Skip to main content

Advertisement

Log in

Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing

  • Review-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Additive manufacturing enables the manufacturing of parts with complex geometries that are not easy to be manufactured by conventional methods such as machining or forging. Despite their numerous advantages, additive manufacturing methods have some drawbacks, such as poor surface quality as a primary concern. Parts with high surface roughness tend to show poor fatigue resistance; thus, they cannot be reliable under dynamic load conditions. Therefore, additively manufactured parts should be subjected to additional surface finish operations to improve surface quality and eliminate the negative effects of surface roughness. In this review, one of the most popular methods among modern surface finish processes, known as laser polishing, has been discussed. Process parameters, changes in processed part morphology, and applications along with the advantages and limitations of the method have also been explained to have a good understanding of the importance of this promising method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Grimm, T.; Wiora, G.; Witt, G.: Characterization of typical surface effects in additive manufacturing with confocal microscopy. Surf. Topogr. Metrol. Prop. (2015). https://doi.org/10.1088/2051-672X/3/1/014001

    Article  Google Scholar 

  2. Yasa, E.; Kruth, J.P.; Deckers, J.: Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Ann. 60(1), 263–266 (2011). https://doi.org/10.1016/j.cirp.2011.03.063

    Article  Google Scholar 

  3. Brooks H.; Rennie A.; Abram T.: Variable fused deposition modelling—analysis of benefits, concept design and tool path generation. In: Innovative Developments in Virtual and Physical Prototyping, pp. 511–517 (2011). https://doi.org/10.1201/b11341-83

  4. Gu, D.; Shen, Y.: Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater. Des. 30(8), 2903–2910 (2009). https://doi.org/10.1016/j.matdes.2009.01.013

    Article  Google Scholar 

  5. Melchels, P.W.; Domingos, A.N.; Klein, T.J.; Malda, J.; Bartolo, B.J.; Hutmacher, D.W.: Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079–1104 (2012). https://doi.org/10.1016/j.progpolymsci.2011.11.007

    Article  Google Scholar 

  6. Zadpoor, A.A.; Malda, J.: Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 45(1), 1–11 (2017). https://doi.org/10.1007/s10439-016-1719-y

    Article  Google Scholar 

  7. Gora, W.S.; Tian, Y.; Cabo, A.B.; Ardro, M.; Maier, R.R.J.; Prangnell, P.; Weston, N.J.; Hand, D.P.: Enchancing surface finish of additively manufactured titanium and cobalt chrome elements user laser based finishing. Phys. Procedia (2016). https://doi.org/10.1016/j.phpro.2016.08.021

    Article  Google Scholar 

  8. Ippolito, R.; Iuliano, L.; Gatto, A.: Benchmarking of rapid prototyping techniques in terms of dimensional accuracy and surface finish. CIRP Ann. Manuf. Technol. 44, 157–160 (1995). https://doi.org/10.1016/S0007-8506(07)62296-3

    Article  Google Scholar 

  9. Abuaf, N.; Bunker, R.S.; Lee, C.P.: Effects of surface roughness on heat transfer and aerodynamic performance of turbine airfoils. J. Turbomach. 120(3), 522 (1998). https://doi.org/10.1115/1.2841749

    Article  Google Scholar 

  10. Mohammadian, N.; Turenne, S.; Brailovski, V.: Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J. Mater. Process. Technol. 252, 728–738 (2018). https://doi.org/10.1016/j.jmatprotec.2017.10.020

    Article  Google Scholar 

  11. Ma, C.; Andani, M.T.; Qin, H.; Moghaddam, N.S.; Ibrahim, H.; Jahadakbar, A.; Ye, C.: Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J. Mater. Process. Technol. 249, 433–440 (2017). https://doi.org/10.1016/j.jmatprotec.2017.06.038

    Article  Google Scholar 

  12. Ma, C.; Dong, Y.; Ye, C.: Improving surface finish of 3D-printed metals by ultrasonic nanocrystal surface modification. Procedia CIRP 45, 319–322 (2016). https://doi.org/10.1016/j.procir.2016.02.339

    Article  Google Scholar 

  13. Chryssolouris, G.; Anifantis, N.; Karagiannis, S.: Laser assisted machining: an overview. J. Manuf. Sci. Eng. 119(4B), 766 (1997). https://doi.org/10.1115/1.2836822

    Article  Google Scholar 

  14. Ikesue, A.; Aung, Y.L.: Ceramic laser materials. Nat. Photonics 2(12), 721–727 (2008). https://doi.org/10.1038/nphoton.2008.243

    Article  Google Scholar 

  15. Krishnan, A.; Fang, F.: Review on mechanism and process of surface polishing using lasers. Front. Mech. Eng. 14(3), 299–319 (2019). https://doi.org/10.1007/s11465-019-0535-0

    Article  Google Scholar 

  16. Temmler, A.; Willenborg, E.; Wissenbach, K.: Design surfaces by laser remelting. Phys. Procedia 12, 419–430 (2011). https://doi.org/10.1016/j.phpro.2011.03.053

    Article  Google Scholar 

  17. Ma, C.P.; Guan, Y.C.; Zhou, W.: Laser polishing of additively manufactured Ti alloys. Opt. Lasers Eng. 93, 171–177 (2017). https://doi.org/10.1016/j.optlaseng.2017.02.005

    Article  Google Scholar 

  18. Zhihao, F.; Libin, L.; Longfei, C.; Yingchun, G.: Laser polishing of additive manufactured superalloy. Procedia CIRP 71, 150–154 (2018). https://doi.org/10.1016/j.procir.2018.05.088

    Article  Google Scholar 

  19. Zifa, X.; Wentai, O.; Yufan, L.; Junke, J.; Yuezhuan, L.; Wenwu, Z.: Effects of laser polishing on surface morphology and mechanical properties of additive manufactured TiAl components. J. Manuf. Process. 65, 51–59 (2021). https://doi.org/10.1016/j.jmapro.2021.03.014

    Article  Google Scholar 

  20. Morgan, R.H.; Papworth, A.J.; Sutcliffe, C.; Fox, P.; O’neill, W.: High density net shape components by direct laser re-melting of single-phase powders. J. Mater. Sci. 37, 3093–3100 (2002). https://doi.org/10.1023/A:1016185606642

    Article  Google Scholar 

  21. Kumstel, J.; Kirsch, B.: Polishing titanium- and nickel-based alloys using Cw-laser radiation. Phys. Procedia 41, 362–371 (2013). https://doi.org/10.1016/j.phpro.2013.03.089

    Article  Google Scholar 

  22. Kumar, A.; Saha, S.; Kumar, C.S.; Nath, A.T.: Laser surface re-melting of additive manufactured samples with a line focused beam. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.245

    Article  Google Scholar 

  23. Bures, M.; Zetek, M.: Application of laser surface polishing on additive manufactured parts of Inconel 718 Nickel-based superalloy. MM Sci. J. (2020). https://doi.org/10.17973/MMSJ.2020_03_2019141

    Article  Google Scholar 

  24. Yung, K.C.; Zhang, S.S.; Duan, L.; Chow, H.S.; Cai, Z.X.: Laser polishing of additive manufactured tool steel components using pulsed or continuous-wave lasers. Int. J. Adv. Manuf. Technol. 105, 425–440 (2019). https://doi.org/10.1007/s00170-019-04205-z

    Article  Google Scholar 

  25. Marimuthu, S.; Triantaphyllou, A.; Antar, M.; Wimpenny, D.; Morton, H.; Beard, M.: Laser polishing of selective laser melted components. Int. J. Mach. Tools Manuf 95, 97–104 (2015). https://doi.org/10.1016/j.ijmachtools.2015.05.002

    Article  Google Scholar 

  26. Rosa, B.; Mognol, P.; Hascoët, J.: Laser polishing of additive laser manufacturing surfaces. J. Laser Appl. 27, 280–284 (2015). https://doi.org/10.2351/1.4906385

    Article  Google Scholar 

  27. Ukar, E.; Lamikiz, A.; Lopez De Lacalle, L.N.: Laser polishing parameter optimisation on selective laser sintered parts. Int. J. Mach. Machinabil. Mater. 8(3/4), 417–432 (2010). https://doi.org/10.1504/IJMMM.2010.036148

    Article  Google Scholar 

  28. Solheid J.S.; Elkaseer A.; Wunsch T.; Charles A.P.; Seifert H.J.; Pfleging W.: Effects of process parameters on surface texture generated by laser polishing of additively manufactured Ti-6Al-4V. In: Proceedings Volume 11268, Laser-based Micro- and Nanoprocessing XIV, p. 112680Q (2020). https://doi.org/10.1117/12.2545623

  29. Hafiz, A.M.K.; Bordatchev, E.V.; Tutunea-Fatan, O.R.: Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel. J. Manuf. Process. 14(4), 425–434 (2012). https://doi.org/10.1016/j.jmapro.2012.09.004

    Article  Google Scholar 

  30. Giorleo, L.; Ceretti, E.; Giardini, C.: Ti surface laser polishing: effect of laser path and assist gas. Procedia CIRP 33, 446–451 (2015). https://doi.org/10.1016/j.procir.2015.06.102

    Article  Google Scholar 

  31. Chang, C.S.; Chung, C.K.; Lin, J.F.: Surface quality, microstructure, mechanical properties and tribological results of the SKD 61 tool steel with prior heat treatment affected by the deposited energy of continuous wave laser micro-polishing. J. Mater. Process. Technol. 234, 177–194 (2016). https://doi.org/10.1016/j.jmatprotec.2016.03.024

    Article  Google Scholar 

  32. Yung, K.C.; Xiao, T.Y.; Choy, H.S.; Wang, W.J.; Cai, Z.X.: Laser polishing of additive manufactured CoCr alloy components with complex surface geometry. J. Mater. Process. Technol. 262, 53–64 (2018). https://doi.org/10.1016/j.jmatprotec.2018.06.019

    Article  Google Scholar 

  33. De Giorgi, C.; Furlan, V.; Demir, A.G.; Tallarita, E.; Candiani, G.; Previtali, B.: Laser micro-polishing of stainless steel for antibacterial surface applications. Procedia CIRP 49, 88–93 (2016). https://doi.org/10.1016/j.procir.2015.07.055

    Article  Google Scholar 

  34. Ukar, E.; Lamikiz, A.; Liebana, F.; Martinez, S.; Tabernero, I.: An industrial approach of laser polishing with different laser sources. Mater Werkst 46, 661–667 (2015). https://doi.org/10.1002/mawe.201500324

    Article  Google Scholar 

  35. Temmler, A.; Willenborg, E.; Wissenbach, K.: Laser Polishing. Proc. SPIE Int. Soc. Opt. Eng. 8243, 19 (2012). https://doi.org/10.1117/12.906001

    Article  Google Scholar 

  36. Lamikiz, A.; Sánchez, J.A.; López de Lacalle, L.N.; Arana, J.L.: Laser polishing of parts built up by selective laser sintering. Int. J. Mach. Tools Manuf. 47(12–13), 2040–2050 (2007). https://doi.org/10.1016/j.ijmachtools.2007.01.013

    Article  Google Scholar 

  37. Zhang, D.; Yu, J.; Li, H.; Zhou, X.; Song, C.; Zhang, C.; Shen, S.; Liu, L.; Dai, C.: Investigation of laser polishing of four selective laser melting alloy samples. Appl. Sci. 10(3), 760–773 (2020). https://doi.org/10.3390/app10030760

    Article  Google Scholar 

  38. Chow, M.T.C.; Bordatchev, E.V.; Knopf, G.K.: Experimental study on the effect of varying focal off set distance on laser micropolished surfaces. Int. J. Adv. Manuf. Technol. 67(9–12), 2607–2617 (2012). https://doi.org/10.1007/s00170-012-4677-z

    Article  Google Scholar 

  39. Dadbakhsh, S.; Hao, L.; Kong, C.Y.: Surface finish improvement of LMD samples using laser polishing. Virtual Phys. Prototyp. 5(4), 215–221 (2010). https://doi.org/10.1080/17452759.2010.528180

    Article  Google Scholar 

  40. Ukar, E.; Lamikiz, A.; López de Lacalle, L.N.; del Pozo, D.; Arana, J.L.: Laser polishing of tool steel with CO2 laser and high-power diodeaser. Int. J. Mach. Tools Manuf. 50(1), 115–125 (2010). https://doi.org/10.1016/j.ijmachtools.2009.09.003

    Article  Google Scholar 

  41. Temmler A.; Willenborg E.; Wissenbach K.: Laser polishing. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII (2012). https://doi.org/10.1117/12.906001

  42. Nüsser, C.; Wehrmann, I.; Willenborg, E.: Influence of intensity distribution and pulse duration on laser micro polishing. Phys. Procedia 12, 462–471 (2011). https://doi.org/10.1016/j.phpro.2011.03.057

    Article  Google Scholar 

  43. Kiedrowski, T.: Oberflächenstrukturbildung beim Laserstrahlpolieren von Stahlwerkstoffen, Vol. 3. RWTH Aachen University (2009)

    Google Scholar 

  44. Willenborg, E.: Polishing with laser radiation. In: Poprawe, R. (Ed.) Tailored Light 2, pp. 196–203. Springer, Berlin (2011)

    Google Scholar 

  45. Perry, T.L.; Werschmoeller, D.; Li, X.; Pfefferkorn, F.E.; Duffie, N.A.: Pulsed laser polishing of micro-milled Ti6Al4V samples. J. Manuf. Process. 11(2), 74–81 (2009). https://doi.org/10.1016/j.jmapro.2009.10.001

    Article  Google Scholar 

  46. Perry, T.L.; Werschmoeller, D.; Duffie, N.A.; Li, X.; Pfefferkorn, F.E.: Examination of selective pulsed laser micropolishing on microfabricated nickel samples using spatial frequency analysis. J. Manuf. Sci. Eng. (2009). https://doi.org/10.1115/1.3075874

    Article  Google Scholar 

  47. Kim, Y.G.; Ryu, J.K.; Kim, D.J.; Kim, H.J.; Lee, S.; Cha, B.H.; Cha, H.; Kim, C.J.: Microroughness reduction of tungsten films by laser polishing technology with a line beam. Jpn. J. Appl. Phys. 43(4A), 1315–1322 (2004). https://doi.org/10.1143/JJAP.43.1315

    Article  Google Scholar 

  48. Jang, P.R.; Jang, T.S.; Kim, N.C.: Laser micro-polishing for metallic surface using UV nano-second pulse laser and CW laser. Int. J. Adv. Manuf. Technol. 85(9–12), 2367–2375 (2016). https://doi.org/10.1007/s00170-015-7992-3

    Article  Google Scholar 

  49. Pong-Ryol, J.; Tae-Sok, J.; Nam-Chol, K.; Xing, F.; Kum-Hyok, J.: Laser micro-polishing for metallic surface using UV nano-second pulse laser and CW laser. Int. J. Adv. Manuf. Technol. 85(9–12), 2367–2375 (2015). https://doi.org/10.1007/s00170-015-7992-3

    Article  Google Scholar 

  50. Ostholt R.; Willenborg E.; Wissenbach K.: Laser polishing of metallic freeform surfaces. In: Proceedings of International Congress on Applications of Lasers & Electro-Optics, pp. 597–603 (2011). https://doi.org/10.2351/1.5062086

  51. Shen, H.; Liao, C.; Zhou, J.; Zhao, K.: Two-step laser based surface treatments of metal deposition manufactured Ti6Al4V components. J. Manuf. Processes (2021). https://doi.org/10.1016/j.jmapro.2021.01.028

    Article  Google Scholar 

  52. dos Santos Solheid, J.; Seifert, H.J.; Pfleging, W.: Laser surface modification and polishing of additive manufactured metallic parts. Procedia CIRP 74, 280–284 (2018). https://doi.org/10.1016/j.procir.2018.08.111

    Article  Google Scholar 

  53. Bordatchev, E.V.; Hafiz, A.M.K.; Tutunea-Fatan, O.R.: Performance of laser polishing in finishing of metallic surfaces. Int. J. Adv. Manuf. Technol. 73(1–4), 35–52 (2014). https://doi.org/10.1007/s00170-014-5761-3

    Article  Google Scholar 

  54. Mishra, S.; Yadava, V.: Laser beam micromachining (LBMM)—a review. Opt. Lasers Eng. 73, 89–122 (2015). https://doi.org/10.1016/j.optlaseng.2015.03.017

    Article  Google Scholar 

  55. Tokarev, V.N.; Wilson, J.I.B.; Jubber, M.G.: Modeling of self limiting laser-ablation of rough surfaces: application to the polishing of diamond films. Diam. Relat. Mater. 4(3), 169–176 (1995). https://doi.org/10.1016/0925-9635(94)00241-X

    Article  Google Scholar 

  56. Nowak, K.M.; Baker, H.J.; Hall, D.R.: Efficient laser polishing of silicamicro-optic components. Appl. Opt. 45(1), 162–171 (2006). https://doi.org/10.1364/AO.45.000162

    Article  Google Scholar 

  57. Shao, T.M.; Hua, M.; Tam, H.Y.: An approach to modelling of laser polishing of metals. Surf. Coat. Technol. 197(1), 77–84 (2005). https://doi.org/10.1016/j.surfcoat.2005.01.010

    Article  Google Scholar 

  58. Jaritngam, P.; Tangwarodomnukun, V.; Qi, H.; Dumkun, C.: Surface and subsurface characteristics of laser polished Ti6Al4V titanium alloy. Opt. Laser Technol. (2020). https://doi.org/10.1016/j.optlastec.2020.106102

    Article  Google Scholar 

  59. Bhaduri, D.; Penchev, P.; Batal, A.; Dimov, S.; Soo, S.L.; Sten, S.; Harrysoon, U.; Zhang, Z.; Dong, H.: Laser polishing of 3D printed mesoscale components. Appl. Surf. Sci. 405, 29–46 (2017). https://doi.org/10.1016/j.apsusc.2017.01.211

    Article  Google Scholar 

  60. Chen, L.; Richter, B.; Zhang, X.; Ren, X.; Pfeffefkorn, F.E.: Modification of surface characterictics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2019.101013

    Article  Google Scholar 

  61. Liu, Z.; Kim, H.; Liu, W.; Cong, W.; Jiang, Q.; Zhang, H.: Influence of energy density on macro/micro structures and mechanical properties of as-deposited Inconel 718 parts fabricated by laser engineered net shaping. J. Manuf. Processes (2019). https://doi.org/10.1016/j.jmapro.2019.04.020

    Article  Google Scholar 

  62. Ramos, J.A.; Bourell, D.L.; Beaman, J.J.: Surface over-melt during laser polishing of indirect-SLS metal parts. MRS Proc. (2002). https://doi.org/10.1557/PROC-758-LL1.9

    Article  Google Scholar 

  63. Lamikiz, A.; Sanchez, J.A.; Lopez de Lacalle, L.N.; del Pozo, D.; Etayo, J.M.: Surface roughness improvement using laser-polishing techniques. Mater. Sci. Forum 526, 217–222 (2006). https://www.scientific.net/MSF.526.217

    Article  Google Scholar 

  64. Mohajerani, S.; Miller, J.D.; Tutunea-Fatan, O.R.; Bordatchev, E.V.: Thermo-physical modelling of track width during laser polishing of H13 tool steel. Procedia Manuf. 10, 708–719 (2017). https://doi.org/10.1016/j.promfg.2017.07.026

    Article  Google Scholar 

  65. Pfefferkorn, F.E.; Duffie, N.A.; Morrow, J.D.; Wang, Q.: Effect of beam diameter on pulsed laser polishing of S7 tool steel. CIRP Ann. 63(1), 237–240 (2014). https://doi.org/10.1016/j.cirp.2014.03.055

    Article  Google Scholar 

  66. Perry, T.L.; Werschmoeller, D.; Li, X.: The effect of laser pulse duration and feed rate on pulsed laser polishing of micro fabricated nickel samples. J. Manuf. Sci. Eng. 131(3), 291–297 (2009). https://doi.org/10.1115/1.3106033

    Article  Google Scholar 

  67. Vadali, M.; Ma, C.; Duffie, N.A.; Li, X.; Pfefferkorn, F.E.: Effects of pulse duration on laser micro polishing. J. Micro Nano-Manuf. (2013). https://doi.org/10.1115/1.4023756

    Article  Google Scholar 

  68. Gua, W.; Hua, M.; Tse, P.W.T.: Process parameters selection for laser polishing DF2 (AISI O1) by Nd:YAG pulsed laser using orthogonal design. Int. J. Adv. Manuf. Technol. 59(9–12), 1009–1023 (2012). https://doi.org/10.1007/s00170-011-3558-1

    Article  Google Scholar 

  69. Alrbaey, K.; Wimpenny, D.; Tosi, R.; Manning, W.; Moroz, A.: On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J. Mater. Eng. Perform. 23(6), 2139–2148 (2014). https://doi.org/10.1007/s11665-014-0993-9

    Article  Google Scholar 

  70. Pariona, M.M.; Teleginski, V.; dos Santos, K.; dos Santos, E.L.R.; de Lima, A.A.; Riva, R.: AFM study of the effects of laser surface remelting on the morphology of Al–Fe aerospace alloys. Mater. Charact. 74, 64–76 (2012). https://doi.org/10.1016/j.matchar.2012.08.011

    Article  Google Scholar 

  71. Heidrich, S.; Richmann, A.; Schmitz, P.; Willenborg, E.; Wissenbach, K.; Loosen, P.; Poprawe, R.: Optics manufacturing by laser radiation. Opt. Lasers Eng. 59, 34–40 (2014). https://doi.org/10.1016/j.optlaseng.2014.03.001

    Article  Google Scholar 

  72. Wang, W.J.; Yung, K.C.; Choy, H.S.; Xiao, T.Y.; Cai, Z.X.: Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys. Appl. Surf. Sci. 443, 167–175 (2018). https://doi.org/10.1016/j.apsusc.2018.02.246

    Article  Google Scholar 

  73. Schanz, J.; Hofele, M.; Hitzler, L.; Merkel, M.; Riegel, H.: Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam. Adv. Struct. Mater. (2016). https://doi.org/10.1007/978-981-10-1082-8_16

    Article  Google Scholar 

  74. Mai, T.A.; Lim, G.C.: Micromelting and its effects on surface topography and properties in laser polishing of stainless steel. J. Laser Appl. 16(4), 221–228 (2004). https://doi.org/10.2351/1.1809637

    Article  Google Scholar 

  75. Obeidi, M.A.; McCarthy, E.; O’connell, B.; UI Ahad, I.; Brabazon, D.: Laser polishing of additively manufactured 316L stainless steel synthesized by selective laser melting. Materials (2020). https://doi.org/10.3390/ma12060991

    Article  Google Scholar 

  76. Rosa, B.; Mognol, P.; Hascoët, J.Y.: Modelling and optimization of laser polishing of additive laser manufacturing surfaces. Rapid Prototyp. J. 22(6), 956–964 (2016). https://doi.org/10.1108/RPJ-12-2014-0168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolgahan Ermergen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermergen, T., Taylan, F. Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing. Arab J Sci Eng 46, 7125–7141 (2021). https://doi.org/10.1007/s13369-021-05658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05658-9

Keywords

Navigation