Skip to main content
Log in

Post-Processing Effects on Surface Properties of Direct Metal Laser Sintered AlSi10Mg Parts

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Direct metal laser sintering is a powder bed fusion type additive manufacturing (AM) method. It provides opportunity to create near net shape parts layer-by-layer. Because of poor surface quality post processing operations are required. This paper investigates the effect of surface finishing operations such as abrasive blasting, shot peening and polishing on surface texture properties and green tribological behavior of direct metal laser sintered AlSi10Mg parts. 2D and 3D surface roughness characterization, density and hardness measurements were implemented. Ball-on-disc wear tests were applied under 10 N load with palm oil and soybean oil as green lubricants. Petrol based, commercial machine oil was used for control. The results revealed that post processing operations affected surface texture and tribological properties of the samples. Abrasive blasting increased surface hardness to the 187 HV, while it was measured as 178 HV and 124 HV for shot peening and polishing processes respectively. Average surface roughness Ra, was measured as 18.71 µm for shot blasted surface. This value recorded as 5.39 µm for shot peened and 1.39 µm for polished surfaces. Minimum wear rate was calculated as 3.88 × 10−4 mm3/Nm for shot peened surface with palm oil while maximum was calculated as 7.92 × 10−4 mm3/Nm for polished surface with MO lubrication. Palm oil and soybean oil represented superior lubricating properties than petrol based commercial machine oil for all surfaces. It can be concluded that surface post processing has important effect on texture properties of metal AM parts. Moreover, vegetable oils are promising lubricants for increasing tribological properties of AM surfaces.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.J. Galba, T. Reischle, Additive manufacturing of metals using powder-based technology, in Additive Manufacturing, ed. by A. Bandyopadhyay, S. Bose (CRC Press Taylor & Francis Group, Boca Raton, 2016), pp. 97–142

    Google Scholar 

  2. B.Q. Li, Z. Li, P. Bai, B. Liu, Z. Kuai, Research on surface roughness of AlSi10Mg parts fabricated by laser powder bed fusion. Metals 8, 524 (2018). https://doi.org/10.3390/met8070524

    Article  CAS  Google Scholar 

  3. L. Girelli, M. Tocci, L. Montesano, M. Gelfi, A. Pola, Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899x/264/1/012016

    Article  Google Scholar 

  4. M. Lorusso, A. Aversa, D. Manfredi, F. Calignano, E.P. Ambrosio, D. Ugues, M. Pavese, Tribological behavior of aluminum alloy AlSi10Mg–TiB2 composites produced by direct metal laser sintering (DMLS). J. Mater. Eng. Perform. 25(8), 3152–3160 (2016). https://doi.org/10.1007/s11665-016-2190-5

    Article  CAS  Google Scholar 

  5. K.S. Vinoth, R. Subramanian, S. Dharmalingam, B. Anandavel, Optimization of dry sliding wear conditions for AlSi10Mg/SiCp composites using response surface: genetic algorithm approach. Ind. Lubr. Tribol. 66(5), 593–600 (2014). https://doi.org/10.1108/ILT-02-2012-0016

    Article  Google Scholar 

  6. D. Dai, D. Gu, M. Xia, C. Ma, H. Chen, T. Zhao et al., Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf. Coat. Technol. 349, 279–288 (2018). https://doi.org/10.1016/j.surfcoat.2018.05.072

    Article  CAS  Google Scholar 

  7. F. Calignano, D. Manfredi, E.P. Ambrosio, L. Luliano, P. Fino, Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013). https://doi.org/10.1007/s00170-012-4688-9

    Article  Google Scholar 

  8. Y. Tomus, D. Rometsch, P. Wu, X. Tian, Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit. Manuf. 13, 103–112 (2017). https://doi.org/10.1016/j.addma.2016.10.010

    Article  CAS  Google Scholar 

  9. N.B. Crane, Q. Ni, A. Ellis, N. Hopkinson, Impact of chemical finishing on laser sintered nylon 12 materials. Addit. Manuf. 13, 149–155 (2017). https://doi.org/10.1016/j.addma.2016.10.001

    Article  CAS  Google Scholar 

  10. N.N. Kumbhar, A.V. Mulay, Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J. Inst. Eng. India Ser. C 99(4), 481–487 (2018). https://doi.org/10.1007/s40032-016-0340-z

    Article  Google Scholar 

  11. M. Mohammadi, H. Asgari, Achieving low surface roughness AlSi10Mg_200C parts using direct metal laser sintering. Addit. Manuf. 20, 23–32 (2018). https://doi.org/10.1016/j.addma.2017.12.012

    Article  CAS  Google Scholar 

  12. A. Barari, H.A. Kishawy, F. Kaji, M.A. Elbestawi, On the surface quality of additive manufactured parts. Int. J. Adv. Manuf. Technol. 89(5–8), 1969–1974 (2017). https://doi.org/10.1007/s00170-016-9215-y

    Article  Google Scholar 

  13. Q. Wu, D. Xie, Z. Jia, Y. Zhang, H. Zhang, Effect of shot peening on surface residual stress distribution of SiCp/2024Al. Compos. Part B Eng. 154, 382–387 (2018). https://doi.org/10.1016/j.compositesb.2018.09.021

    Article  CAS  Google Scholar 

  14. A.N. Abood, A.H. Saleh, R.K. Salem, G.A. Kadhim, Z.W. Abdullah, Strain life of shot peening AA 2024-T4. J. Mater. Sci. Res. 2(1), 113 (2013). https://doi.org/10.5539/jmsr.v2n1p113

    Article  CAS  Google Scholar 

  15. N.K.R. Naidu, S.G.R. Raman, Effect of shot blasting on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy AA6061. Int. J. Fatigue 27(3), 323–331 (2005). https://doi.org/10.1016/j.ijfatigue.2004.07.007

    Article  CAS  Google Scholar 

  16. Y. Zhu, J. Zou, H.J. Yang, Wear performance of metal parts fabricated by selective laser melting: a literature review. Zhejiang Univ. Sci. A 19(2), 95–110 (2018). https://doi.org/10.1631/jzus.A1700328

    Article  CAS  Google Scholar 

  17. H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bӧnisch et al., Nanoindentation and wear properties of Ti and Ti–TiB composite materials produced by selective laser melting. Mater. Sci. Eng., A 688, 20–26 (2017). https://doi.org/10.1016/j.msea.2017.01.096

    Article  CAS  Google Scholar 

  18. Y. Zhu, X. Chen, J. Zou, H. Yang, Sliding wear of selective laser melting processed Ti6Al4 V under boundary lubrication conditions. Wear 368–369, 485–495 (2016). https://doi.org/10.1016/j.wear.2016.09.020

    Article  CAS  Google Scholar 

  19. H. Li, M. Ramezani, M. Li, C. Ma, J. Wang, Tribological performance of selective laser melted 316L stainless steel. Tribol. Int. 128, 121–129 (2018). https://doi.org/10.1016/j.triboint.2018.07.021

    Article  CAS  Google Scholar 

  20. Y. Zhu, J. Zou, X. Chen, H. Yang, Tribology of selective laser melting processed parts: stainless steel 316L under lubricated conditions. Wear 350–351, 46–55 (2016). https://doi.org/10.1016/j.wear.2016.01.004

    Article  CAS  Google Scholar 

  21. H. Li, M. Ramezani, M. Li, C. Ma, J. Wang, Effect of process parameters on tribological performance of 316L stainless steel parts fabricated by selective laser melting. Manuf. Lett. 16, 36–39 (2018). https://doi.org/10.1016/j.mfglet.2018.04.003

    Article  Google Scholar 

  22. F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F. Silva, G. Miranda, 316L stainless steel mechanical and tribological behavior—a comparison between selective laser melting, hot pressing and conventional casting. Addit. Manuf. 16, 81–89 (2017). https://doi.org/10.1016/j.addma.2017.05.007

    Article  CAS  Google Scholar 

  23. J. Sander, J. Hufenbach, L. Giebeler, M. Bleckmann, J. Eckert, U. Kuehn, Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Wear 1(126), 41–44 (2017). https://doi.org/10.1016/j.scriptamat.2016.07.029

    Article  CAS  Google Scholar 

  24. K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostin, A. Gebert, M. Calin et al., Tribological and corrosion properties of Al–12Si produced by selective laser melting. J. Mater. Res. 29(17), 2044–2054 (2014). https://doi.org/10.1557/jmr.2014.133

    Article  CAS  Google Scholar 

  25. J. Zou, Y. Zhu, M. Pan, T. Xie, X. Chen, H. Yang, A study on cavitation erosion behavior of AlSi10Mg fabricated by selective laser melting (SLM). Wear 76–377, 496–506 (2017). https://doi.org/10.1016/j.wear.2016.11.031

    Article  CAS  Google Scholar 

  26. C.J. Reeves, P.L. Menezes, Evaluation of boron nitride particles on the tribological performance of avocado and canola oil for energy conservation and sustainability. Int. J. Adv. Manuf. Technol. 89(9–12), 3475–3486 (2017). https://doi.org/10.1007/s00170-016-9354-1

    Article  Google Scholar 

  27. Y. Wang, C. Li, Y. Zhang, M. Yang, B. Li, D. Jia et al., Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J. Clean. Prod. 127, 487–499 (2016). https://doi.org/10.1016/j.jclepro.2016.03.121

    Article  CAS  Google Scholar 

  28. C.C. Ting, C.C. Chen, Viscosity and working efficiency analysis of soybean oil based bio-lubricants. Measurement 44, 1337–1341 (2011). https://doi.org/10.1016/j.measurement.2011.04.005

    Article  Google Scholar 

  29. Y. Wang, C. Li, Y. Zhang, B. Li, M. Yang, X. Zhang et al., Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribol. Int. 99, 198–210 (2016). https://doi.org/10.1016/j.triboint.2016.03.023

    Article  CAS  Google Scholar 

  30. N.W.M. Zulkifli, M.A. Kalam, H.H. Masjuki, M. Shahabuddin, R. Yunus, Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant. Energy 54, 167–173 (2013). https://doi.org/10.1016/j.energy.2013.01.038

    Article  CAS  Google Scholar 

  31. L.A. Quinchia, M.A. Delgado, C. Valencia, J.M. Franco, C. Gallegos, Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Ind. Crops Prod. 32, 607–612 (2010). https://doi.org/10.1016/j.indcrop.2010.07.011

    Article  CAS  Google Scholar 

  32. L.A. Quinchia, M.A. Delgado, T. Reddyhoff, C. Gallegos, H.A. Spikes, Tribological studies of potential vegetable oil-based lubricants containing environmentally friendly viscosity modifiers. Tribol. Int. 69, 110–117 (2014). https://doi.org/10.1016/j.triboint.2013.08.016

    Article  CAS  Google Scholar 

  33. ASTM G99, 2005: R2016, Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus (ASTM International, West Conshohocken, 2005)

    Google Scholar 

  34. J.F. Archard, Contact and Rubbing of Flat Surfaces. J. App. Phy. 24(8), 981–988 (1953). https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  35. ISO 4287:1997 Geometrical product specifications (GPS)—surface texture: profile method—terms, definitions and surface texture parameters

  36. ISO 25178-2:2012 Geometrical product specifications (GPS)—surface texture: areal—part 2: terms, definitions and surface texture parameters

  37. A. Townsend, N. Senin, L. Blunt, R.K. Leach, J.S. Taylor, Surface texture metrology for metal additive manufacturing: a review. Precis. Eng. 46, 34–47 (2016). https://doi.org/10.1016/j.precisioneng.2016.06.001

    Article  Google Scholar 

  38. R.K. Leach, Fundamental Principles of Engineering Nanometrology (Elsevier, Amsterdam, 2010), pp. 211–229

    Book  Google Scholar 

  39. T.G. Mathia, P. Pawlus, M. Wieczorowski, Recent trends in surface metrology. Wear 271(3–4), 494–508 (2011). https://doi.org/10.1016/j.wear.2010.06.001

    Article  CAS  Google Scholar 

  40. B. Sagbas, M.N. Durakbasa, Effect of surface patterning on frictional heating of vitamin E blended UHMWPE. Wear 303, 313–320 (2013). https://doi.org/10.1016/j.wear.2013.03.023

    Article  CAS  Google Scholar 

  41. B. Sagbas, in Biotribology of Artificial Hip Joints, ed. by P.H. Darji. Advances in Tribology (IntechOpen). https://doi.org/10.5772/64488. Available from: https://www.intechopen.com/books/advances-in-tribology/biotribology-of-artificial-hip-joint. Accessed 25 Feb 2019

    Google Scholar 

  42. N. Nuraliza, S. Syahrullail, M.H. Faizal, Tribological properties of aluminum lubricated with palm olein at different load using pin-on-disk machine. Jurnal Tribologi 9, 45–59 (2016)

    Google Scholar 

  43. J.A. Ghani, Y.S. Kian, C.H.C. Harun, Performance of commercial and palm oil lubricants in turning FCD 700 ductile cast iron using carbide tools. Jurnal Tribologi 7, 1–9 (2015)

    Google Scholar 

Download references

Acknowledgements

Direct Metal Laser Sintered AlSi10Mg parts were manufactured at Aluminum Test Training and Research Center, Fatih Sultan Mehmet University. The rest of the tests and analysis were applied at Yildiz Technical University laboratories. The author would like to thank for the supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binnur Sagbas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagbas, B. Post-Processing Effects on Surface Properties of Direct Metal Laser Sintered AlSi10Mg Parts. Met. Mater. Int. 26, 143–153 (2020). https://doi.org/10.1007/s12540-019-00375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00375-3

Keywords

Navigation