds by anodizing. Electrochim Acta 366:137423. https://doi.org/10.1016/j.electacta.2020.137423

    Article  Google Scholar 

  128. Tyagi P, Goulet T, Riso C, Garcia-Moreno F (2019) Reducing surface roughness by chemical polishing of additively manufactured 3D printed 316 stainless steel components. Int J Adv Manuf Technol 100:2895–2900. https://doi.org/10.1007/s00170-018-2890-0

    Article  Google Scholar 

  129. Dillard J, Grizzle A, Demisse W et al (2020) Effect of altering the sequence of chempolishing and electropolishing on surface properties of additively manufactured (AM) 316 steel components. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). American Society of Mechanical Engineers Digital Collection, pp 1–5

  130. Zhang Y, Li J, Che S et al (2019) Chemical leveling mechanism and oxide film properties of additively manufactured Ti–6Al–4V alloy. J Mater Sci 54:13753–13766. https://doi.org/10.1007/s10853-019-03855-4

    Article  Google Scholar 

  131. de Damborenea JJ, Arenas MA, Larosa MA et al (2017) Corrosion of Ti6Al4V pins produced by direct metal laser sintering. Appl Surf Sci 393:340–347. https://doi.org/10.1016/j.apsusc.2016.10.031

    Article  Google Scholar 

  132. Fayazfar H, Rishmawi I, Vlasea M (2021) Electrochemical-based surface enhancement of additively manufactured Ti-6Al-4V complex structures. J Mater Eng Perform 30:2245–2255. https://doi.org/10.1007/s11665-021-05512-x

    Article  Google Scholar 

  133. Jain S, Corliss M, Tai B, Hung WN (2019) Electrochemical polishing of selective laser melted Inconel 718. Procedia Manuf 34:239–246. https://doi.org/10.1016/j.promfg.2019.06.145

    Article  Google Scholar 

  134. García-Blanco MB, Díaz-Fuentes M, Garrido O et al (2015) Electropolishing process to reduce surface roughness of a Ti alloy fabricated by SLM. In: International Power Metallurgy Congress and Exhibition

  135. Yang L, Wu Y, Lassell A, Zhou B (2016) Electropolishing of Ti6Al4V parts fabricated by electron beam melting. Solid Free Fabr 2016 Proc 27th Annu Int Solid Free Fabr Symp - An Addit Manuf Conf SFF 2016 1333–1344

  136. Zhang Y, Li J, Che S (2018) Electropolishing mechanism of Ti-6Al-4V alloy fabricated by selective laser melting. Int J Electrochem Sci 13:4792–4807. https://doi.org/10.20964/2018.05.79

  137. Brent D, Saunders TA, Garcia Moreno F, Tyagi P (2016) Taguchi design of experiment for the optimization of electrochemical polishing of metal additive manufacturing components. 1–6. https://doi.org/10.1115/imece2016-67492

  138. Urlea V, Brailovski V (2017) Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components. J Mater Process Technol 242:1–11. https://doi.org/10.1016/j.jmatprotec.2016.11.014

    Article  Google Scholar 

  139. Rotty C, Dochea M-L, Mandroyan A, Hihn J-Y, Ghislain Montavon VM (2016) Electropolishing of thermal spray coating and laser additive manufacturing of 316L stainless steel in strong acidic media. Int Conf Surf Modif Technol

  140. Rotty C, Doche M-L, Mandroyan A, Hihn J-Y (2017) Electropolishing behavior of additive layer manufacturing 316L stainless steel in deep eutectic solvents. ECS Trans 77:1199–1207. https://doi.org/10.1149/07711.1199ecst

    Article  Google Scholar 

  141. Baicheng Z, Xiaohua L, Jiaming B et al (2017) Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater Des 116:531–537. https://doi.org/10.1016/j.matdes.2016.11.103

    Article  Google Scholar 

  142. Yang L, Lassell A, Paiva GPV (2015) Further study of the electropolishing of Ti6Al4V parts made via electron beam melting. Int Solid Free Fabr Symp 2015:1730–1737

    Google Scholar 

  143. Rotty C, Mandroyan A, Doche ML, Hihn JY (2016) Electropolishing of CuZn brasses and 316L stainless steels: influence of alloy composition or preparation process (ALM vs. standard method). Surf Coat Technol 307:125–135. https://doi.org/10.1016/j.surfcoat.2016.08.076

    Article  Google Scholar 

  144. Yang L, O’Neil C, Wu Y (2017) The use of electropolishing surface treatment on IN718 parts fabricated by laser powder bed fusion process. Solid Free Fabr Symp. https://doi.org/10.26153/tsw/16968

  145. Ali U, Fayazfar H, Ahmed F, Toyserkani E (2020) Internal surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing. Vacuum 177:109314. https://doi.org/10.1016/j.vacuum.2020.109314

    Article  Google Scholar 

  146. Zhang Y, Li J, Che S, Tian Y (2020) Electrochemical polishing of additively manufactured Ti–6Al–4V alloy. Met Mater Int 26:783–792. https://doi.org/10.1007/s12540-019-00556-0

    Article  Google Scholar 

  147. Chang JK, Lee CY, Tzeng YC et al (2021) Electropolishing of additive manufactured 17–4 PH stainless steel using sulfuric acid. Int J Electrochem Sci 16:1–10. https://doi.org/10.20964/2021.03.09

  148. Han W, Fang F (2021) Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion. Front Mech Eng 16:580–592. https://doi.org/10.1007/s11465-021-0633-7

    Article  Google Scholar 

  149. Zhao C, Qu N, Tang X (2021) Electrochemical mechanical polishing of internal holes created by selective laser melting. J Manuf Process 64:1544–1562. https://doi.org/10.1016/j.jmapro.2021.03.003

    Article  Google Scholar 

  150. Ahmadkhaniha D, Möller H, Zanella C (2021) Studying the microstructural effect of selective laser melting and electropolishing on the performance of maraging steel. J Mater Eng Perform 30:6588–6605. https://doi.org/10.1007/s11665-021-05927-6

    Article  Google Scholar 

  151. Min Z, Wu Y, Yang K et al (2021) Dimensional characterizations using scanning electron microscope and surface improvement with electrochemical polishing of additively manufactured microchannels. J Eng Gas Turbines Power 143:1–12. https://doi.org/10.1115/1.4049908

    Article  Google Scholar 

  152. Shrivastava A, Anand Kumar S, Nagesha BK, Suresh TN (2021) Electropolishing of Inconel 718 manufactured by laser powder bed fusion: effect of heat treatment on hardness, 3D surface topography and material ratio curve. Opt Laser Technol 144:107448. https://doi.org/10.1016/j.optlastec.2021.107448

    Article  Google Scholar 

  153. Rodriguez P, Ruiz F, Dillard J, Tyagi P (2020) Electropolishing of surfaces in metallic parts obtained by additive manufacturing. https://doi.org/10.31224/osf.io/tq3nx

  154. Ferchow J, Hofmann U, Meboldt M (2020) Enabling electropolishing of complex selective laser melting structures. Procedia CIRP 91:472–477. https://doi.org/10.1016/j.procir.2020.02.201

    Article  Google Scholar 

  155. Chang S, Liu A, Ong CYA et al (2019) Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing. Mater Res Lett 7:282–289. https://doi.org/10.1080/21663831.2019.1601645

    Article  Google Scholar 

  156. Wu Y-C, Kuo C-N, Chung Y-C et al (2019) Effects of electropolishing on mechanical properties beam melting additive manufacturing. Materials (Basel) 12:1466. https://doi.org/10.3390/MA12091466

    Article  Google Scholar 

  157. Mohammadian N, Turenne S, Brailovski V (2019) Electropolishing of laser powder bed-fused IN625 components in an ionic electrolyte. J Manuf Mater Process 3:1–20. https://doi.org/10.3390/jmmp3040086

    Article  Google Scholar 

  158. Tyagi P, Goulet T, Brent D et al (2019) Scanning electron microscopy and optical profilometry of electropolished additively manufactured 316 steel components. ASME Int Mech Eng Congr Expo Proc 2:9–15. https://doi.org/10.1115/IMECE2018-88339

    Article  Google Scholar 

  159. Rotty C, Mandroyan A, Doche M-L et al (2019) Electrochemical superfinishing of cast and ALM 316L stainless steels in deep eutectic solvents: surface microroughness evolution and corrosion resistance. J Electrochem Soc 166:C468–C478. https://doi.org/10.1149/2.1211913jes

    Article  Google Scholar 

  160. Tyagi P, Goulet T, Riso C et al (2018) Electropolishing of additively manufactured high carbon grade 316 stainless steel

  161. Lyczkowska-Widlak E, Lochynski P, Nawrat G, Chlebus E (2019) Comparison of electropolished 316L steel samples manufactured by SLM and traditional technology. Rapid Prototyp J 25:566–580. https://doi.org/10.1108/RPJ-03-2018-0060

    Article  Google Scholar 

  162. Bagehorn S, Wehr J, Nixon S et al (2017) Electrochemical enhancement of the surface morphology and the fatigue performance of Ti-6Al-4V parts manufactured by laser beam melting. 28th Annu Int Solid Free Fabr Symp – An Addit Manuf Conf

  163. Kim US, Park JW (2019) High-quality surface finishing of industrial three-dimensional metal additive manufacturing using electrochemical polishing. Int J Precis Eng Manuf Green Technol 6:11–21. https://doi.org/10.1007/s40684-019-00019-2

    Article  Google Scholar 

  164. Habibzadeh S, Li L, Shum-Tim D et al (2014) Electrochemical polishing as a 316L stainless steel surface treatment method: towards the improvement of biocompatibility. Corros Sci 87:89–100. https://doi.org/10.1016/j.corsci.2014.06.010

    Article  Google Scholar 

  165. Rotty C, Doche ML, Mandroyan A et al (2017) Comparison of electropolishing behaviours of TSC, ALM and cast 316L stainless steel in H3PO4/H2SO4. Surf Interfaces 6:170–176. https://doi.org/10.1016/j.surfin.2017.01.008

    Article  Google Scholar 

  166. Alrbaey K, Wimpenny DI, Al-Barzinjy AA, Moroz A (2016) Electropolishing of re-melted SLM stainless steel 316L parts using deep eutectic solvents: 3 × 3 full factorial design. J Mater Eng Perform 25:2836–2846. https://doi.org/10.1007/s11665-016-2140-2

    Article  Google Scholar 

  167. Tsoeunyane GM, Mathe N, Tshabalala L, Makhatha ME (2022) Electropolishing of additively manufactured Ti-6Al-4V surfaces in nontoxic electrolyte solution. Adv Mater Sci Eng 2022. https://doi.org/10.1155/2022/6987353

  168. Lee CY, Ger M Der, Hung JC, et al (2022) Effect of phosphoric acid and perchloric acid on electropolishing of additive manufactured 17–4 PH stainless steel and its characterization. Int J Electrochem Sci 17:1–11. https://doi.org/10.20964/2022.03.21

  169. Liu H, Ye M, Ye Z et al (2022) High-quality surface smoothening of laser powder bed fusion additive manufacturing AlSi10Mg via intermittent electrochemical polishing. Surf Coat Technol 443:128608. https://doi.org/10.1016/j.surfcoat.2022.128608

    Article  Google Scholar 

  170. Sadeghi M, Diaz A, McFadden P, Sadeghi E (2022) Chemical and mechanical post-processing of Alloy 718 built via electron beam-powder bed fusion: surface texture and corrosion behavior. Mater Des 214:110405. https://doi.org/10.1016/j.matdes.2022.110405

    Article  Google Scholar 

  171. Garich H, Hall TD (2018) Electrochemical surface finishing of additively manufactured parts. ECS Trans 85:155–166

    Article  Google Scholar 

  172. Urlea V, Brailovski V (2017) Electropolishing and electropolishing-related allowances for IN625 alloy components fabricated by laser powder-bed fusion. Int J Adv Manuf Technol 92:4487–4499. https://doi.org/10.1007/s00170-017-0546-0

    Article  Google Scholar 

  173. Zhang B, Zhu L, Liao H, Coddet C (2012) Improvement of surface properties of SLM parts by atmospheric plasma spraying coating. Appl Surf Sci 263:777–782. https://doi.org/10.1016/j.apsusc.2012.09.170

    Article  Google Scholar 

  174. Inberg A, Ashkenazi D, Kimmel G et al (2020) Gold plating of AlSi10Mg parts produced by a laser powder-bed fusion additive manufacturing technique. Prog Addit Manuf 5:395–404. https://doi.org/10.1007/s40964-020-00134-6

    Article  Google Scholar 

  175. Dresler N, Inberg A, Ashkenazi D et al (2019) Silver electroless finishing of selective laser melting 3D-printed AlSi10Mg artifacts. Metallogr Microstruct Anal 8:678–692. https://doi.org/10.1007/s13632-019-00576-7

    Article  Google Scholar 

  176. Inberg A, Ashkenazi D, Kimmel G et al (2020) Gold–silver electroless plating on laser powder-bed fusion additively printed alsi10mg parts. Metals (Basel) 10:1–18. https://doi.org/10.3390/met10050557

    Article  Google Scholar 

  177. Agredo Diaz DG, Barba Pingarrón A, OlayaFlorez JJ et al (2020) Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution. Mater Lett 275:128159. https://doi.org/10.1016/j.matlet.2020.128159

    Article  Google Scholar 

  178. Wang L, Wang G, Dong H et al (2022) Plasma electrolytic oxidation coatings on additively manufactured aluminum–silicon alloys with superior tribological performance. Surf Coat Technol 435:128246. https://doi.org/10.1016/j.surfcoat.2022.128246

    Article  Google Scholar 

  179. Kim JD, Kim KD (2004) Deburring of burrs in spring collets by abrasive flow machining. Int J Adv Manuf Technol 24:469–473. https://doi.org/10.1007/s00170-002-1536-3

    Article  Google Scholar 

  180. Yin L, Ramesh K, Wan S et al (2004) Abrasive flow polishing of micro bores. Mater Manuf Process 19:187–207. https://doi.org/10.1081/AMP-120029851

    Article  Google Scholar 

  181. Rhoades L (1991) Abrasive flow machining: a case study. J Mater Process Technol 28:107–116. https://doi.org/10.1016/0924-0136(91)90210-6

    Article  Google Scholar 

  182. Kumar SS, Hiremath SS (2016) A review on abrasive flow machining (AFM). Procedia Technol 25:1297–1304. https://doi.org/10.1016/j.protcy.2016.08.224

    Article  Google Scholar 

  183. Wang X, Li S, Fu Y, Gao H (2016) Finishing of additively manufactured metal parts by abrasive flow machining. Solid Free Fabr 2016 Proc 27th Annu Int Solid Free Fabr Symp - An Addit Manuf Conf SFF 2016 2470–2472

  184. Lee JY, Nagalingam AP, Yeo SH (2021) A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components. Virtual Phys Prototyp 16:68–96. https://doi.org/10.1080/17452759.2020.1830346

    Article  Google Scholar 

  185. Gilmore R (2018) An evaluation of ultrasonic shot peening and abrasive flow machining as surface finishing processes for selective laser melted 316L. Master’s Theses. https://doi.org/10.15368/theses.2018.83

  186. Liu C, Yan D, Tan J et al (2020) Development and experimental validation of a hybrid selective laser melting and CNC milling system. Addit Manuf 36:101550. https://doi.org/10.1016/j.addma.2020.101550

    Article  Google Scholar 

  187. Basha SM, Bhuyan M, Basha MM et al (2019) Laser polishing of 3D printed metallic components: a review on surface integrity. Mater Today Proc 26:2047–2054. https://doi.org/10.1016/j.matpr.2020.02.443

    Article  Google Scholar 

  188. Maleki E, Bagherifard S, Bandini M, Guagliano M (2021) Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities. Addit Manuf 37:101619. https://doi.org/10.1016/j.addma.2020.101619

    Article  Google Scholar 

  189. Bagheri S, Guagliano M (2009) Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys. Surf Eng 25:3–14. https://doi.org/10.1179/026708408X334087

    Article  Google Scholar 

  190. Walczak M, Szala M (2021) Effect of shot peening on the surface properties, corrosion and wear performance of 17–4PH steel produced by DMLS additive manufacturing. Arch Civ Mech Eng 21. https://doi.org/10.1007/s43452-021-00306-3

  191. Mediratta R, Ahluwalia K, Yeo SH (2016) State-of-the-art on vibratory finishing in the aviation industry: an industrial and academic perspective. Int J Adv Manuf Technol 85:415–429. https://doi.org/10.1007/s00170-015-7942-0

    Article  Google Scholar 

  192. Domblesky J, Cariapa V, Evans R (2003) Investigation of vibratory bowl finishing. Int J Prod Res 41:3943–3953. https://doi.org/10.1080/0020754031000152550

    Article  Google Scholar 

  193. Toh BL, Gopasetty SK, Nagalingam AP et al (2022) Vibratory finishing of laser powder bed fused stainless steel 316 internal cooling channels. In: Lecture Notes in Mechanical Engineering. Springer Science and Business Media Deutschland GmbH, pp 13–16

  194. Pratis SDB, Almeida MJPA, Sérgio MP et al (2018) Productiveness evaluation of a machine tool manual setup compared with automated CNC machine. Int J Adv Eng Res Sci 5:117–119. https://doi.org/10.22161/ijaers.5.6.19

    Article  Google Scholar 

  195. Simoni F, Huxol A, Villmer FJ (2021) Improving surface quality in selective laser melting based tool making. J Intell Manuf 32:1927–1938. https://doi.org/10.1007/s10845-021-01744-9

    Article  Google Scholar 

  196. Sibanda PS, Carr P, Ryan M, Bigot S (2019) State of he art in surface finish of metal additive manufactured parts. Adv Transdiscip Eng 9:221–225. https://doi.org/10.3233/ATDE190039

    Article  Google Scholar 

  197. Boschetto A, Bottini L, Veniali F (2016) Finishing of fused deposition modeling parts by CNC machining. Robot Comput Integr Manuf 41:92–101. https://doi.org/10.1016/j.rcim.2016.03.004

    Article  Google Scholar 

  198. Krishnan A, Fang F (2019) Review on mechanism and process of surface polishing using lasers. Front Mech Eng 14:299–319. https://doi.org/10.1007/s11465-019-0535-0

    Article  Google Scholar 

  199. Gisario A, Barletta M, Veniali F (2022) Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing. Springer, London

    Google Scholar 

  200. Ermergen T, Taylan F (2021) Review on surface quality improvement of additively manufactured metals by laser polishing. Arab J Sci Eng 46:7125–7141. https://doi.org/10.1007/s13369-021-05658-9

    Article  Google Scholar 

  201. Boban J, Ahmed A, Jithinraj EK et al (2022) Polishing of additive manufactured metallic components: retrospect on existing methods and future prospects. Springer, London

    Google Scholar 

  202. Yung KC, Wang WJ, Xiao TY et al (2018) Laser polishing of additive manufactured CoCr components for controlling their wettability characteristics. Surf Coat Technol 351:89–98. https://doi.org/10.1016/j.surfcoat.2018.07.030

    Article  Google Scholar 

  203. Lyczkowska E, Szymczyk P, Dybała B, Chlebus E (2014) Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing. Arch Civ Mech Eng 14:586–594

    Article  Google Scholar 

  204. Inayoshi SS, Sato Y, Saito K et al (1999) Chemical polishing of stainless steel for ultrahigh vacuum wall material. Vacuum 53:325–328. https://doi.org/10.1016/S0042-207X(98)00422-9

    Article  Google Scholar 

  205. Heilig ML (1994) United States Patent Office. ACM SIGGRAPH Comput Graph 28:131–134. https://doi.org/10.1145/178951.178972

    Article  Google Scholar 

  206. Clerc C, Datta M, Landolt D (1984) On the theory of anodic levelling: model experiments with triangular nickel profiles in chloride solution. Electrochim Acta 29:1477–1486. https://doi.org/10.1016/0013-4686(84)87031-0

    Article  Google Scholar 

  207. Landolt D (1987) Fundamental aspects of electropolishing. Electrochim Acta 32:1–11. https://doi.org/10.1016/0013-4686(87)87001-9

    Article  Google Scholar 

  208. De Lima MSF, Sankaré S (2014) Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater Des 55:526–532. https://doi.org/10.1016/j.matdes.2013.10.016

    Article  Google Scholar 

  209. Huang CA, Hsu CC (2007) The electrochemical polishing behavior of duplex stainless steel (SAF 2205) in phosphoric-sulfuric mixed acids. Int J Adv Manuf Technol 34:904–910. https://doi.org/10.1007/s00170-006-0654-8

    Article  Google Scholar 

  210. Latifi A, Imani M, Khorasani MT, Joupari MD (2013) Electrochemical and chemical methods for improving surface characteristics of 316L stainless steel for biomedical applications. Surf Coat Technol 221:1–12. https://doi.org/10.1016/j.surfcoat.2013.01.020

    Article  Google Scholar 

  211. Rokosz K, Lahtinen J, Hryniewicz T, Rzadkiewicz S (2015) XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surf Coat Technol 276:516–520. https://doi.org/10.1016/j.surfcoat.2015.06.022

    Article  Google Scholar 

  212. Mohan S, Kanagaraj D, Sindhuja R et al (2001) Electropolishing of stainless steel - a review. Trans Inst Met Finish 79:140–142. https://doi.org/10.1080/00202967.2001.11871382

    Article  Google Scholar 

  213. Abbott AP, Capper G, McKenzie KJ et al (2006) Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy. Phys Chem Chem Phys 8:4214–4221. https://doi.org/10.1039/b607763n

    Article  Google Scholar 

  214. Núñez PJ, García-Plaza E, Hernando M, Trujillo R (2013) Characterization of surface finish of electropolished stainless steel AISI 316L with varying electrolyte concentrations. Procedia Eng 63:771–778. https://doi.org/10.1016/j.proeng.2013.08.255

    Article  Google Scholar 

  215. Lee SJ, Lai JJ (2003) The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel. J Mater Process Technol 140:206–210. https://doi.org/10.1016/S0924-0136(03)00785-4

    Article  Google Scholar 

  216. Lin CC, Hu CC (2008) Electropolishing of 304 stainless steel: surface roughness control using experimental design strategies and a summarized electropolishing model. Electrochim Acta 53:3356–3363. https://doi.org/10.1016/j.electacta.2007.11.075

    Article  Google Scholar 

  217. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111:3508–3576. https://doi.org/10.1021/cr1003248

    Article  Google Scholar 

  218. Abbott AP, Capper G, McKenzie KJ, Ryder KS (2006) Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochim Acta 51:4420–4425. https://doi.org/10.1016/j.electacta.2005.12.030

    Article  Google Scholar 

  219. Mathieu JB, Landolt D (1978) Electropolishing of titanium in perchloric acid-acetic acid solution: II. Polarization behavior and stoichiometry. J Electrochem Soc 125:1044–1049. https://doi.org/10.1149/1.2131618

    Article  Google Scholar 

  220. Mahé E, Devilliers D (2001) Surface modification of titanium substrates for the preparation of noble metal coated anodes. Electrochim Acta 46:629–636. https://doi.org/10.1016/s0013-4686(00)00646-0

    Article  Google Scholar 

  221. Piotrowski O, Madore C, Landolt D (1998) The mechanism of electropolishing of titanium in methanol-sulfuric acid electrolytes. J Electrochem Soc 145:2362–2369. https://doi.org/10.1149/1.1838644

    Article  Google Scholar 

  222. Kuhn A (2004) The electropolishing of titanium and its alloys. Met Finish 102:80–86. https://doi.org/10.1016/S0026-0576(04)82510-8

    Article  Google Scholar 

  223. Tajima K, Hironaka M, Chen KK et al (2008) Electropolishing of CP titanium and its alloys in an alcoholic solution-based electrolyte. Dent Mater J 27:258–265. https://doi.org/10.4012/dmj.27.258

    Article  Google Scholar 

  224. Safdar A (2010) Microstructures and surface roughness of EBM produced Ti-6Al-4V

  225. Karlsson J (2015) Optimization of electron beam melting for production of small components in biocompatible titanium grades

  226. Cuthbertson JW, Turner TS (1966) Electrochemical machining—a study of the effects of some variables. Prod Eng 45:270. https://doi.org/10.1049/tpe.1966.0046

    Article  Google Scholar 

  227. Rokosz K, Hryniewicz T, Raaen S et al (2017) Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by plasma electrolytic oxidation. Int J Adv Manuf Technol 89:2953–2965. https://doi.org/10.1007/s00170-016-9206-z

    Article  Google Scholar 

  228. Huang CA, Chen YC (2009) The effect of water content on the electropolishing behavior of Inconel 718 alloy in perchloric-acetic acid mixtures. Corros Sci 51:1901–1906. https://doi.org/10.1016/j.corsci.2009.03.039

    Article  Google Scholar 

  229. Sutow EJ (1980) The influence of electropolishing on the corrosion resistance of 316L stainless steel. J Biomed Mater Res 14:587–595. https://doi.org/10.1002/jbm.820140505

    Article  Google Scholar 

  230. Shih CC, Shih CM, Su YY et al (2004) Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros Sci 46:427–441. https://doi.org/10.1016/S0010-938X(03)00148-3

    Article  Google Scholar 

  231. Greitemeier D (2016) Investigation of the parameters influencing the mechanical properties of additively manufactured TiAl6V4

  232. Mäkinen M, Jauhiainen E, Matilainen VP et al (2015) Preliminary comparison of properties between Ni-electroplated stainless steel parts fabricated with laser additive manufacturing and conventional machining. Phys Procedia 78:337–346. https://doi.org/10.1016/j.phpro.2015.11.048

    Article  Google Scholar 

  233. Ashkenazi D, Inberg A, Shacham-Diamand Y, Stern A (2021) Gold, silver, and electrum electroless plating on additively manufactured laser powder-bed fusion AlSi10Mg parts: a review. Coatings 11:422. https://doi.org/10.3390/coatings11040422

    Article  Google Scholar 

  234. Schlesinger M, Paunovic M (2006) Fundamentals of electrochemical deposition

  235. Wang C, Farhat Z, Jarjoura G et al (2017) Indentation and erosion behavior of electroless Ni-P coating on pipeline steel. Wear 376–377:1630–1639. https://doi.org/10.1016/j.wear.2016.12.054

    Article  Google Scholar 

  236. Hussein RO, Nie X, Northwood DO et al (2010) Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J Phys D Appl Phys 43. https://doi.org/10.1088/0022-3727/43/10/105203

  237. Walsh FC, Low CTJ, Wood RJK et al (2009) Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, mg, Ti) alloys. Trans Inst Met Finish 87:122–135. https://doi.org/10.1179/174591908X372482

    Article  Google Scholar 

  238. Fattah-Alhosseini A, Keshavarz MK, Molaei M, Gashti SO (2018) Plasma electrolytic oxidation (PEO) process on commercially pure Ti surface: effects of electrolyte on the microstructure and corrosion behavior of coatings. Metall Mater Trans A Phys Metall Mater Sci 49:4966–4979. https://doi.org/10.1007/s11661-018-4824-8

    Article  Google Scholar 

  239. Sabaghi Joni M, Fattah-Alhosseini A (2016) Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy. J Alloys Compd 661:237–244. https://doi.org/10.1016/j.jallcom.2015.11.169

    Article  Google Scholar 

  240. Molaei M, Fattah-Alhosseini A, Gashti SO (2018) Sodium aluminate concentration effects on microstructure and corrosion behavior of the plasma electrolytic oxidation coatings on pure titanium. Metall Mater Trans A Phys Metall Mater Sci 49:368–375. https://doi.org/10.1007/s11661-017-4405-2

    Article  Google Scholar 

  241. Lu X, Mohedano M, Blawert C et al (2016) Plasma electrolytic oxidation coatings with particle additions – a review. Surf Coat Technol 307:1165–1182. https://doi.org/10.1016/j.surfcoat.2016.08.055

    Article  Google Scholar 

  242. Yerokhin AL, Nie X, Leyland A et al (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122:73–93. https://doi.org/10.1016/S0257-8972(99)00441-7

    Article  Google Scholar 

  243. Clyne TW, Troughton SC (2019) A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Int Mater Rev 64:127–162. https://doi.org/10.1080/09506608.2018.1466492

    Article  Google Scholar 

  244. Hussein RO, Nie X, Northwood DO (2013) An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim Acta 112:111–119. https://doi.org/10.1016/j.electacta.2013.08.137

    Article  Google Scholar 

  245. Fattah-alhosseini A, Molaei M, Attarzadeh N et al (2020) On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: a review. Ceram Int 46:20587–20607. https://doi.org/10.1016/j.ceramint.2020.05.206

    Article  Google Scholar 

  246. Xiu P, Jia Z, Lv J et al (2016) Tailored surface treatment of 3d printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces 8:17964–17975. https://doi.org/10.1021/acsami.6b05893

    Article  Google Scholar 

  247. Gorgin Karaji Z, Hedayati R, Pouran B et al (2017) Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials. Mater Sci Eng C 76:406–416. https://doi.org/10.1016/j.msec.2017.03.079

    Article  Google Scholar 

  248. Gnedenkov SV, Sharkeev YP, Sinebryukhov SL et al (2016) Functional coatings formed on the titanium and magnesium alloys as implant materials by plasma electrolytic oxidation technology: fundamental principles and synthesis conditions. Corros Rev 34:65–83. https://doi.org/10.1515/corrrev-2015-0069

    Article  Google Scholar 

  249. Fattah-Alhosseini A, Molaei M, Babaei K (2020) Influence of electrolyte composition and voltage on the microstructure and growth mechanism of plasma electrolytic oxidation (PEO) coatings on tantalum: a review. Anal Bioanal Electrochem 12:517–535

    Google Scholar 

  250. Skeldon P, Thompson GE, Wood GC (1987) Formation of relatively pure alumina films by anodic polarization. Thin Solid Films 148:333–341. https://doi.org/10.1016/0040-6090(87)90327-0

    Article  Google Scholar 

  251. Mota RO, Liu Y, Mattos OR et al (2008) Influences of ion migration and electric field on the layered anodic films on Al-Mg alloys. Corros Sci 50:1391–1396. https://doi.org/10.1016/j.corsci.2008.01.007

    Article  Google Scholar 

  252. Vakili-Azghandi M, Fattah-alhosseini A, Keshavarz MK (2018) Optimizing the electrolyte chemistry parameters of PEO coating on 6061 Al alloy by corrosion rate measurement: Response surface methodology. Meas J Int Meas Confed 124:252–259. https://doi.org/10.1016/j.measurement.2018.04.038

    Article  Google Scholar 

  253. Chen J, Li J, Hu F et al (2019) Effect of microarc oxidation-treated Ti6Al4V scaffold following low-intensity pulsed ultrasound stimulation on osteogenic cells in vitro. ACS Biomater Sci Eng 5:572–581. https://doi.org/10.1021/acsbiomaterials.8b01000

    Article  Google Scholar 

  254. Pezzato L, Dabalà M, Brunelli K (2019) Microstructure and corrosion properties of PEO coatings produced on am-aluminum alloys. Key Eng Mater 813 KEM:298–303. https://doi.org/10.4028/www.scientific.net/KEM.813.298

  255. Pezzato L, Dabalà M, Gross S, Brunelli K (2020) Effect of microstructure and porosity of AlSi10Mg alloy produced by selective laser melting on the corrosion properties of plasma electrolytic oxidation coatings. Surf Coat Technol 404:126477. https://doi.org/10.1016/j.surfcoat.2020.126477

    Article  Google Scholar 

  256. Rogov AB, Lyu H, Matthews A, Yerokhin A (2020) AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys. Surf Coat Technol 399:126116. https://doi.org/10.1016/j.surfcoat.2020.126116

    Article  Google Scholar 

  257. Gnedenkov SV, Sinebryukhov SL, Egorkin VS et al (2019) Magnesium fabricated using additive technology: specificity of corrosion and protection. J Alloys Compd 808:151629. https://doi.org/10.1016/j.jallcom.2019.07.341

    Article  Google Scholar 

  258. Fattah-alhosseini A, Chaharmahali R, Keshavarz MK, Babaei K (2021) Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): a review. Surf Interfaces 25:101283. https://doi.org/10.1016/j.surfin.2021.101283

    Article  Google Scholar 

  259. Babaei K, Fattah-alhosseini A, Molaei M (2020) The effects of carbon-based additives on corrosion and wear properties of plasma electrolytic oxidation (PEO) coatings applied on aluminum and its alloys: a review. Surf Interfaces 21:100677. https://doi.org/10.1016/j.surfin.2020.100677

    Article  Google Scholar 

  260. Wu T, Blawert C, Zheludkevich ML (2020) Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process. J Mater Sci Technol 50:75–85. https://doi.org/10.1016/j.jmst.2019.12.031

    Article  Google Scholar 

  261. Sobetkii A, Mosinoiu L, Paraschiv A et al (2020) Microstructural aspects of the protective ceramic coatings applied on the surfaces of refractory alloys produced by additive manufacturing. Manuf Rev 7:33. https://doi.org/10.1051/mfreview/2020031

    Article  Google Scholar 

  262. Bhagade A, Gupta E, Jebaraj AV (2019) Influence of plasma sprayed zirconia coating on surface properties of additive manufactured austenitic stainless steel 316 L. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab5568

Download references

Acknowledgements

The author group gratefully acknowledge Ehsan Toyserkani for his support. The authors would also like to thank Issa Rishmawi for his contribution to the mechanical polishing section.

Author information

Authors and Affiliations

Authors

Contributions

Haniyeh Fayazfar: conceptualization (lead), investigation (lead), visualization (lead), writing—original draft preparation (lead), writing—reviewing and editing (equal), supervision, funding acquisition. Javid Sharifi: investigation (equal), visualization (equal), writing—original draft preparation (equal), writing—reviewing and editing (equal). Mohsen K. Keshavarz: investigation (supporting), writing—original draft preparation (supporting), writing—reviewing and editing (supporting). Mazyar Ansari: conceptualization (supporting), investigation (supporting), writing—original draft preparation (supporting), writing—reviewing and editing (supporting)

Corresponding author

Correspondence to Haniyeh Fayazfar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayazfar, H., Sharifi, J., Keshavarz, M.K. et al. An overview of surface roughness enhancement of additively manufactured metal parts: a path towards removing the post-print bottleneck for complex geometries. Int J Adv Manuf Technol 125, 1061–1113 (2023). https://doi.org/10.1007/s00170-023-10814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10814-6

Keywords

Navigation