Skip to main content

Theories of Aging and Chronic Diseases: Chronic Inflammation an Interdependent ‘Roadmap’ to Age-Associated Illnesses

  • Chapter
  • First Online:
Inflammation, Aging and Cancer

Abstract

  • Cancer is a symptom of violations of controlled biological circadian rhythms.

Living long is a biological process characterized by progressive alterations in tissue/organ function, often associated with increased risk of chronic diseases. Among major theories of aging are retardation of immune response dynamics, increased free radicals (oxido-redox imbalance) and increased genetic mutations. These age-associated biological changes cause minor or major readjustments of organs systems known as biological senescent and immunosenescent. In this chapter, the focus will be to discuss that these changes are interdependent processes and persistent or unresolved inflammation (oxidative stress) is a common denominator increasing the risk of nearly all age-associated chronic illnesses and site-specific cancers. Attempts were made to demonstrate the interrelationships between unresolved inflammation and the induction of immune response shifts in immune-responsive and immune-privileged tissues in initiation and progression of major chronic illnesses. Evaluation of scattered data on aging process suggests that in general, longevity is a biologically intrinsic process characterized by steady and progressive declines in the integrity and function of organs/tissues. However, the rate of susceptibility and severity to illnesses vary among individuals due to complex combination of interactions and heterogeneities between intrinsic and extrinsic factors that would determine the biology of aging. Strategies for reducing oxidative stress or correcting the balance between Yin and Yang response profiles of acute inflammation may prove to be important targets for delaying or preventing the onset of disabling illnesses and reducing the cost of sick-care.

We have confused illness with the process of aging, which can be thoroughly healthy. Illness is not a necessary part of aging!

Dr. Charles Eugster, 94-year-old World Master Rowing Champion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Komiya K, Ishii H, Kadota J. Healthcare-associated pneumonia and aspiration pneumonia. Aging Dis. 2014;6:27–37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hedlund J. Community-acquired pneumonia requiring hospitalisation. Factors of importance for the short-and long term prognosis. Scand J Infect Dis. 1995;97(Suppl):1–60.

    CAS  Google Scholar 

  3. Swenson CE, Sadikot RT. Achromobacter respiratory infections. Ann Am Thorac Soc. 2015;12:252–8.

    Article  PubMed  Google Scholar 

  4. Komiya K, Ishii H, Kushima H, Sato S, Kimura H, et al. Physicians’ attitudes toward the definition of “death from age-related physical debility” in deceased elderly with aspiration pneumonia. Geriatr Gerontol Int. 2013;13:586–90.

    Article  PubMed  Google Scholar 

  5. Bruce AM, Spencer JM. Prevalence of community-acquired methicillin-resistant Staphylococcus Aureus in a private dermatology office. J Drugs Dermatol. 2008;7:751–5.

    PubMed  Google Scholar 

  6. Mpenge MA, MacGowan AP. Ceftaroline in the management of complicated skin and soft tissue infections and community acquired pneumonia. Ther Clin Risk Manag. 2015;11:565–79. doi:10.2147/TCRM.S75412. eCollection 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ewig S, Welte T, Chastre J, Torres A. Rethinking the concepts of community-acquired and health-care-associated pneumonia. Lancet Infect Dis. 2010;10:279–87.

    Article  PubMed  Google Scholar 

  8. Health Protection Agency Surveillance of Healthcare Associated Infections Report. 2008. [Accessed April 29, 2014]. Available from: http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1216193833496.

  9. Torok E, Moran E, Cooke F. Oxford handbook of infectious diseases and microbiology. Oxford: Oxford University Press; 2009.

    Book  Google Scholar 

  10. Attridge RT, Frei CR. Health care-associated pneumonia: an evidence-based review. Am J Med. 2011;124:689–97.

    Article  PubMed  Google Scholar 

  11. Chalmers JD, Taylor JK, Singanayagam A, Fleming GB, Akram AR, et al. Epidemiology, antibiotic therapy, and clinical outcomes in health care-associated pneumonia: a UK cohort study. Clin Infect Dis. 2011;53:107–13.

    Article  PubMed  Google Scholar 

  12. DHHS. DHHS report: Health United States with special feature on prescription drugs. Washington, DC: DHHS; 2013.

    Google Scholar 

  13. Riquelme R, Torres A, El-Ebiary M, de la Bellacasa JP, Estruch R, Mensa J, Fernández-Solá J, Hernández C, Rodriguez-Roisin R. Community-acquired pneumonia in the elderly: a multivariate analysis of risk and prognostic factors. Am J Respir Crit Care Med. 1996;154:1450–5.

    Article  CAS  PubMed  Google Scholar 

  14. Sader HS, Farrell DJ, Jones RN. Antimicrobial susceptibility of gram-positive cocci isolated from skin and skin-structure infections in European medical centres. Int J Antimicrob Agents. 2010;36:28–32.

    Article  CAS  PubMed  Google Scholar 

  15. Terracciano A, Löckenhoff CE, Zonderman AB, Ferrucci L, Costa PT. Personality predictors of longevity: activity, emotional stability, and conscientiousness. Psychosom Med. 2008;70:621–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boucher H, Miller LG, Razonable RR. Serious infections caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2010;51(Suppl 2):S183–97.

    Article  CAS  PubMed  Google Scholar 

  17. Baik I, Curhan GC, Rimm EB, Bendich A, Willett WC, Fawzi WW. A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med. 2000;160:3082–8. Diet

    Article  CAS  PubMed  Google Scholar 

  18. Davis K, Stremikis K, Schoen C, Squires D. Mirror, Mirror on the Wall, 2014 Update: How the U.S. Health Care System Compares Internationally, The Commonwealth Fund, June 2014.

    Google Scholar 

  19. McNulty J, Khera N. Financial hardship-an unwanted consequence of cancer treatment. Curr Hematol Malig Rep. 2015;26:205–12. [Epub ahead of print]

    Article  Google Scholar 

  20. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52:80–5.

    Article  PubMed  Google Scholar 

  21. Khatami M. Cancer research and therapy: scam of century – promote immunity [Yin-Yang], 2016; ISBN-10:153043100X;ISBN-13:978–1530431007; Amazon-Createspace p1–166, http://www.createspace.com/6123573.

  22. Khatami M. Chronic inflammation: synergistic interactions of recruiting macrophages (TAMs) eosinophils (Eos) with host mast cells (MCs) and tumorigenesis un CALTs. MCSF, suitable biomarker for cancer diagnosis! Cancers (Basel). 2014;6:297–322.

    Article  CAS  Google Scholar 

  23. Khatami M. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophys. 2009;55:55–79.

    Article  CAS  PubMed  Google Scholar 

  24. Khatami M. Unresolved inflammation and cancer: loss of natural immune surveillance as the correct ‘target’ for therapy! Seeing the ‘elephant’ in the light of logic. Cell Biochem Biophys. 2012;62:501–9.

    Article  CAS  PubMed  Google Scholar 

  25. Khatami M. Inflammation, aging and cancer: Friend or foe? In: Khatami M, editor. Inflammation, Chronic Diseases and Cancer-Cell and Molecular Biology, Immunology and Clinical Bases. Rejeka, Croatia: InTech Publishing., [ISBN 978-953-51-0102; 2012. p. 3–30.

    Chapter  Google Scholar 

  26. Khatami M. Unresolved inflammation: ‘immune tsunami’ or erosion of integrity in immune-privileged and immune-responsive tissues and acute and chronic inflammatory diseases or cancer. Expert Opin Biol Ther. 2011;11:1419–32.

    Article  CAS  PubMed  Google Scholar 

  27. Williams GC. Pleiotropy, natural selection and the evolution of senescence. Evolution. 1957;11:398–411.

    Article  Google Scholar 

  28. Burnet M: Cancer: a biological approach. The processes of control. Br Med J.. 1957.

    Google Scholar 

  29. Lee RD. Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species. Proc Natl Acad Sci (USA). 2003;100:9637–42.

    Article  CAS  Google Scholar 

  30. Khatami M. ‘Yin and Yang’ in inflammation: duality in innate immune cell function and tumorigenesis. Expert Opin Biol Ther. 2008;8:1461–71.

    Article  CAS  PubMed  Google Scholar 

  31. Hakim FT, Flomerfelt FA, Boyiadzis M, Gress RE. Aging, immunity and cancer. Current Opin Immunol. 2004;18:151–8.

    Article  CAS  Google Scholar 

  32. Knight JA. The biochemistry of aging. Adv Clin Chem. 2000;35:1–62.

    CAS  PubMed  Google Scholar 

  33. Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112:674–82.

    Article  PubMed  Google Scholar 

  34. Franceschi C, Bonafè M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18:1717–20.

    Article  CAS  PubMed  Google Scholar 

  35. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  36. Baggio G, Donazzan S, Monti D, Mari D, Martini S, Gabelli C, Dalla Vestra M, Previato L, Guido M, Pigozzo S, Cortella I, Crepaldi G, Franceschi C. Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB J. 1998;12:433–7.

    CAS  PubMed  Google Scholar 

  37. Kipling D, Davis T, Ostler EJ, Faragher RG. What can progeroid syndromes tell about human aging? Science. 2004;305:1426–31.

    Article  CAS  PubMed  Google Scholar 

  38. Brod SA. Unregulated inflammation shortens human functional longevity. Inflamm Res. 2000;49:561–70.

    Article  CAS  PubMed  Google Scholar 

  39. Bruunsgaard H. The clinical impact of systemic low-level inflammation in elderly populations. With special reference to cardiovascular disease, dementia and mortality. Dan Med Bull. 2006;53:285–309.

    PubMed  Google Scholar 

  40. Quaglino D, Ginaldi L, Furia N, De Martinis M. The effect of age on hemopoiesis. Aging (Milano). 1996;8:1–12.

    CAS  Google Scholar 

  41. McGlauchlen KS, Vogel LA. Ineffective humoral immunity in the elderly. Microbes Infect. 2003;5:1279–84.

    Article  CAS  PubMed  Google Scholar 

  42. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    Article  CAS  PubMed  Google Scholar 

  43. Meyer KC. Lung infection and aging. Ageing Res Rev. 2004;3:55–67.

    Article  PubMed  Google Scholar 

  44. Croce K, Libby P. Intertwining of thrombosis and inflammation in atherosclerosis. Curr Opin Hematol. 2007;14:55–61.

    Article  CAS  PubMed  Google Scholar 

  45. Blagosklonny MV. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle. 2006;5:2087–102.

    Article  CAS  PubMed  Google Scholar 

  46. Rafi A, Castle SC, Uyemura K, Makinodan T. Immune dysfunction in the elderly and its reversal by antihistamines. Biomedicine & Pharmacology. 2003;57:246–50.

    Article  CAS  Google Scholar 

  47. Ignarro LJ, Balestrieri ML, Napoli C. Nutrition, physical activity, and cardiovascular disease: an update. Cardiovasc Res. 2007;73:326–40.

    Article  CAS  PubMed  Google Scholar 

  48. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. Molecular inflammation: Underpinning of aging and age-related diseases. Ageing Res Rev. 2008;8:18–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Arking R. The Biology of Aging: Observarion and principles. 2nd ed. Sunderland, MA, USA: Sinauer Associates Inc.; 1998. p. 153–250.

    Google Scholar 

  50. Khatami M. Developmental phases of inflammation-induced massive lymphoid hyperplasia and extensive changes in epithelium in an experimental model of allergy: implications for a direct link between inflammation and carcinogenesis. Am J Ther. 2005;12:117–26.

    Article  PubMed  Google Scholar 

  51. Culmsee C, Landshamer S. Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res. 2006;3:269–83.

    Article  CAS  PubMed  Google Scholar 

  52. Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L, Telera A, Lucchini G, Passeri G, Monti D, Franceschi C, Passeri M. The immune system in extreme longevity. Exp Gerontol. 2008;43:61–5.

    Article  CAS  PubMed  Google Scholar 

  53. Ginaldi L, DiBenedetto MC, DeMartinis M. Osteoporosis inflammation and ageing. Immun Ageing. 2005;2:14. doi:10.1186/1742-4933-2-14.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des. 2009;15:1949–55.

    Article  CAS  PubMed  Google Scholar 

  55. Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010;29:273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sohal RS, Orr WC. The redox stress hypothesis of aging. Free Radic Biol Med. 2012;52:539–55.

    Article  CAS  PubMed  Google Scholar 

  57. Huppertz B, Ghosh D, Sengupta J. An integrative view on the physiology of human early placental villi. Prog Biophys Mol Biol. 2014;114:33–48.

    Article  PubMed  Google Scholar 

  58. Dunlop K, Cedrone M, Staples JF, Regnault TR. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity. Forum Nutr. 2015;7:1202–16.

    CAS  Google Scholar 

  59. Moreno E, Rhiner C. Darwin’s multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr Opin Cell Biol. 2014;31:16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moreno E, Basler K. Morata G: cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature. 2002;416:755–9.

    Article  CAS  PubMed  Google Scholar 

  61. Virchow R. Cellular pathology. London: Churchill; 1860.

    Google Scholar 

  62. De Loof A, De Haes W, Boerjan B, Schoofs L. The fading electricity theory of aging: the missing biophysical principal? Aging Res Rev. 2013;12:58–66.

    Article  Google Scholar 

  63. Lucia U. The Gouy-Stodola theorem in bioenergetic analysis of living systems (irreversibility in bioenergetics of living systems). Energies. 2014;7:5717–39.

    Article  Google Scholar 

  64. Guzmán-Gutiérrez E, Arroyo P, Salsoso R, Fuenzalida B, Sáez T, Leiva A, Pardo F, Sobrevia L. Role of insulin and adenosine in the human placenta microvascular and macrovascular endothelial cell dysfunction in gestational diabetes mellitus. Microcirculation. 2014;21:26–37.

    Article  PubMed  CAS  Google Scholar 

  65. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  66. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20:145–7.

    Article  CAS  PubMed  Google Scholar 

  67. Mittledorf JJ. Adaptive aging in the context of evolutionary theory. Biochemistry (Mosc). 2012;77:716–25.

    Article  CAS  Google Scholar 

  68. Weinert BT, Timiras PS. Invited review: theories of aging. J Appl Physiol. 2003;95:1706–16.

    Article  CAS  PubMed  Google Scholar 

  69. Arellanes-Licea E, Caldelas I, De Ita-Pérez D, Díaz-Muñoz M. The circadian timing system: a recent addition in the physiological mechanisms underlying pathological and aging processes. Aging Dis. 2014;5:406–18. doi:10.14336/AD.2014.0500406. eCollection 2014

    PubMed  PubMed Central  Google Scholar 

  70. Nader N, Chrousos GP, Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J. 2009;23:1572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol. 2000;13:4888–99.

    Article  Google Scholar 

  72. Jones DP. Redox theory of aging. Redox Biol. 2015;5:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chung HY, Kim HJ, Kim KW, Choi JS, Yu BP. Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech. 2002;59:264–72.

    Article  CAS  PubMed  Google Scholar 

  74. Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res. 2013;55:325–56.

    CAS  PubMed  Google Scholar 

  75. Rustin P, von Kleist-Retzow JC, Vajo Z, Rotig A, Munnich A. Detective mitochondria, free radicals, cell death-reality or myth-ochrondria. Mech Age Develop. 2000;114:201–6. http://www.britannica.com/EBchecked/topic/271624/Horace

    Article  CAS  Google Scholar 

  76. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med. 2007;43:477–503.

    Article  CAS  PubMed  Google Scholar 

  77. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299:1346–51.

    Article  CAS  PubMed  Google Scholar 

  78. Lapointe J, Hekimi S. When a theory of aging ages badly. Cell Mol Life Sci. 2010;67:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vitale G, Salvioli S, Franceschi C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013;9:228–40.

    Article  CAS  PubMed  Google Scholar 

  80. Khatami M. Is cancer a severe delayed hypersensitivity reaction and histamine a blueprint? Perspective. Clin Trans Med. 2016;5:35. doi:10.1186/s40169-016-0108-3. Epub 2016 Aug 23

    Article  Google Scholar 

  81. Khalyavkin AV, Krut’ko VN. Early thymus involution--manifestation of an aging program or a program of Development? Biochemistry (Mosc). 2015 Dec;80(12):1622–5. doi:10.1134/S0006297915120111.

    Article  CAS  Google Scholar 

  82. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78:547–81.

    Article  CAS  PubMed  Google Scholar 

  83. Margulis L. Symbiosis and evolution. Sci Am. 1971;225:48–57.

    Article  CAS  PubMed  Google Scholar 

  84. Beckman JS, Koppenol WH. Nitric oxide, superoxide and peroxynitrite: The good, the bad, and the ugly. Am. J. Physiol. (Cell Physiol.). 1996;271:C1424–37.

    Article  CAS  Google Scholar 

  85. McCann SM, Mastronardi C, de Laurentiis A, Rettori V. The nitric oxide theory of aging revisited. Ann N Y Acad Sci. 2005;1057:64–84.

    Google Scholar 

  86. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  87. Liu X, Miller MJS, Joshi MS, Thomas DD, Lancaster JR Jr. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci U S A. 1998;95:2175–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Madej E, Folkes LK, Wardman P, Czapski G, Goldstein S. Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit. Free Radic Biol Med. 2008;44:2013–8.

    Article  CAS  PubMed  Google Scholar 

  89. Eiserich JP, Butler J, Van Der Vliet A, Cross CE, Halliwell B. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem J. 1995;310:745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun. 1993;18:195–9.

    Article  CAS  PubMed  Google Scholar 

  91. Zorov DB, Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Zorov SD, Babenko VA, Jankauskas SS, Popkov VA, Savina PS. Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria. Biochemistry (Mosc). 2014;79:1017–31.

    Article  CAS  Google Scholar 

  92. Klass M, Nguyen PN, Dechavigny A. Age-correlated changes in the DNA template in the nematode Caenorhabditis elegans. Mech Ageing Dev. 1983;22:253–63.

    Article  CAS  PubMed  Google Scholar 

  93. Gems D, Doonan R. Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle. 2009;8:1681–7.

    Article  CAS  PubMed  Google Scholar 

  94. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol. Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  95. Yamaza H, Chiba T, Higami Y, Shimokawa I. Lifespan extension by caloric restriction: an aspect of energy metabolism. Microsc Res Tech. 2002;59:325–30.

    Article  PubMed  Google Scholar 

  96. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993;90:7915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim CI. Treatment: nutrition alimentotherapy. Geriatrics. Seoul: Seoul National University Press; 1997. p. 122–31. Diet

    Google Scholar 

  98. DeBoer S, Olson FK, Schultz C, Starkson S, Wiitanen EM. Geriatric nutrition. In: Nelson JK, Mozness KE, Jensen MD, Gastineau CF, editors. Diet manual. 7th ed. St. Louis: Mosby; 1994. p. 58–70.

    Google Scholar 

  99. Harrington LA, Harley CB. Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech Ageing Dev. 1988;43:71–8.

    Article  CAS  PubMed  Google Scholar 

  100. Feng J, Bussière F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell. 2001;1:633–44.

    Article  CAS  PubMed  Google Scholar 

  101. Doonan R, McElwee JJ, Matthijssens F, et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 2008;22:3236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brys K, Castelein N, Matthijssens F, Vanfleteren JR, Braeckman BP. Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans. BMC Biol. 2010;8:91. doi:10.1186/1741-7007-8-91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yasuda K, Adachi H, Fujiwara Y, Ishii N. Protein carbonyl accumulation in aging dauer formation-defective (daf) mutants of Caenorhabditis elegans. J Gerontol A. 1999;54:B47–51.

    Article  CAS  Google Scholar 

  104. Minniti AN, Cataldo R, Trigo C, et al. Methionine sulfoxide reductase a expression is regulated by the DAF-16/FOXO pathway in Caenorhabditis elegans. Aging Cell. 2009;8:690–705.

    Article  CAS  PubMed  Google Scholar 

  105. Honda Y, Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999;13:1385–93.

    CAS  PubMed  Google Scholar 

  106. Petriv OI, Rachubinski RA. Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. J Biol Chem. 2004;279:19996–20001.

    Article  CAS  PubMed  Google Scholar 

  107. Back P, Braeckman BP, Matthijssens F. ROS in aging Caenorhabditis elegans: damage or signaling? Oxidative Med Cell Longev. 2012;608478:2012. doi:10.1155/2012/608478. Epub 2012 Aug 15.

    Google Scholar 

  108. Jee C, Vanoaica L, Lee J, Park BJ, Ahnn J. Thioredoxin is related to life span regulation and oxidative stress response in Caenorhabditis elegans. Genes Cells. 2005;10(12):1203–10.

    Google Scholar 

  109. Hernández-García D, Wood CD, Castro-Obregón S, Covarrubias L. Reactive oxygen species: a radical role in development? Free Radic Biol Med. 2010;49:130–43.

    Article  PubMed  CAS  Google Scholar 

  110. Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res. 1995;23:1419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Honda Y, Tanaka M, Honda S. Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. Exp Gerontol. 2008;43:520–9.

    Article  CAS  PubMed  Google Scholar 

  112. Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev. 2004;125:811–26.

    Article  CAS  PubMed  Google Scholar 

  113. Matthijssens F, Back P, Braeckman BP, Vanfleteren JR. Prooxidant activity of the superoxide dismutase (SOD)-mimetic EUK-8 in proliferating and growth-arrested Escherichia coli cells. Free Radic Biol Med. 2008;45:708–15.

    Article  CAS  PubMed  Google Scholar 

  114. Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev. 2007;87:1377–408.

    Article  CAS  PubMed  Google Scholar 

  115. Taub J, Lau JF, Ma C, et al. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature. 1999;399:162–6.

    Article  CAS  PubMed  Google Scholar 

  116. Van Raamsdonk JM, Hekimi S. Reactive oxygen species and aging in Caenorhabditis elegans: causal or casual relationship? Antioxid Redox Signal. 2010;13:1911–53.

    Article  PubMed  Google Scholar 

  117. Toldo S, Seropian IM, Mezzaroma E, Van Tassell BW, Salloum FN, Lewis EC, et al. Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia-reperfusion injury. J Mol Cell Cardiol. 2011;51:244–51.

    Article  CAS  PubMed  Google Scholar 

  118. Orrenius S, Gogvadze V, Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 2015;460:72–81.

    Article  CAS  PubMed  Google Scholar 

  119. Orrenius S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev. 2007;39:443–55.

    Article  CAS  PubMed  Google Scholar 

  120. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12:913–22.

    Article  CAS  PubMed  Google Scholar 

  121. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    Article  CAS  PubMed  Google Scholar 

  122. Cetrullo S, D’Adamo S, Tantini B, Borzi RM, Flamigni F. mTOR, AMPK, and Sirt1: key players in metabolic stress management. Crit Rev Eukaryot Gene Expr. 2015;25:59–75.

    Article  PubMed  Google Scholar 

  123. Wataya-Kaneda M. Mammalian target of rapamycin and tuberous sclerosis complex. J Dermatol Sci. 2015;S0923-1811(15):00154–1.

    Google Scholar 

  124. Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25:6347–60.

    Article  CAS  PubMed  Google Scholar 

  125. Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol. 2014;33C:55–66.

    Google Scholar 

  126. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010;40:310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA. 1998;95(22):13091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature. 2007;447(7144):545–9.

    Article  CAS  PubMed  Google Scholar 

  129. Miller RA. The aging immune system: primer and prospectus. Science. 1996;273:70–4.

    Article  CAS  PubMed  Google Scholar 

  130. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14:877–82.

    Article  PubMed  Google Scholar 

  131. Makinodan T, Kay MM. Age influence on the immune system. Adv Immunol. 1980;29:287–330.

    Article  CAS  PubMed  Google Scholar 

  132. Qi Q, Zhang DW, Weyand CM, Goronzy JJ. Mechanisms shaping the naïve T cell repertoire in the elderly thymic involution or peripheral homeostatic proliferation? Exp Gerontol. 2014;54:71–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Appay V, Sauce D. Naive T cells: the crux of cellular immune aging? Exp Gerontol. 2014;54:90–3.

    Article  CAS  PubMed  Google Scholar 

  134. Ghia P, Melchers F, Rolink AG. Age-dependent changes in B lymphocyte development in man and mouse. Exp Gerontol. 2000;35:159–65.

    Article  CAS  PubMed  Google Scholar 

  135. Chen H, Zheng X, Zheng Y. Lamin-B in systemic inflammation, tissue homeostasis, and aging. Nucleus. 2015;15:1–4.

    Google Scholar 

  136. Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Discov Med. 2011;61:537–50.

    Google Scholar 

  137. Blaseser A, McGlauchlen K, Vogel LA. Aged B lymphocytes retain their ability to express surface markers but are dysfunctional in their proliferative capacity during early activation event. Immun Ageing. 2008;5:5–15. doi:10.1186/1742-4933-5-15.

    Article  CAS  Google Scholar 

  138. Powers DC, Belshe RB. Effect of age on cytotoxic T lymphocyte memory as well as serum and local antibody responses elicited by inactivated influenza virus vaccine. J Infect Dis. 1993;167:584–92.

    Article  CAS  PubMed  Google Scholar 

  139. Allain TJ, Dhesi J. Hypovitaminosis D in older adults. Gerontology. 2003;49:273–8.

    Article  CAS  PubMed  Google Scholar 

  140. Sawyer DT. Oxygen chemistry. New York: Oxford University Press; 1991.

    Google Scholar 

  141. Borel P, Caillaud D, Cano NJ. Vitamin d bioavailability: state of the art. Crit Rev Food Sci Nutr. 2015;55:1193–205.

    Article  CAS  PubMed  Google Scholar 

  142. Thompson P, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis. 2015;36(Suppl 1):S232–53. doi:10.1093/carcin/bgv038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Inoue H, Hisamoto N, An JH, et al. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Gene Dev. 2005;19:2278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cross AR, Segal AW. The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim Biophys Acta. 2004;1657:1–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cochemé HM, Quin C, McQuaker SJ, et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 2011;13:340–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Mishina NM, Tyurin-Kuzmin PA, Markvicheva KN, et al. Does cellular hydrogen peroxide diffuse or act locally? Antioxid Redox Signal. 2011;14:1–7.

    Article  CAS  PubMed  Google Scholar 

  147. Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells. 2013;35:463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Edeas M. Strategies to target mitochondria and oxidative stress by antioxidants: key points and perspectives. Pharm Res. 2011;28:2771–9.

    Article  CAS  PubMed  Google Scholar 

  149. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol. 2002;34:1401–14.

    Article  CAS  PubMed  Google Scholar 

  151. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. McCord JM, Edeas MA. SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother. 2005;59:139–42.

    Article  CAS  PubMed  Google Scholar 

  153. Stone JR, Yang S. Hydrogen Peroxide: a signaling messenger. Antiox Redox Signaling. 2006;8:243–70.

    Article  CAS  Google Scholar 

  154. Ungvari Z, Labinskyy N, Mukhopadhyay P, et al. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol. 2009;297:H1876–81.

    CAS  Google Scholar 

  155. Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 2004;58:39–46.

    Article  CAS  PubMed  Google Scholar 

  156. Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest. 2015;125:1–4. doi:10.1172/JCI78652. Epub 2015 Jan 2

    Article  PubMed  PubMed Central  Google Scholar 

  157. Galluzzi L, Zamzami N, de La Motte RT, Lemaire C, Brenner C, Kroemer G. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis. 2007;12:803–13.

    Article  CAS  PubMed  Google Scholar 

  158. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273(5271):59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G. Mitochondrial gateways to cancer. Mol Asp Med. 2010;31:1–20.

    Article  CAS  Google Scholar 

  160. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274.

    Article  CAS  PubMed  Google Scholar 

  161. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res. 2008;49:2545–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cloonan SM, Choi AMK. Mitochondria: commanders of innate immunity and disease? Curr Opin Immunol. 2012;24:32–40.

    Article  CAS  PubMed  Google Scholar 

  163. Takahashi E, Sato M. Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment. Am J Physiol Cell Physiol. 2014;306:C334–42.

    Article  CAS  PubMed  Google Scholar 

  164. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hasimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51.

    Article  CAS  PubMed  Google Scholar 

  165. Frezza C, Gottlieb E. Mitochondria in cancer: not just innocent bystanders. Sem Cancer Bio. 2009;l19:4–11.

    Article  CAS  Google Scholar 

  166. Zhang XV, Martin ST. Driving parts of Krebs Cycle in reverse through mineral photochemistry. J Am Chem Soc. 2006;128:16032–3.

    Article  CAS  PubMed  Google Scholar 

  167. Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009;20:332–40.

    Article  CAS  PubMed  Google Scholar 

  168. Sharma G, Sharma AR, Seo EM, Nam JS. Genetic polymorphism in extracellular regulators of Wnt signaling pathway. Biomed Res Int. 2015;2015:847529.

    PubMed  PubMed Central  Google Scholar 

  169. Lovering RC, Camon EB, Blake JA, Diehl AD. Access to immunology through the gene ontology. Immunology. 2008;125:154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Collins LV, Hajizadeh S, Holme E, Jonsson I-M, Tarkowski A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol. 2004;75:995–1000. doi:10.1189/jlb.0703328.

    Article  CAS  PubMed  Google Scholar 

  171. Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev. 2005;126:365–79.

    Article  CAS  PubMed  Google Scholar 

  172. De Magalhaes JP, Wuttke D, Wood SH, Plank M, Vora C. Genome-environment interactions that modulate aging: powerful targets for drug discovery. Pharmacol Rev. 2012;64:88–101.

    Google Scholar 

  173. Vijg J, Hasty P. Aging and p53: getting it straight. A commentary on a recent paper by Gentry and Venkatachalam. Aging Cell. 2005;4:335–8.

    Article  CAS  Google Scholar 

  174. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  CAS  PubMed  Google Scholar 

  175. Fukada S, Morikawa D, Yamamoto Y, Yoshida T, Sumie N, Yamaguchi M, et al. Genetic background affects properties of satellite cells and mdx phenotypes. Am J Pathol. 2010;176:2414–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96:701–12.

    Article  CAS  PubMed  Google Scholar 

  177. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97:527–638.

    Article  CAS  PubMed  Google Scholar 

  178. Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature. 2007;447:686–90.

    Article  CAS  PubMed  Google Scholar 

  179. Nagata S, Suda T. Fas and Fas ligand: lpr and gld mutations. Immunol Today. 1995;16:39–43.

    Article  CAS  PubMed  Google Scholar 

  180. Alves H, Munoz-Najar U, De Wit J, Renard AJ, Hoeijmakers JH, Sedivy JM, et al. A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells. J Cell Mol Med. 2010;14:2729–38.

    Article  CAS  PubMed  Google Scholar 

  181. Heyn H, Li N, Ferreira HJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109:10522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jinnah HA, de Gregorio L, Harris JC, Nyhan WL, O’Neill JP. The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat Res. 2000;463:309–26.

    Article  CAS  PubMed  Google Scholar 

  183. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    Article  CAS  PubMed  Google Scholar 

  184. Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55:876–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Armanios M. Syndromes of telomere shortening. Ann Rev Genomics HumGenet. 2009;10:45–61.

    Article  CAS  Google Scholar 

  186. Noebels J. Pathway-driven discovery of epilepsy genes. Nat Neurosci. 2015;18:344–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Greider CW. Telomeres and senescence: the history, the experiment, the future. Curr Biol. 1998;8:R178–81.

    Article  CAS  PubMed  Google Scholar 

  188. Savage SA, Bertuch AA. The genetics and clinical manifestations of telomere biology disorders. Genet Med. 2010;12:753–64.

    Article  PubMed  Google Scholar 

  189. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Diaz de LA, Cronkhite JT, Katzenstein AL, Godwin JD, Raghu G, Glazer CS, Rosenblatt RL, Girod CE, Garrity ER, Xing C, Garcia CK. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS One. 2010;5:e10680.

    Article  CAS  Google Scholar 

  191. Son NH, Murray S, Yanovski J, Hodes RJ, Weng N. Lineage-specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age. J Immunol. 2000;165:1191–6.

    Article  CAS  PubMed  Google Scholar 

  192. Gadalla SM, Cawthon R, Giri N, Alter BP, Savage SA. Telomere length in blood, buccal cells, and fibroblasts from patients with inherited bone marrow failure syndromes. Aging (Albany, NY). 2010;2:867–74.

    Article  Google Scholar 

  193. Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007;96:1020–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12:1133–8.

    Article  CAS  PubMed  Google Scholar 

  195. Weng NP. Telomeres and immune competency. Curr Opin Immunol. 2012;24:470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Weng NP, Levine BL, June CH, Hodes RJ. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci U S A. 1995;92:11091–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chou JP, Effros RB. Tcell replicative senescence in human aging. Curr Pharm Des. 2013;19(9):1680–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Wong JM, Collins K. Telomere maintenance and disease. Lancet. 2003;362:983–8.

    Article  CAS  PubMed  Google Scholar 

  199. Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells. 2012;30:232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sharpless NE, DePinho RA. Telomeres, stem cells senescence and cancer. J Clin Invest. 2004;113:160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bohr VA, Anson RM. DNA damage, mutation and fine structure DNA repair in aging. Mutat Res. 1995;338:25–34.

    Article  CAS  PubMed  Google Scholar 

  202. Medová M, Aebersold DM, Zimmer Y. The molecular crosstalk between the MET receptor tyrosine kinase and the DNA damage response-biological and clinical aspects. Cancers. 2014;6:1–27.

    Article  CAS  Google Scholar 

  203. Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, Yamato M, Vacanti CA. Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature. 2014;505:641–7.

    Article  CAS  PubMed  Google Scholar 

  204. Huang Q, Lan F, Wang X, Yu Y, Quyang X, Zheng F, et al. IL-1beta-induced activation of p38 promotes metastasis in gastric adenocarcinoma via upregulation of AP-1/c-fos, MMP2 and MMP9. Mol Cancer. 2014;13:18. doi:10.1186/1476-4598-13-18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Ebert MP, Fei G, Kahmann S, et al. Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis. 2002;23:87–91.

    Article  CAS  PubMed  Google Scholar 

  206. Resende C, Ristimaki A, Machado JC. Genetic and epigenetic alteration in gastric carcinogenesis. Helicobacter. 2010;15:34–9.

    Article  CAS  PubMed  Google Scholar 

  207. Vogiatzi P, Vindigni C, Roviello F, Renieri A, Giordano A. Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol. 2007;211:287–95.

    Article  CAS  PubMed  Google Scholar 

  208. Marimuthu A, Jacob HK, Jakharia A, et al. Gene expression profiling of gastric cancer. J Proteomics Bioinform. 2011;4:74–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Pasini FS, Zilberstein B, Snitcovsky I, et al. A gene expression profile related to immune dampening in the tumor microenvironment is associated with poor prognosis in gastric adenocarcinoma. J Gastroenterol. 2013;49(11):1453–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Liu N, Liu X, Zhou N, Wu Q, Zhou L, Li Q. Gene expression profiling and bioinformatics analysis of gastric carcinoma. Exp Mol Pathol. 2014;96(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  211. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Jinawath N, Furukawa Y, Hasegawa S, et al. Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray. Oncogene. 2004;23:6830–44.

    Article  CAS  PubMed  Google Scholar 

  213. Hasegawa S, Furukawa Y, Li M, et al. Genome-wide analysis of gene expression in intestinal-type gastric cancers using a complementary DNA microarray representing 23, 040 genes. Cancer Res. 2002;62:7012–7.

    CAS  PubMed  Google Scholar 

  214. Dallaire A, Garand C, Paquel ER, et al. Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant Caenorhabditis eleganswrn-1 reveals the importance of this microRNA in accelerated aging. Aging (Albany NY). 2012;4:636–47.

    Article  CAS  Google Scholar 

  215. Honeywell DR, Cabrita MA, Zhao H, Dimitroulakos J, Addison CL. miR-105 inhibits prostate tumour growth by suppressing CDK6 levels. PLoS One. 2013;8:e70515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    Article  CAS  PubMed  Google Scholar 

  217. Hsu SD, Lin FM, Wu WY, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39(Database issue):D163–9.

    Article  CAS  PubMed  Google Scholar 

  218. Zahn JM, Poosala S, Owen AB, et al. AGEMAP: a gene expression database for aging in mice. PLoS Genet. 2007;3:e201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Card DA, Hebbar PB, Li L, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008;28(20):6426–38.

    Article  PubMed  CAS  Google Scholar 

  220. Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010;223:49–56.

    CAS  PubMed  Google Scholar 

  221. Gaur A, Jewell DA, Liang Y, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67:2456–68.

    Article  CAS  PubMed  Google Scholar 

  222. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  PubMed  CAS  Google Scholar 

  223. Li CP, Huang TS, Chao Y, Chang FY, Whang-Peng J, Lee SD. Advantages of assaying telomerase activity in ascites for diagnosis of digestive tract malignancies. World J Gastroenterol. 2004;10:2468–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.

    Article  CAS  PubMed  Google Scholar 

  225. Hingorani SR, Tuveson DA. Ras redux: rethinking how and where Ras acts. Curr Opin Genet Dev. 2003;13:6–13.

    Article  CAS  PubMed  Google Scholar 

  226. Kirma N, Luthra R, Jones J, Liu Y-G, Nair HB, Mandava U, Tekmal RR. Overexpression of the colony-stimulating factor (CSF-1) and/or its receptor c-fms in mammary glands of transgenic mice results in hyperplasia and tumor formation. Cancer Res. 2004;64:4162–70.

    Article  CAS  PubMed  Google Scholar 

  227. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene. 1998;17:1395–413.

    Article  CAS  PubMed  Google Scholar 

  228. Vaziri H, Benchimol S. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol. 1996;31:295–301.

    Article  CAS  PubMed  Google Scholar 

  229. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 2002;109:335–46.

    Article  CAS  PubMed  Google Scholar 

  230. Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA. Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet. 2005;37:630–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Feldmann J, Prieur AM, Quartier P, Berquin P, Certain S, Cortis E. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1 a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71:198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genetics. 2009;10:704–14.

    Article  CAS  PubMed  Google Scholar 

  233. Otero M, Plumb DA, Tsuchimochi K, et al. E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under proinflammatory stress. J Biol Chem. 2012;287:3559–72.

    Article  CAS  PubMed  Google Scholar 

  234. Gayen JR, Zhang K, RamachandraRao SP, et al. Role of reactive oxygen species in hyperadrenergic hypertension: biochemical, physiological, and pharmacological evidence from targeted ablation of the chromogranin a (Chga) gene. Circ Cardiovasc Genet. 2010;3:414–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Xiao F, Zuo Z, Cai G, Kang S, Gao X. Li T: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37(Database issue):D105–10.

    Article  CAS  PubMed  Google Scholar 

  236. Wang D, Yan L, Hu Q, et al. IMA: an R package for high-throughput analysis of Illumina’s 450K Infinium methylation data. Bioinformatics. 2012;28:729–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Saeed AI, Sharov V, White J, et al. TM4: a free, open-source system for microarray data management and analysis. BioTechniques. 2003;34:374–8.

    CAS  PubMed  Google Scholar 

  238. Engwerda CR, Handwerger BS, Fox BS. Aged T cells are hyporesponsive to costimulation mediated by CD28. J Immunol. 1994;152:3740–7.

    CAS  PubMed  Google Scholar 

  239. Linton PJ, Haynes L, Klinman NR, Swain SL. Antigen-independent changes in naïve CD4+ T cells with aging. J Exp Med. 1996;184:1891–900.

    Article  CAS  PubMed  Google Scholar 

  240. Haynes L, Eaton SM, Burns EM, Rincon M, Swain SL. Inflammatory cytokines overcome age-related defects in CD4+ T cell responses in vivo. J Immunol. 2004;172:5194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. McElhaney JE, Xie D, Hager WD, Barry MB, Wang Y, Kleppinger A, Ewen C, Kane KP, Bleackley RC. T cell responses are better correlates of vaccine protection in the elderly. J Immunol. 2006;176:6333–9.

    Article  CAS  PubMed  Google Scholar 

  242. Simi A, Ibáñez CF. Assembly and activation of neurotrophic factor receptor complexes. Dev Neurobiol. 2010;70:323–31.

    CAS  PubMed  Google Scholar 

  243. Deng Y, Jing Y, Campbell AE, Gravenstein S. Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J Immunol. 2004;172:3437–46.

    Article  CAS  PubMed  Google Scholar 

  244. Vissinga C, Hertogh-Huijbregts A, Rozing J, Nagelkerken L. Analysis of the age-related decline in alloreactivity of CD4+ and CD8+ T cells in CBA/RIJ mice. Mech Ageing Dev. 1990;51:179–94.

    Article  CAS  PubMed  Google Scholar 

  245. Schmucker DL, Daniels CK, Wang RK, Smith K. Mucosal immune response to cholera toxin in ageing rats. I Antibody and antibody-containing cell response. Immunology. 1988;64:691–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Jones SC, Clise-Dwyer K, Huston G, Dibble J, Eaton S, Haynes L, Swain SL. Impact of post-thymic cellular longevity on the development of age-associated CD4+ T cell defects. J Immunol. 2008;180:4465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Blaeser A, Panwar A, Vogel LA. Humoral immunity and aging: intrinsic B cell defects. Curr Trends Immunol. 2007;8:61–7.

    CAS  Google Scholar 

  248. Johnson KM, Owen K, Witte PL. Aging and developmental transitions in the B cell lineage. Int Immunol. 2002;14:1313–23.

    Article  CAS  PubMed  Google Scholar 

  249. Zheng B, Han S, Takahashi Y, Kelsoe G. Immunosenescence and germinal center reaction. Immunol Rev. 1997;160:63–77.

    Article  CAS  PubMed  Google Scholar 

  250. Ruffolo RR Jr. Fundamentals of receptor theory: basics for shock research. Circ Shock. 1992;37:176–84.

    Google Scholar 

  251. Hibberd C, Yau JL, Seckl JR. Glucocorticoids and the ageing hippocampus. J Anat. 2000;197(Pt 4):553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61:1315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Martin FM, Bydlon G, Friedman JS. SOD2-deficiency sideroblastic anemia and red blood cell oxidative stress. Antioxid Redox Signal. 2006;8:1217–25.

    Article  CAS  PubMed  Google Scholar 

  254. Vaishnaw AK, Toubi E, Ohsako S, Drappa J, Buys S, Estrada J, Sitarz A, Zemel L, Chu JL, Elkon KB. The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations. Arthritis Rheum. 1999;42:1833–42.

    Article  CAS  PubMed  Google Scholar 

  255. Chung HY, Lee EK, Choi YJ, et al. Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res. 2011;90:830–40.

    Article  CAS  PubMed  Google Scholar 

  256. Ryan KA, Smith MF Jr, Sanders MK, Ernst PB. Reactive oxygen and nitrogen species differentially regulate toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect Immun. 2004;72(4):2123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Schwab L, Goroncy L, Palaniyandi S, Gautam S, Triantafyllopoulou A, Mocsai A, et al. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nat Med. 2014;20:648–54. doi:10.1038/nm.3517.

    Article  CAS  PubMed  Google Scholar 

  258. Pérez VI, Bokov A, Van Remmen H, et al. Is the oxidative stress theory of aging dead? Biochim Biophys Acta. 2009;1790:1005–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Kuhns DB, Nelson EL, Alvord WG, Gallin JI. Fibrinogen induces IL-8 synthesis in human neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine or leukotriene B(4). J Immunol. 2001;167:2869–78. doi:10.4049/jimmunol.167.5.2869.

    Article  CAS  PubMed  Google Scholar 

  260. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol. 2001;167:2887–94. doi:10.4049/jimmunol.167.5.2887.

    Article  CAS  PubMed  Google Scholar 

  261. Dostert C, Pétrilli V, van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320:674–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Song H, Price PW, Cerny J. Age-related changes in antibody repertoire: contribution from T cells. Immunol Rev. 1997;160:55–62.

    Article  CAS  PubMed  Google Scholar 

  263. Hitchler MJ, Domann FE. An epigenetic perspective on the free radical theory of development. Free Radic Biol Med. 2007;43:1023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kim C, Kang D, Lee EK, Lee JS. Long noncoding RNAs and RNA-binding proteins in oxidative stress, cellular senescence, and age-related diseases. Oxidative Med Cell Longev. 2017;2017:2062384. https://doi.org/10.1155/2017/2062384. Epub 2017 July 25.

  265. Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol. 2007;25:419–41. doi:10.1146/annurev.immunol.22.012703.104514.

    Article  CAS  PubMed  Google Scholar 

  266. Blagosklonny MV. Aging: ROS or TOR. Cell Cycle. 2008;7:3344–54.

    Article  CAS  PubMed  Google Scholar 

  267. Levine RL, Stadtman ER. Oxidative modification of proteins during aging. Exper Gerontol. 2001;36:1495–502.

    Article  CAS  Google Scholar 

  268. Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging: implications for exercise training. Sports Med. 2003;33:877–88.

    Article  PubMed  Google Scholar 

  269. Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Sem Cancer Biol. 2011;21:354–9.

    CAS  Google Scholar 

  270. Tower J. Programmed cell death in aging. Ageing Res Rev. 2015;23:90–100. doi:10.1016/j.arr.2015.04.002. Epub 2015 Apr 8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Goldstein BJ, Mahadev K, Wu X. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes. 2005;54:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Remillard CV, Yuan JX. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol. 2004;286:L49–67.

    Article  CAS  PubMed  Google Scholar 

  273. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.

    Article  CAS  PubMed  Google Scholar 

  274. Elchuri S, Oberley TD, Qi W, et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2005;24:367–80.

    Article  CAS  PubMed  Google Scholar 

  275. Croteau DL, Bohr VA. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem. 1997;272:25409–12.

    Article  CAS  PubMed  Google Scholar 

  276. Melov S, Ravenscroft J, Malik S, et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science. 2000;289:1567–9.

    Article  CAS  PubMed  Google Scholar 

  277. Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 2013;39:482–95. doi:10.1016/j.immuni.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  278. Gutscher M, Sobotta MC, Wabnitz GH, et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem. 2009;284(46):31532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Bulcao C, Ferreira SR, Giuffrida FM, Ribeiro-Filho FF. The new adipose tissue and adipocytokines. Curr Diabetes Rev. 2006;2:19–28.

    Article  CAS  PubMed  Google Scholar 

  280. Jabaut J, Ckless K. Inflammation, immunity and redox signaling. In: Khatami M, editor. Inflammation, chronic diseases and cancer. Cell and molecular biology, immunology and clinical bases. Rijeka: InTech; 2012. p. 145–60.

    Google Scholar 

  281. Fischetti F, Tedesco F. Cross-talk between the complement system and endothelial cells in physiologic conditions and vascular diseases. Autoimmunity. 2006;39:417–28. doi:10.1080/08916930600739712.

    Article  CAS  PubMed  Google Scholar 

  282. Aprahamian T. Autoimmunity, atherosclerosis and apoptic cell clearance. In: Khatami M, editor. Inflammation, chronic diseases and cancer. Cell and molecular biology, immunology and clinical bases. Rijeka: InTech; 2012. p. 75–96.

    Google Scholar 

  283. Meur YL, Tesch GH, Hill PA, Mu W, Foti R, Nikolic-Paterson DJ, Atkins RC. Monocyte proliferation outside the bone marrow has also been demonstrated in vitro studies using monocytes extracted from peripheral blood and glomeruli. J Leukocyte Biology. 2002;72:530–7.

    Google Scholar 

  284. Barnes PJ, Chung KF, Page CP. Inflammatory mediators of asthma: an update. Pharmacol Rev. 1998;50:515–96.

    CAS  PubMed  Google Scholar 

  285. Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R, Madden KB, Schopf L, Urban JF Jr. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol Rev. 2004;201:139–55.

    Article  CAS  PubMed  Google Scholar 

  286. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4:540–50.

    Article  CAS  PubMed  Google Scholar 

  287. Machado ER, Ueta MT, Lourenço EV, Anibal FF, Sorgi CA, Soares EG, et al. Leukotrienes play a role in the control of parasite burden in murine strongyloidiasis. J Immunol. 2005;175:3892–9.

    Article  CAS  PubMed  Google Scholar 

  288. Rossi DJ, Jamieson CH, Weissman IL. Stem cells and the pathways to aging and cancer. Cell. 2008;132:681–96.

    Article  CAS  PubMed  Google Scholar 

  289. Krishnamurthy J, Sharpless NE. Stem cells and the rate of living. Cell Stem Cell. 2007;1:9–11.

    Article  CAS  PubMed  Google Scholar 

  290. Van Zant G, Liang Y. The role of stem cells in aging. Exp Hematol. 2003;31:659–72.

    Article  PubMed  CAS  Google Scholar 

  291. Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells. 2007;25:885–94.

    Article  CAS  PubMed  Google Scholar 

  292. Fukada S, Ma Y, Uezumi A. Adult stem cell and mesenchymal progenitor theories of aging. Front Cell Dev Biol. 2014;2:10. doi:10.3389/fcell. 2014.00010. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  293. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  294. Hartman M, Piliponsky AM, Temkin V, Levischaffer F. Human peripheral blood eosinophils express stem cell factor. Blood. 2001;97:1086–91.

    Article  CAS  PubMed  Google Scholar 

  295. Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117:989–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Biteau B, Jasper H. EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development. 2011;138:1045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14:329–40.

    Article  CAS  PubMed  Google Scholar 

  298. Yuzankina Y, Asare A, Brown EJ. Replicative stress, stem cells and aging. Mech Aging Dev. 2008;129:460–6.

    Article  CAS  Google Scholar 

  299. Nishimura EK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011;24:401–10.

    Article  CAS  PubMed  Google Scholar 

  300. Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science. 2005;307:720–4.

    Article  CAS  PubMed  Google Scholar 

  301. Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, et al. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun. 2009;379:1114–9.

    Article  CAS  PubMed  Google Scholar 

  302. Brennan TV, Lin L, Huang X, Cardona DM, Li Z, Dredge K, et al. Heparan sulfate, an endogenous TLR4 agonist, promotes acute GVHD following allogeneic stem cell transplantation. Blood. 2012;120:2899–908. doi:10.1182/blood-2011-07-368720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Nowarski R, Gagliani N, Huber S, Flavell RA. Innate immune cells in inflammation and cancer. Cancer Immunol Res. 2013;1:77–84. doi:10.1158/2326-6066.CIR-13-0081.

    Article  CAS  PubMed  Google Scholar 

  304. DiCarlo E, Forni G, Lollini PL, Colombo MP, Modesti A, Musiani P. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood. 2001;97:339–45.

    Article  CAS  Google Scholar 

  305. Sigal LJ, Crotty S, Andino R, Rock KL. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature. 1999;398:77–80.

    Article  CAS  PubMed  Google Scholar 

  306. D’Amico G, Frascaroli G, Bianchi G, Transidico P, Doni A, Vecchi A, Sozzani S, Allavena P, Mantovani A. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat Immunol. 2000;1:387–91.

    Article  PubMed  Google Scholar 

  307. Lloyd CM, Hawrylowicz CM. Regulatory T cells in asthma. Immunity. 2009;31:438–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Werling D, Hope JC, Howard CJ, Jungi TW. Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with toll-like receptor agonists. Immunology. 2004;111:41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Daly C, Dube C, Rollins BJ. Chemokine influences on adaptive immunity and malignancies of the immune system. Emst Schering Res Found Workshop. 2004;45:11–30.

    CAS  Google Scholar 

  310. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013;34:2041–51.

    Article  CAS  PubMed  Google Scholar 

  311. Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol. 2006;33:369–85.

    Article  CAS  PubMed  Google Scholar 

  312. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22:633–40.

    Article  CAS  PubMed  Google Scholar 

  313. Rajagopalan S. HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol Immunol. 2014;11:460–6. doi:10.1038/cmi.2014.53. Epub 2014 Jul 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol. 2004;25:47–52.

    Article  CAS  PubMed  Google Scholar 

  315. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990;76:2421–38.

    CAS  PubMed  Google Scholar 

  316. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986;136:4480–6.

    CAS  PubMed  Google Scholar 

  317. Grubeck-Loebenstein B, Della Bella S, Iorio AM, Michel JP, Pawelec G, Solana R. Immunosenescence and vaccine failure in the elderly. Aging Clin Exp Res. 2009;21:201–9.

    Article  CAS  PubMed  Google Scholar 

  318. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  CAS  PubMed  Google Scholar 

  319. Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA, Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes: identification of a novel natural killer cell subset with high affinity receptors. J Exp Med. 1990;171:1509–26.

    Article  CAS  PubMed  Google Scholar 

  320. Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, et al. Activation of NK cell cytotoxicity. Mol Immunol. 2005;42:501–10.

    Article  CAS  PubMed  Google Scholar 

  321. Zwirner NW, Fuertes MB, Girart MV, Domaica CI, Rossi LE. Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev. 2007;18:159–70.

    Article  CAS  PubMed  Google Scholar 

  322. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. 1999;190:1505–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Balch CM, Tilden AB, Dougherty PA, Cloud GA, Abo T. Depressed levels of granular lymphocytes with natural killer (NK) cell function in 247 cancer patients. Am Surg. 1983;198:192–9.

    CAS  Google Scholar 

  324. DiPenta JM, Johnson JG, Murphy RJ. Natural killer cells and exercise training in the elderly: a review. Can J Appl Physiol. 2004;29:419–43.

    Article  PubMed  Google Scholar 

  325. Shephard RJ, Shek PN. Cancer, immune function, and physical activity. Can J Appl Physiol. 1995;20:1–25.

    Article  CAS  PubMed  Google Scholar 

  326. Haaland DA, Sabljic TF, Baribeau DA, Mukovozov IM, Hart LE. Is regular exercise a friend or foe of the aging immune system? A systematic review. Clin J Sport Med. 2008;18:539–48. doi:10.1097/JSM.0b013e3181865eec.

  327. Albers R, Antoine JM, Bourdet-Sicard R, Calder PC, Gleeson M, Lesourd B, Samartín S, Sanderson IR, Van Loo J, Vas Dias FW, Watzl B. Markers to measure immunomodulation in human nutrition intervention studies. Br J Nutr. 2005;94:452–81.

    Google Scholar 

  328. Ince N, de la Monte SM, Wands JR. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation. Cancer Res. 2000;60:1261–6.

    Google Scholar 

  329. Perica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J. 2015;6:e0004. doi:10.5041/RMMJ.10179. eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  330. Gaber T, Strehl C, Sawitzki B, Hoff P, Buttgereit F. Cellular energy metabolism in T-lymphocytes. Intl Rev of Immunol. 2015;34:34–49. doi:10.3109/08830185.2014.956358.

    Article  CAS  Google Scholar 

  331. Fulop T Jr, Larbi A, Dupuis G, Pawelec G. Ageing, autoimmunity and arthritis: perturbations of TCR signal transduction pathways with ageing- a biochemical paradigm for the ageing immune system. Arthritis Res Ther. 2003;5:290–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  332. Aspinall R. Age-related changes in the function of T cells. Microsc Res Tech. 2003;62:508–13.

    Article  CAS  PubMed  Google Scholar 

  333. Ait-Oufella H, Salomon BL, Potteaux S, Robertson A-KL, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178–80.

    Article  CAS  PubMed  Google Scholar 

  334. Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation. 2000;102:2919–22.

    Article  CAS  PubMed  Google Scholar 

  335. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA, Kool M, Muskens F, Lambrecht BN. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010;207:2097–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5:133–9.

    Article  CAS  PubMed  Google Scholar 

  337. Herrero C, Sebastian C, Marques L, Comalada M, Xaus J, Valledor AF, Lioberas J, Celada A. Immunosenescence of macrophages: reduced MHC class II gene expression. Exp Gerontol. 2002;37:389–94.

    Article  CAS  PubMed  Google Scholar 

  338. Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med. 2006;203:1273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Mckinnon JG, Hoover SK, Inge TH, Bear HD. Activation and expansion of cytotoxic T lymphocytes from tumor-draining lymph nodes. Cancer Immunol Immunother. 1990;32:38–44.

    Article  CAS  PubMed  Google Scholar 

  340. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000;404:407–11.

    Article  CAS  PubMed  Google Scholar 

  341. Hsieh FH, Lam BK, Penrose JF, Austen KF, Boyce JA. T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cell: profound induction of leukotriene C(4) synthase expression by interleukin 4. J Exp Med. 2001;193:123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Serelli-Lee V, Ling KL, Ho C, et al. Persistent Helicobacter pylori specific Th17 responses in patients with past H. pylori infection are associated with elevated gastric mucosal IL-1beta. PLoS One. 2012;7(6):e39199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Fu TM, Ulmer JB, Caulfield MJ, Deck RR, Friedman A, Wang S, Liu X, Donnelly JJ, Liu MA. Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med. 1997;3:362–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Rafi A, Castle SC, Uyemura K, Makinodan T. Immune dysfunction in the elderly and its reversal by antihistamines. Biomed Pharmacoth. 2003;57:246–50.

    Google Scholar 

  345. Yang K, Chi H. AMPK helps T cell survive nutrient starvation. Immunity. 2015;42:4–6.

    Article  PubMed  CAS  Google Scholar 

  346. Khor SC, Abdul Karim N, Ngah WZ, Yusof YA, Makpol S. Vitamin E in sarcopenia: current evidences on its role in prevention and treatment. Oxidative Med Cell Longev. 2014;2014:914853. doi:10.1155/2014/914853. Epub 2014 Jul 6

    Article  CAS  Google Scholar 

  347. Kim J, Wilson JM, Lee S. Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J Nutrit Biochem. 2010;21:1–13.

    Article  CAS  Google Scholar 

  348. Gashev AA, Chatterjee V. Aged lymphatic contractility: recent answers and new questions. Lymphat Res Biol. 2013;11:2–13.

    Article  PubMed  PubMed Central  Google Scholar 

  349. Choi YS, Baumgarth N. Dual role for B-1a cells in immunity to influenza virus infection. J Exp Med. 2008;205:3053–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Matsumura Y, Abe M, Makimura K. Commensal fungi are involved in antigen-specific antibody production in the elderly. Brit J Med Medical Res. 2015;5:1562–70. Article no.BJMMR.2015.176–ISSN: 2231-0614

    Article  Google Scholar 

  351. Perry HM, Bender TP, McNamara CA. B cell subsets in atherosclerosis. Front Immunol. 2012;3:373.

    Article  PubMed  PubMed Central  Google Scholar 

  352. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi:10.3389/fimmu.2014.00520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, Bone R, Wenzel RP, Balk R, Allred R, Pennington JE, Wherry JC. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. JAMA. 1995;273:934–41.

    Article  CAS  PubMed  Google Scholar 

  354. Schroeder HW Jr. The evolution and development of the antibody repertoire. Front Immunol. 2015; doi:10.3389/fimmu.2015.00033.

  355. Daugherty A, Puré E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, Rader DJ. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest. 1997;100:1575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Blaeser A, McGlauchlen K, Vogel LA. Aged-B lymphocytes retain their ability to express surface markers but are dysfunctional in their proliferative capability during early activation events. Immun Ageing. 2008;5:15. doi:10.1186/1742-4933-5-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327:291–5. doi:10.1126/science.1183021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Major AS, Fazio S, Linton MF. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol. 2002;22:1892–8.

    Article  CAS  PubMed  Google Scholar 

  359. Tsiantoulas D, Diehl CJ, Witztum JL, Christoph J. Binder B cells and humoral immunity in atherosclerosis. Circ Res. 2014;114:1743–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Howard WA, Gibson KL, Dunn-Walters DK. Antibody quality in old age. Rejuvenation Res. 2006;9:117–25.

    Article  CAS  PubMed  Google Scholar 

  361. Dailey RW, Eun SY, Russell CE, Vogel LA. B cells of aged mice show decreased expansion in response to antigen, but are normal in effector function. Cell Immunol. 2001;214:99–109.

    Article  CAS  PubMed  Google Scholar 

  362. Neyt K, Perros F, Geurtsvan-Kessel CH, Hammad H, Lambrecht BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012;33:297–305.

    Article  CAS  PubMed  Google Scholar 

  363. Linterman MA. How T follicular helper cells and the germinal centre response change with age. Immunol Cell Biol. 2014;92:72–9.

    Article  CAS  PubMed  Google Scholar 

  364. Good-Jacobson KL, Shlomchik MJ. Plasticity and heterogeneity in the generation of memory B cells and long-lived plasma cells: the influence of germinal center interactions and dynamics. J Immunol. 2010;185:3117–25. doi:10.4049/jimmunol.1001155.

    Article  CAS  PubMed  Google Scholar 

  365. Tseng CW, Liu GY. Expanding roles of neutrophils in aging hosts. Curr Opin Immunol. 2014;29:43–8.

    Article  CAS  PubMed  Google Scholar 

  366. De Larco JE, Wuertz BRK, Furcht LT. The potential role of neutrophils in promoting the metastatic phenotype of tumor releasing interleukin -8. Clin Cancer Res. 2004;10:4895–900.

    Article  PubMed  Google Scholar 

  367. Jackaman C, Nelson DJ. Are macrophages, myeloid derived suppressor cells and neutrophils mediators of local suppression in healthy and cancerous tissues in aging hosts. Exp Gerontol. 2014;54:53–7.

    Article  CAS  PubMed  Google Scholar 

  368. Teranishi A, Akada S, Saito S, Hatake K, Morikawa H. Macrophage cology-stimulating factor restored chemotherapy-induced granulocyte dysfunction: role of IL-8 production by monocytes. Int Immunopharmacol. 2002;2:83–94.

    Article  CAS  PubMed  Google Scholar 

  369. Rijken F, Bruijzeel-Koomen CA. Photoaged skin: the role of neutrophils, preventive measures and potential pharmacological targets. Clin Pharmacol Ther. 2010;89:120–4.

    Article  PubMed  Google Scholar 

  370. Gomez-Cambronero J, Kantonen S. A river runs through it: how autophagy, senescence, and phagocytosis could be linked to phospholipase D by Wnt signaling. J Leukoc Biol. 2014;96:779–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  371. Ohbayashi H, Shimokata K. Matrix metalloproteinase-9 and airway remodeling in asthma. Curr Drug Targets Inflamm Allergy. 2005;4:177–81.

    Article  CAS  PubMed  Google Scholar 

  372. Ibusuki K, Sakiyama T, Kanmura S, Maeda T, Iwashita Y, Nasu Y, Sasaki F, Taguchi H, Hashimoto S, Numata M, Uto H, Tsubouchi H, Ido A. Human neutrophil peptides induce interleukin-8 in intestinal epithelial cells through the P2 receptor and ERK1/2 signaling pathways. Int J Mol Med. 2015;35:1603–9. doi:10.3892/ijmm.2015.2156. Epub 2015 Mar 26

    Article  CAS  PubMed  Google Scholar 

  373. Ribatti D, Crivellato E. Mast cell ontology: an historical overview. Immunol Lett. 2014;159:11–4. doi:10.1016/j.imlet.2014.02.003. Epub 2014 Feb 14

    Article  CAS  PubMed  Google Scholar 

  374. Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnawamy G. The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res. 2004;24:271–81.

    Article  CAS  PubMed  Google Scholar 

  375. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822:21–33. doi:10.1016/j.bbadis.2010.12.014.

    Article  CAS  PubMed  Google Scholar 

  376. Valent P, Bettelheim P. Cell surface structures on human basophils and mast cells: biochemical and functional characterization. Adv Immunol. 1992;52:333–423.

    Article  CAS  PubMed  Google Scholar 

  377. Valent P, Schernthaner GH, Sperr WR, Fritsch G, Agis H, Willheim M, Buhring HJ, Orfao A, Escribano L. Variable expression of activation-linked surface antigens on human mast cells in health and disease. Immunol Rev. 2001;179:74–81.

    Article  CAS  PubMed  Google Scholar 

  378. Schwartz LB. The mast cell. In: Kaplan AP, editor. Allergy, vol. 1. Edingurgh: Churchil Livingston; 1985. p. 53–92.

    Google Scholar 

  379. Tomita M, Matsuzaki Y, Onitsuka T. Correlation between mast cells and survival rates in patients with pulmonary adenocarcinoma. Lung Cancer. 1999;26:103–8.

    Article  CAS  PubMed  Google Scholar 

  380. Brightling CE, Bradding P, Pavord ID, Wardlaw AJ. New insights into the role of the mast cell in asthma. Clin Exp Allergy. 2003;33:550–6.

    Article  CAS  PubMed  Google Scholar 

  381. Renauld J-C. New insights into the role of cytokines in asthma. J Clin Pathol. 2001;54:577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Kelley JL, Chi DS, Abou-Auda W, Smith JK, Krishnaswamy G. The molecular role of mast cells in atherosclerotic cardiovascular disease. Mol Med Today. 2000;6:304–8.

    Article  CAS  PubMed  Google Scholar 

  383. Barcante JMP, Barcante TA, Peconick AP, Pereira LJ, Lima WS. Parasitic infections and inflammatory diseases. In: Khatami M, editor. Inflammation, chronic diseases and cancer. Cell and molecular biology, immunology and clinical bases. Rijeka: InTech; 2012. p. 205–18.

    Google Scholar 

  384. Le Meur Y, Tesch GH, Hill PA, Mu W, Foti R, Nikolic-Paterson DJ, Atkins RC. Macrophage accumulation at a site of renal inflammation is dependent on the M-CSF/c-fms pathway. J Leukocyte Biol. 2002;72:530–7.

    PubMed  Google Scholar 

  385. Lambrecht BN, Hammad H. Death at the airway epithelium in asthma. Cell Res. 2013;23:588–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Khatami M, Donnelly JJ, John T, Rockey JH. Vernal conjunctivitis. Model studies in guinea pigs immunized topically with fluoresceinyl ovalbumin. Arch Ophthalmol. 1984;102:1683–8.

    Article  CAS  PubMed  Google Scholar 

  387. Khatami M, Donnelly JJ, Rockey JH. Induction and down-regulation of conjunctival type-1 hypersensitivity reactions in guinea pigs sensitized topically with fluoresceinyl ovalbumin. Ophthalmic Res. 1985;17:139–47.

    Article  CAS  PubMed  Google Scholar 

  388. El-Malky M, Maruyama H, Hirabayashi Y, Shimada S, Yoshida A, Amano T, et al. Intraepithelial infiltration of eosinophils and their contribution to the elimination of adult intestinal nematode, Strongyloides venezuelensis in mice. Parasitol Int. 2003;52:71–910.

    Article  PubMed  Google Scholar 

  389. Austen KF, Boyce JA. Mast cell lineage development and phenotypic regulation. Leuk Res. 2001;25:511–8.

    Article  CAS  PubMed  Google Scholar 

  390. Tobin MJ. Chronic obstructive disease, pollution, pulmonary vascular disease, transplantation, pleural disease, and lung cancer. Am J Respir Crit Care Med. 2000;164:1789.

    Article  Google Scholar 

  391. Galli SJ, Maurer M, Lantz CS. Mast cells as sentinels of innate immunity. Curr Opin Immunol. 1999;11:53–9.

    Article  CAS  PubMed  Google Scholar 

  392. Galli SJ. Biology of disease: new insights into ‘the riddle of mast cells’; microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab Investig. 1990;62:5–33.

    CAS  PubMed  Google Scholar 

  393. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12:1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Walls AF, Roberts JA, Godfrey RC, Church MK, Holgate ST. Histochemical heterogeneity of human mast cells: disease-related differences in mast cell subsets recovered by bronchoalveolar lavage. Intl Arch Allergy Appl Immunol. 1990;92:233–41.

    Article  CAS  Google Scholar 

  395. Burnet FM. The probable relationship of some or all mast cells to the T-cell system. Cell Immunol. 1977;30:358–60.

    Article  CAS  PubMed  Google Scholar 

  396. Palomares O. The role of regulatory T cells in IgE-mediated food allergy. J Investig Allergol Clin Immunol. 2013;23(6):371–82. quiz 2 p preceding 382

    CAS  PubMed  Google Scholar 

  397. Helleboid L, Khatami M, Wei Z-G, Rockey JH. Histamine and prostacyclin: primary and secondary release in allergic conjunctivitis. Invest Ophthalmol Vis Sci. 1991;32:2281–9.

    CAS  PubMed  Google Scholar 

  398. Rockey JH, Donnelly JJ, John T, Khatami M, Schwartzman RM, Stromberg BE, Bianco AE, Soulsby EJL. IgE antibodies in ocular immunopathology. In: O’Conner GR, Chandler JW, editors. Advances in immunology and immunopathology of the eye. New York: Masson; 1985. p. 199–202.

    Google Scholar 

  399. Ribatti D, Nico B, Ranieri G, Specchia G, Vacca A. The role of angiogenesis in human non-hodgkin lymphomas. Neoplasia. 2013;15:231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Ribati D. The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res. 2015; doi:10.1016/j.yexcr.2015.05.013. pii: S0014–4827(15)00193–7. [Epub ahead of print]

  401. Ribatti D. Mast cells as therapeutic target in cancer. Eur J Pharmacol. 2015; doi:10.1016/j.ejphar.2015.02.056. pii: S0014-2999(15)00356-8. [Epub ahead of print]

  402. Ribatti D, Ranieri G. Tryptase, a novel angiogenic factor stored in mast cell graules. Exp Cell Res. 2015;332:157–62. doi:10.1016/j.yexcr.2014.11.014. Epub 2014 Dec 3

    Article  CAS  PubMed  Google Scholar 

  403. Vesterinen E, Oukkala E, Timonen T, Aromaa A. Cancer incident among 78000 asmatic patients. Intl J Epidemiol. 1993;22:976–82.

    Article  CAS  Google Scholar 

  404. Huovinen E, Kapiro J, Vesterinen E, Koshenvuo M. Mortality of adults with asthma: a prospective cohort study. Thorax. 1997;52:49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Tomita M, Matsuzaki Y, Edagawa M, Shimizu T, Hara M, Onitsuka T. Distribution of mast cells in mediastinal lymph nodes from lung cancer patients. World J Surg Oncol. 2003;1:25.

    Article  PubMed  PubMed Central  Google Scholar 

  406. Khatami M. Cyclooxygenase inhibitor ketorolac or mast cell stabilizers: immunological challenges in cancer therapy. Clin Cancer Res. 2005;11:1349–51.

    CAS  PubMed  Google Scholar 

  407. Medhurst SJ, Collins SD, Billinton A, Bingham S, Dalziel RG, Brass A, Roberts JC, Medhurst AD, Chessell IP. Novel histamine H3 receptor antagonists GSK189254 and GSK334429 are efficacious in surgically-induced and virally-induced rat models of neuropathic pain. Pain. 2008;138:61–9. doi:10.1016/j.pain.2007.11.006. Epub 2007 Dec 31

    Article  CAS  PubMed  Google Scholar 

  408. Ammendola M, Marech I, Sammarco G, Zuccalà V, Luposella M, Zizzo N, et al. Infiltrating mast cells correlate with angiogenesis in bone metastases from gastric cancer patients. Int J Mol Sci. 2015;16(2):3237–50. doi:10.3390/ijms160232372015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Baylin SB, Abeloff MD, Wieman KC, Tomford JW, Ettinger DS. Elevated histaminase (diaminase) activity in small-cell carcinoma of the lung. N Engl J Med. 1975;293:1286–90.

    Article  CAS  PubMed  Google Scholar 

  410. Dvorak A, Seder R, Paul W, Morgan E, Galli S. Effects of interleukin-3 with or without the c-kit ligand, stem cell factor, on the survival and cytoplasmic granule formation of mouse basophils and mast cells in vitro. Am J Pathol. 1994;11:160–70.

    Google Scholar 

  411. Bijanzadeh M, Ramachandra NB, Mahesh PA, Savitha MR, Vijayakumar GS, Kumar P, et al. Soluble intercellular adhesion molecule-1 and E-selectin in patients with asthma exacerbation. Lung. 2009;187:315–20.

    Article  CAS  PubMed  Google Scholar 

  412. Bot I, de Jager SC, Zernecke A, Lindstedt KA, van Berkel TJ, Weber C, Biessen EA. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation. 2007;115:2516–25.

    Article  CAS  PubMed  Google Scholar 

  413. Chatterjee V, Gashev AA. Aging-associated shifts in functional status of mast cells located by adult and aged mesenteric lymphatic vessels. Am J Physiol Heart Circ Physiol. 2012;303:H693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Grimbaldeston MA, Metz M, Yu M, Tsai M, Galli SJ. Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Curr Opinion Immunol. 2006;18:751–60.

    Article  CAS  Google Scholar 

  415. Gunin AG, Kornilov NK, Vasilieva OV, Petrov VV. Age-related changes in proliferation, the numbers of mast cells, eosinophils, and cd45-positive cells in human dermis. J Gerontol Biol Sci Med Sci. 2011;66:385–92.

    Article  CAS  Google Scholar 

  416. Okayama Y, Benyon RC, Rees PH, Lowman MA, Hillier K, Church MK. Inhibition profiles of sodium cromoglycate and nedocromil sodium on mediator release from mast cells of human skin, lung, tonsil, adenoid and intestine. Clin Exp Allergy. 1992;22:401–9.

    Article  CAS  PubMed  Google Scholar 

  417. Gong J, Yang NS, Croft M, Weng IC, Sun L, Liu FT, Chen SS. The antigen presentation function of bone marrow-derived mast cells is spatiotemporally restricted to a subset expressing high levels of cell surface FcepsilonRI and MHC II. BMC Immunol. 2010;11:34. doi:10.1186/1471-2172-11-34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  418. Cundell DR, Mickle KE. Developing the perfect antihistamine for use in allergic conditions: a voyage in H1 selectivity. eBook, Frontiers in Clinical Drug Research-Anti Allergy Agents. 2016.

    Google Scholar 

  419. Agrawal A, Agrawal S, Gupta S. Dendritic cells in human aging. Exp Gerontol. 2007;42:421–6.

    Article  CAS  PubMed  Google Scholar 

  420. Gosset P, Bureau F, Angeli V, Pichavant M, Faveeuw C, Tonnel AB, Trottein F. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J Immunol. 2003;170:4943–52.

    Article  CAS  PubMed  Google Scholar 

  421. Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M, et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med. 1998;188:2163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Spies B, Hochrein H, Vabulas M, Huster K, Busch DH, Schmitz F, Heit A, Wagner H. Vaccination with plasmid DNA activates dendritic cells via toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J Immunol. 2003;171:5908–12.

    Article  CAS  PubMed  Google Scholar 

  423. Khatami M. Safety concerns and hidden agenda behind HPV vaccines: another generation of drug-dependent society? Clin Trans Med. 2016;5(1):46. Epub 2016 Dec 5

    Article  Google Scholar 

  424. Lambrecht BN, Hammad H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol. 2012;30:243–70.

    Article  CAS  PubMed  Google Scholar 

  425. Bobryshev YV. Dendritic cells and their role in atherogenesis. Lab Investig. 2010;90:970–84.

    Article  PubMed  Google Scholar 

  426. Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I. Activation of lysosomal function during dendritic cell maturation. Science. 2003;299:1400–3.

    Article  CAS  PubMed  Google Scholar 

  427. Uyemura K, Castle SC, Makinodan T. The frail elderly: role of dendritic cells in the susceptibility of infection. Mech Ageing Dev. 2002;123:955–62.

    Article  CAS  PubMed  Google Scholar 

  428. Romagnoli G, Nisini R, Chiani P, Mariotti S, Teloni R, Cassone A, Torosantucci A. The interaction of human dendritic cells with yeast and germ-tube forms of Candida Albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J Leukoc Biol. 2004;75:117–26. Epub 2003 Oct 2

    Article  CAS  PubMed  Google Scholar 

  429. Reid SD, Penna G, Adorini L. The control of T cell responses by dendritic cell subsets. Curr Opin Immunol. 2000;12:114–21.

    Article  CAS  PubMed  Google Scholar 

  430. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med. 2002;195:327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Jonuleit H, Schmitt E, Steinbrink K, Henk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol. 2001;22:394–400.

    Article  CAS  PubMed  Google Scholar 

  432. Paschen A, Dittmar KE, Grenningloh R, Rohde M, Schadendorf D, Domann E, Chakraborty T, Weiss S. Human dendritic cells infected by Listeria monocytogenes: induction of maturation, requirements for phagolysosomal escape and antigen presentation capacity Eur. J Immunol. 2000;30:3447–56.

    CAS  Google Scholar 

  433. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yhia S, Briere F, Zlotni A, Lebecque S, Caux C. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med. 1998;188:373–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Hirsch S, Austyn JM, Gordon S. Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture. J Exp Med. 1981;11:713–25. doi:10.1084/jem.154.3.713.

    Article  Google Scholar 

  435. Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL. Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 1996;156:4457–65.

    CAS  PubMed  Google Scholar 

  436. Montovani A, Ming WJ, Balotta C, Abdeljalil B, Bottazzi B. Origin and regulation of tumor-associated macrophages: the role of tumor-derived chemotactic factor. Biochim Biophys Acta. 1986;865:59–67.

    Google Scholar 

  437. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2005;5:953–64. doi:10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  438. Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL, Miller YI. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res. 2009;104:210–8.

    Article  CAS  PubMed  Google Scholar 

  439. Mantovani A, Schioppa T, Biswas SK, Marchesi F, Allavena P, Sica A. Tumor-associated macrophages and dendritic cells as prototypic type II polarized myeloid populations. Tumori. 2003;89(5):459–68.

    CAS  PubMed  Google Scholar 

  440. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.

    Article  CAS  PubMed  Google Scholar 

  441. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL. Loss of phospholipids asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cell by macrophages and fibroblasts. J Biol Chem. 2001;276:1071–7.

    Article  CAS  PubMed  Google Scholar 

  442. Al-Sarireh B, Eremin O. Tumour-associated macrophages (TAMs): disordered function, immune suppression and progressive tumour growth. J R Coll Surg Edinb. 2000;45:1–16.

    CAS  PubMed  Google Scholar 

  443. Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJP, Puleston DJ, Shenderov K, Watson AS, Veldhoen M, Phadwal K, Cerundolo V, Simon AK. Autophagy controls acquisition of aging features in macrophages. J Innate Immun. 2015;7:375–91. doi:10.1159/000370112.

    Article  CAS  PubMed  Google Scholar 

  444. Weitzman SA, Gordon LI. Inflammation and cancer: role of phagocytic-generated oxidants in carcinogenesis. Blood. 1990;76:655–63.

    CAS  PubMed  Google Scholar 

  445. Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol. 2002;20:395–425.

    Article  CAS  PubMed  Google Scholar 

  446. Zhu L, Zhao Q, Yang T, Ding W, Zhao Y. Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 2015;34:82–100.

    Article  PubMed  CAS  Google Scholar 

  447. Herbeuval JP, Lelievre E, Lambert C, Dy M, Genin C. Recruitment of STAT3 for production of IL-10 by colon carcinoma cells induced by macrophage-derived IL-6. J Immunol. 2004;172(7):4630–6.

    Article  CAS  PubMed  Google Scholar 

  448. Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol. 1992;140:301–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  449. Barton GM. A calculated response: control of inflammation by the innate immune system. J Clin Invest. 2008;118:413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Schumann J. The impact of macrophage membrane lipid composition on innate immune response mechanisms. In: Khatami M, editor. Inflammation, chronic diseases and cancer; cell and molecular biology, immunology and clinical bases. Rijeka: Intech Publishing; 2012. p. 31–52.

    Google Scholar 

  451. Guilliams M, Lambrecht BN, Hammad H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 2013;6:464–73.

    Article  CAS  PubMed  Google Scholar 

  452. Folkman J. Angiogenesis. Ann Rev Med. 2006;57:1–18.

    Article  CAS  PubMed  Google Scholar 

  453. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111:5271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Saghiri MA, Asatourian A, Orangi J, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis-Part I: N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol. 2015; doi:10.1016/j.critrevonc.2015.05.010. pii: S1040-8428(15)00099-2. [Epub ahead of print]

  455. Benito-Martin A, Di Giannatale A, Ceder S, Peinado H. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol. 2015;24 doi:10.3389/fimmu.2015.00066.

  456. Oliver G. Lymphatic vasculature development. Nat Rev Immunol. 2004;4:35–45.

    Article  CAS  PubMed  Google Scholar 

  457. Ozerdem U, Stallcup WB. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis. 2003;6:241–9. doi:10.1023/b:agen.0000021401.58039.a9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Jackson SP. The growing complexity of platelet aggregation. Blood. 2007;109:5087–95.

    Article  CAS  PubMed  Google Scholar 

  459. Williamson K, Stringer SE, Alexander MY. Endothelial progenitor cells enter the aging arena. Front Physiol. 2012;3:30. doi:10.3389/fphys.2012.00030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Ribeiro AL, Okamoto OK. Combined effects of pericytes in the tumor microenvironment. Stem Cells Int. 2015;2015:868475.

    Article  PubMed  PubMed Central  Google Scholar 

  461. Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 2007;26:281–90.

    Article  CAS  PubMed  Google Scholar 

  462. Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci. 2008;13:3532–48.

    PubMed  Google Scholar 

  463. Feuerstein G, Rabinovici R, Leor J, Winkler JD, Vonhof S. Platelet-activating factor and cardiac diseases: therapeutic potential for PAF inhibitors. J Lipid Mediat Cell Signal. 1997;15:255–84.

    Article  CAS  PubMed  Google Scholar 

  464. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of toll-like receptor molecules on human platelets. Immunol Cell Biol. 2005;83:196–8.

    Article  CAS  PubMed  Google Scholar 

  465. Andonegui G, Kerfoot SM, YK MN, Ebbert KV, Patel KD, Kubes P. Platelets express functional toll-like receptor-4. Blood. 2005;106:2417–23.

    Article  CAS  PubMed  Google Scholar 

  466. Fong KP, Barry C, Tran AN, Traxler EA, Wannemacher KM, Tang HY, Speicher KD, Blair IA, Speicher DW, Grosser T, Brass LF. Deciphering the human platelet sheddome. Blood. 2011;117:e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  467. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91:4–15.

    CAS  PubMed  Google Scholar 

  468. Garraud O, Hamzeh-Cognasse H, Cognasse F. Platelets and cytokines: how and why? Transfus Clin Biol. 2012;19:104–8.

    Article  CAS  PubMed  Google Scholar 

  469. Shahabuddin S, Ponath P, Schleimer RP. Migration of eosinophils across endothelial cell monolayers: interactions among IL-5, endothelial-activating cytokines, and C-C chemokines. J Immunol. 2000;164:3847–54.

    Article  CAS  PubMed  Google Scholar 

  470. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146:1029–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  471. Mabeta P, Pepper MS. Hemangiomas – current therapeutic strategies. Int J Dev Biol. 2011;55(4–5):431–7. doi:10.1387/ijdb.103221pm.

    Article  CAS  PubMed  Google Scholar 

  472. Naito AT, Sumida T, Nomura S, Liu ML, Higo T, Nakagawa A, et al. Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell. 2012;149:1298–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Pathak AP, Hochfeld WE, Goodman SL, Pepper MS. Circulating and imaging markers for angiogenesis. 2008;11:321–35.

    CAS  PubMed  Google Scholar 

  474. Wilson JF. Angiogenesis therapy moves beyond cancer: Ann Intern Med. 2004;141:165–8.

    PubMed  Google Scholar 

  475. D’Alessio P. Aging and the endothelium. Exp Gerontol. 2004;39:165–71.

    Article  PubMed  CAS  Google Scholar 

  476. Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon J-M, Cognasse F. Bench-to-bedside review: platelets and active immune functions – new clues for immunopathology? Critical Care. 2013;17:–236. doi:10.1186/cc12716.

  477. Saze Z, Schuler PJ, Hong C-S, Cheng D, Jackson EK, Whiteside TL. Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood. 2013;122:9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  478. Deaglio S, Dwyer K, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  479. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC, et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood. 2004;104:3986–92.

    Article  CAS  PubMed  Google Scholar 

  480. Eltzschig HK. Adenosine: an old drug newly discovered. Anesthesiology. 2009;111:904–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Roberts V, Stagg J, Dwyer KM. The role of ectonucleotidases CD39 and CD73 and adenosine signaling in solid organ transplantation. Front Immunol. 2014;5:64. eCollection 2014

    PubMed  PubMed Central  Google Scholar 

  482. Karshovska E, Weber C, Von Hundelshausen P. Platelet chemokines in health and disease. Thromb Haemost. 2013;110:894–902.

    Article  CAS  PubMed  Google Scholar 

  483. Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA, Krantz ID. Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation. 2004;109:1354–8.

    Article  PubMed  Google Scholar 

  484. Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 2001;61:1207–13.

    CAS  PubMed  Google Scholar 

  485. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 2001;280:C1358–66.

    Article  CAS  PubMed  Google Scholar 

  486. Veale DJ, Maple C. Cell adhesion molecules in rheumatoid arthritis. Drugs Aging. 1996;9:87–92.

    Article  CAS  PubMed  Google Scholar 

  487. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–12.

    Article  CAS  PubMed  Google Scholar 

  488. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269:23757–63.

    CAS  PubMed  Google Scholar 

  489. George J, Goldstein E, Abashidze S, Deutsch V, Shmilovich H, Finkelste A, Herz I, Miller H, Keren G. Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J. 2004;25:1003–8.

    Article  CAS  PubMed  Google Scholar 

  490. Harris AL, Zhang H, Moghaddam A, Fox S, Scott P, Pattison A, Gatter K, Stratford L, Bicknell R. Breast cancer angiogenesis- new approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res. 1996;38:97–108.

    Article  CAS  Google Scholar 

  491. Napoli C, Ignarro LJ. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res. 2009;32:1103–8. doi:10.1007/s12272-009-1801-1. Epub 2009.

    Article  CAS  PubMed  Google Scholar 

  492. Napoli C, Hayashi T, Cacciatore F, Casamassimi A, Casini C, Al-Omran M, Ignarro LJ. Endothelial progenitor cells as therapeutic agents in the microcirculation: an update. Atherosclerosis. 2011;215:9–22.

    Article  CAS  PubMed  Google Scholar 

  493. Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol. 2003;196:2–8.

    Article  CAS  PubMed  Google Scholar 

  494. Lamoreaux WJ, Fitzgerald ME, Reiner A, Hasty KA, Charles ST. Vascular endothelial growth factor increases release of gelatinase a and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res. 1998;55:29–42.

    Article  CAS  PubMed  Google Scholar 

  495. Meldrum DR. Tumor necrosis factor in the heart. Am J Phys. 1998;274:R577–95.

    Article  CAS  Google Scholar 

  496. Gille J, Swerlick RA, Lawley TJ, Caughman SW. Differential regulation of vascular cell adhesion molecule-1 gene transcription by tumor necrosis factor alpha and interleukin-1 alpha in dermal microvascular endothelial cells. Blood. 1996;87:211–7.

    CAS  PubMed  Google Scholar 

  497. Lee KH, Lawley TJ, Xu YL, Swerlick RA. VCAM-1-, ELAM-1-, and ICAM-1-independent adhesion of melanoma cells to cultured human dermal microvascular endothelial cells. J Invest Dermatol. 1992;98:79–85.

    Article  CAS  PubMed  Google Scholar 

  498. Zdrojewicz Z, Pachura E, Pachura P. The thymus: a forgotten, but very important organ. Adv Clin Exp Med. 2016;25(2):369–75. doi:10.17219/acem/58802.

    Article  PubMed  Google Scholar 

  499. Chaudhry MS, Velardi E, Dudakov JA, van den Brink MR. Thymus: the next (re)generation. Immunol Rev. 2016;271(1):56–71. doi:10.1111/imr.12418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  500. Sepp NT, Gille J, Li LJ, Caughman SW, Lawley TJ, Swerlick RA. A factor in human plasma permits persistent expression of E-selectin by human endothelial cells. J Invest Dermatol. 1994;102:445–50.

    Article  CAS  PubMed  Google Scholar 

  501. Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa AT. The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res. 2010;59:897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  502. LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM, Ratner AJ. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. MBio. 2014;5:e01251–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  503. del Fresno C, Gomez-Garcia L, Caveda L, et al. Nitric oxide activates the expression of IRAK-M via the release of TNF-alpha in human monocytes. Nitric Oxide. 2004;10:213–20.

    Article  PubMed  CAS  Google Scholar 

  504. Weinstein SL, Gold MR, DeFranco AL. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci. 1991;88:4148–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  505. Hawiger J, Hawiger A, Timmons S. Endotoxin-sensitive membrane component of human platelets. Nature. 1975;256:125–7.

    Article  CAS  PubMed  Google Scholar 

  506. Keaney JF, Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol. 1996;271(Heart Circ. Physiol. 40):H2646–52.

    CAS  PubMed  Google Scholar 

  507. Chen ZS, Pohl J, Lawley TJ, Swerlick RA. Human microvascular endothelial cells adhere to thrombospondin-1 via an RGD/CSVTCG domain independent mechanism. J Invest Dermatol. 1996;106:215–20.

    Article  CAS  PubMed  Google Scholar 

  508. Swerlick RA, Lawley TJ. Role of microvascular endothelial cells in inflammation. J Invest Dermatol. 1993;100:111S–5S.

    Article  CAS  PubMed  Google Scholar 

  509. Olsen KR, Donald JA. Nervous control of circulation: the role of gasotransmitters, NO, CO and H2S. Acta Histochem. 2009;111:244–56.

    Article  CAS  Google Scholar 

  510. Giulivi C, Kato K, Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology. Am J Physiol Cell Physiol. 2006;291:C1225–31.

    Article  CAS  PubMed  Google Scholar 

  511. Taylor CT, Moncada S. Nitric oxide, cytochrome c oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol. 2010;30:643–7.

    Article  CAS  PubMed  Google Scholar 

  512. Siddiq A, Aminova LR, Ratan RR. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem Res. 2007;32:931–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology. 2009;24:97–106.

    Article  CAS  PubMed  Google Scholar 

  514. Inoue Y, Hatta Y, Takeuchi J, Kosugi S, Miura I. Successful treatment of refractory acute GVHD complicated by severe intestinal transplant-associated thrombotic microangiopathy using recombinant thrombomodulin. Thromb Res. 2011;127:603–4.

    Article  CAS  PubMed  Google Scholar 

  515. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B. Nitric oxide impairs normoxic degradation of HIF-1α by inhibition of prolyl hydroxylases. Mol Biol Cell. 2003;14:3470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  516. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li C-Y. Regulation of HIF-1α stability through S-nitrosylation. Mol Cell. 2007;26:63–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  517. Kim-Shapiro DB, Gladwin MT, Patel RP, Hogg N. The reaction between nitrite and hemoglobin: the role of nitrite in hemoglobin-mediated hypoxic vasodilation. J Inorg Biochem. 2005;99:237–46.

    Article  CAS  PubMed  Google Scholar 

  518. Pierucci M, Galati S, Valentino M, Di Matteo V, Benigno A, Pitruzzella A, Muscat R, Di Giovanni G. Nitric oxide modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. CNS Neurol Disord Drug Targets. 2011;10:777–91.

    Article  CAS  PubMed  Google Scholar 

  519. Amento EP, Ehsani N, Palmer H, Libby P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1991;11:1223–30.

    Article  CAS  Google Scholar 

  520. Li L, Moore PK. An overview of the biological significance of endogenous gases: new roles for old molecules. Biochem Soc Trans. 2007;35:1138–41.

    Article  CAS  PubMed  Google Scholar 

  521. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109–41.

    CAS  PubMed  Google Scholar 

  522. Meldrum DR, Gambone JC, Morris MA, Esposito K, Giugliano D, Ignarro LJ. Lifestyle and metabolic approaches to maximizing erectile and vascular health. Int J Impot Res. 2012;24:61–8. doi:10.1038/ijir.2011.51. Epub 2011 Nov 10

    Article  CAS  PubMed  Google Scholar 

  523. Fukuto JM, Ignarro LJ. In vivo aspects of nitric oxide (NO) chemistry: does peroxynitrite (OONO) play a major role in cytotoxicity? Acc Chem Res. 1997;30:149–52.

    Article  CAS  Google Scholar 

  524. Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJA. Free radical biology and medicine, it’s a gas, man. Am J Physiol Regulatory Int Com Physiol. 2006;291:491–511.

    Article  CAS  Google Scholar 

  525. Forman HJ, Fukuto J, Torres M. Redox signaling-chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol. 2004;287:C246–56.

    Article  CAS  PubMed  Google Scholar 

  526. Reiter RJ, Tan DX, Qi W, Manchester LC, Karbownik M, Calvo JR. Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Signals Recept. 2000;9:160–71.

    Article  CAS  PubMed  Google Scholar 

  527. Paolocci N, Jackson MI, Lopez BE, Miranda K, Tocchetti CG, Wink DA, Hobbs AJ, Fukuto JM. The pharmacology of nitroxyl (HNO) and its therapeutic potential: not just the janus face of NO. Pharmacol Ther. 2007;113:442–58.

    Article  CAS  PubMed  Google Scholar 

  528. Bickar D, Bonaventura C, Bonaventura J. Carbon monoxide-driven reduction of ferric heme and heme proteins. J Biol Chem. 1984;259:10777–83.

    CAS  PubMed  Google Scholar 

  529. Valentine WN, Toohey JI, Paglia DE, Nakatani M, Brockway RA. Modification of erythrocyte enzyme activities by persulfides and methanethiol: possible regulatory role. Proc Natl Acad Sci U S A. 1987;84:1394–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  530. Taoka S, Banerjee R. Characterization of NO binding to human cystathionine β-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem. 2001;87:245–51.

    Article  CAS  PubMed  Google Scholar 

  531. Lahoute C, Herbin O, Mallat Z, Tedgui A. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol. 2011;8:348–58.

    Article  CAS  PubMed  Google Scholar 

  532. Berthet J, Damien P, Hamzeh-Cognasse H, Arthaud CA, Eyraud MA, Zeni F, Pozzetto B, McNicol A, Garraud O, Cognasse F. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol. 2012;145:189–200.

    Article  CAS  PubMed  Google Scholar 

  533. Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections – complex interactions with bacteria. Front Immunol. 2015; doi:10.3389/fimmu.2015.00082.

  534. Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon JM, Cognasse F. Bench-to-bedside review: platelets and active immune functions – new clues for immunopathology? Crit Care. 2013;17:236. doi:10.1186/cc12716.

    Article  PubMed  PubMed Central  Google Scholar 

  535. Haaland HD, Holmsen H. Potentiation by adrenaline of agonist-induced responses in normal human platelets in vitro. Platelets. 2011;22:328–37.

    Article  CAS  PubMed  Google Scholar 

  536. Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaII bbeta3 outside-in integrin signaling in human platelets. Blood. 2008;112:2780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  537. Fracchia KM, Walsh CM. Metabolic mysteries of the inflammatory response: T cell polarization and plasticity. Intl Rev of Immunol. 2015;34:3–18.

    Article  CAS  Google Scholar 

  538. Gagliani N, Hu B, Huber S, Elinav E, Flavell RA. The fire within: microbes inflame tumors. Cell. 2014;157:776–83. doi:10.1016/j.cell.2014.03.006.

    Article  CAS  PubMed  Google Scholar 

  539. Burnham V, Thornton J. Luteinizing Hormone as a key player in the cognitive decline of Alzheimer’s disease. Horm Behav. 2015; doi:10.1016/j.yhbeh.2015.05.010. pii: S0018-506X(15)00091-4. [Epub ahead of print]

  540. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 2014;10(Suppl):S76–83. doi:10.1016/j.jalz.2013.12.010.

    Article  PubMed  Google Scholar 

  541. Searcy DG, Whitehead JP, Maroney MJ. Interaction of Cu, Zn superoxide dismutase with hydrogen sulfide. Arch Biochem Biophys. 1995;318:251–63.

    Article  CAS  PubMed  Google Scholar 

  542. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.

    Article  CAS  PubMed  Google Scholar 

  543. Smaili SS, Pereira GJ, Costa MM, Rocha KK, Rodrigues L, do Carmo LG, Hirata H, Hsu YT. The role of calcium stores in apoptosis and autophagy. Curr Mol Med. 2013;13:252–65.

    Article  CAS  PubMed  Google Scholar 

  544. Hauser CJ, Sursal T, Rodriguez EK, Appleton PT, Zhang Q, Itagaki K. Mitochondrial damage associated molecular patterns from femoral reamings activate neutrophils through formyl peptide receptors and P44/42 MAP kinase. J Orthop Trauma. 2010;24:534–8. doi:10.1097/BOT.0b013e3181ec4991.

    Article  PubMed  PubMed Central  Google Scholar 

  545. Shirihai OS, Song M, Dorn GW 2nd. How mitochondrial dynamism orchestrates mitophagy. Circ Res. 2015;116:1835–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  546. Durcan TM, Fon EA. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015;29:989–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  547. Dela F, Helge JW. Insulin resistance and mitochondrial function in skeletal muscle. Int J Biochem Cell Biol. 2013;45:11–5.

    Article  CAS  PubMed  Google Scholar 

  548. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14:58–74. doi:10.1038/nrd4467.

    Article  CAS  PubMed  Google Scholar 

  549. Tintignac LA, Brenner HR, Rüegg MA. Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol Rev. 2015;95:809–52. doi:10.1152/physrev.00033.2014.

    Article  CAS  PubMed  Google Scholar 

  550. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, Chen LK, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43:748–59.

    Article  PubMed  PubMed Central  Google Scholar 

  551. Denison HJ, Cooper C, Sayer AA, Robinson SM. Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging. 2015;10:859–69. doi:10.2147/CIA.S55842. eCollection 2015

    PubMed  PubMed Central  Google Scholar 

  552. Sayer AA, Dennison EM, Syddall HE, Gilbody HJ, Phillips DI, Cooper C. Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg? Diabetes Care. 2005;28:2541–2.

    Article  PubMed  Google Scholar 

  553. Batsis JA, Mackenzie TA, Barre LK, Lopez-Jimenez F, Bartels SJ. Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur J Clin Nutr. 2014;68:1001–7.

    Article  CAS  PubMed  Google Scholar 

  554. Yang W, Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 2010;8(12):e1000556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  555. Salminen A, Kaarniranta K, Kauppinen A. Inflammaging disturbed interplay between autophagy and inflammasomes. Aging. 2012;4:166–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  556. Oláhová M, Taylor SR, Khazaipoul S, et al. A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance. Proc Natl Acad Sci. 2008;105:19839–44.

    Article  PubMed  PubMed Central  Google Scholar 

  557. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.

    CAS  PubMed  Google Scholar 

  558. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  559. Warburg O. Ueber den stoffwechsel der tumoren. London: Constable; 1930.

    Google Scholar 

  560. Warburg O. Iron, the oxygen-carrier of respiration-ferment. Science. 1925;61:575–82.

    Article  CAS  PubMed  Google Scholar 

  561. Palsson-McDermott EM, O’Neill LAJ. The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays. 2013;35:965–73.

    Article  CAS  PubMed  Google Scholar 

  562. Racker E. Bioenergetics and the problem of tumor growth. Am Sci. 1972;60:56–63.

    CAS  PubMed  Google Scholar 

  563. Lionaki E, Markaki M, Palikaras K, Tavernarakis N. Mitochondria, autophagy and age-associated neurodegenerative diseases: new insights into a complex interplay. Biochim Biophys Acta. 2015; doi:10.1016/j.bbabio.2015.04.010. pii: S0005-2728 (15)00068-7. [Epub ahead of print] Review

  564. Shen HM, Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci. 2014;39:61–71. http://dx.doi.org/10.1016/j.tibs.2013.12.001 24369758

    Article  CAS  PubMed  Google Scholar 

  565. Lu H, Li G, Liu L, Feng L, Wang X, Jin H. Regulation and function of mitophagy in development and cancer. Autophagy. 2013;9:1720–36. doi:10.4161/auto.26550. Epub 2013 Sep 26

    Article  CAS  PubMed  Google Scholar 

  566. Kongara S, Karantza V. The interplay between autophagy and ROS in tumorigenesis. Front Oncol. 2012;2:171. doi:10.3389/fonc.2012.00171. eCollection 2012

    Article  PubMed  PubMed Central  Google Scholar 

  567. Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol. 2013;305:H459–76. doi:10.1152/ajpheart.00936.2012. Epub 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  568. Höhn A, Grune T. Lipofuscin: formation, effects and role of macroautophagy. Redox Biol. 2013;11:140–4.

    Article  CAS  Google Scholar 

  569. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kimmelman A, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34:856–80. doi:10.15252/embj.201490784. Epub 2015 Feb 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  570. Sasaki K, Yoshida H. Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem. 2015;157:185–95. doi:10.1093/jb/mvv010. Epub 2015 Feb 4

    Article  CAS  PubMed  Google Scholar 

  571. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun. 2013;4:2300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  572. Vessoni AT, Filippi-Chiela EC, Menck CF, Lenz G. Autophagy and genomic integrity. Cell Death Differ. 2013;20:1444–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  573. Sridhar S, Botbol Y, Macian F, Cuervo AM. Autophagy and disease: always two sides to a problem. J Pathol. 2012;226:255–73.

    Article  PubMed  Google Scholar 

  574. Pua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol. 2009;182:4046–55.

    Article  CAS  PubMed  Google Scholar 

  575. Roberts EW, Deonarine A, Jones JO, Denton AE, Feig C, Lyons SK, et al. Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med. 2013;210:1137–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  576. Iverson SL, Orrenius S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys. 2004;423:37–46.

    Article  CAS  PubMed  Google Scholar 

  577. Mangalmurti NS, Chatterjee S, Cheng G, Andersen E, Mohammed A, Siegel DL, Schmidt AM, Albelda SM, Lee JS. Advanced glycation end products on stored red blood cells increase endothelial reactive oxygen species generation through interaction with receptor for advanced glycation end products. Transfusion. 2010;50:2353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  578. Crabtree HG. Observations on the carbohydrate metabolism of tumours. Biochem J. 1929;23(3):536–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  579. Krebs H. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 1972;8:1–34.

    CAS  PubMed  Google Scholar 

  580. Buchanan BB, Arnon DI. A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res. 1990;24:47–53.

    Article  CAS  Google Scholar 

  581. Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66:8927–30.

    Article  CAS  PubMed  Google Scholar 

  582. Edens WA, Sharling L, Cheng G, et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol. 2001;154:879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  583. Wang W, Fang H, Groom L, et al. Superoxide flashes in single mitochondria. Cell. 2008;134:279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  584. Kaminskyy V, Zhivotovsky B. Proteases in autophagy. Biochim Biophys Acta. 2012;1824:44–50.

    Article  CAS  PubMed  Google Scholar 

  585. Novikoff AB, Essner E. Cytolysomes and mitochondrial degeneration. J Cell Biol. 1962;15:140–6. http://dx.doi.org/10.1083/jcb.15.1.140 13939127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  586. Young AR, Narita M, Narita M. Cell senescence as both a dynamic and a static phenotype. Methods Mol Biol. 2013;965:1–13. doi:10.1007/978-1-62703-239-1_1.

    Article  CAS  PubMed  Google Scholar 

  587. Ayaz O, Howlett SE. Testosterone modulates cardiac contraction and calcium homeostasis: cellular and molecular mechanisms. Biol Sex Differ. 2015;6:9. doi:10.1186/s13293-015-0027-9. eCollection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  588. Morimoto RI, Driessen AJ, Hegde RS, Langer T. The life of proteins: the good, the mostly good and the ugly. Nat Struct Mol Biol. 2011;18:1–4. doi:10.1038/nsmb0111-1.

    Article  CAS  PubMed  Google Scholar 

  589. Ycaza Herrera A, Mather M. Actions and interactions of estradiol and glucocorticoids in cognition and the brain: implications for aging women. Neurosci Biobehav Rev. 2015;55:36–52. doi:10.1016/j.neubiorev.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  590. Halil M, Cemal Kizilarslanoglu M, Emin Kuyumcu M, Yesil Y, Cruz Jentoft AJ. Cognitive aspects of frailty: mechanisms behind the link between frailty and cognitive impairment. J Nutr Health Aging. 2015;19:276–83. doi:10.1007/s12603-014-0535-z.

    Article  CAS  PubMed  Google Scholar 

  591. Plas DR, Thompson CB. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab. 2002;13:75–8.

    Article  PubMed  Google Scholar 

  592. Meng R, Tang HY, Westfall J, et al. Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung cancer cells. PLoS One. 2011;6:e27547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  593. De Loof A, Marchal E, Rivera-Perez C, Noriega FG, Schoofs L. Farnesol-like endogenous sesquiterpenoids in vertebrates: the probable but overlooked functional “inbrome” anti-aging counterpart of juvenile hormone of insects? Front Endocrinol. 2015;5(Article 222):1–10.

    Google Scholar 

  594. Davis FB, Lin HY, Shih A, et al. Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res. 2006;66:7270–5.

    Article  CAS  PubMed  Google Scholar 

  595. Farwell AP, Dubord-Tomasetti SA, Pietrzykowski AZ, Stachelek SJ, Leonard JL. Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3, 3′, 5′-triiodothyronine. Brain Res Dev Brain Res. 2005;154:121–35.

    Article  CAS  PubMed  Google Scholar 

  596. Rutkowski K, Sowa P, Rutkowska-Talipska J, Kuryliszyn-Moskal A, Rutkowski R. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs. 2014;74:1195–207. doi:10.1007/s40265-014-0259-8.

    Article  CAS  PubMed  Google Scholar 

  597. Cohen K, Ellis M, Khoury S, Davis PJ, Hercbergs A, Ashur-Fabian O. Thyroid hormone is a MAPK-dependent growth factors for human myeloma cells acting via αvβ3 integrin. Mol Cancer Res. 2011;9:1385–94.

    Article  CAS  PubMed  Google Scholar 

  598. Barbieri M, Bonafè M, Franceschi C, Paolisso G. Insulin/IGFI-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab. 2003;285:E1064–71.

    Article  CAS  PubMed  Google Scholar 

  599. Gust DA, Wilson ME, Stocker T, Conrad S, Plotsky PM, Gordon TP. Activity of the hypothalamic-pituitary-adrenal axis is altered by aging and exposure to social stress in female rhesus monkeys. J Clin Endocronol Metab. 2000;85:2556–63.

    CAS  Google Scholar 

  600. Attanasio R, Gust DA, Wilson ME, Meeker T, Gordon TP. Immunomodulatory effects of estrogen and progesterone replacement in a nonhuman primate model. J Clin Immunol. 2002;22:263–9.

    Article  CAS  PubMed  Google Scholar 

  601. Kolovou GD, Kolovou V, Mavrogeni S. We are ageing. Biomed Res Int. 2014;808307:2014. doi:10.1155/2014/808307. Epub 2014 Jun 22

    Google Scholar 

  602. Van Poznak CH. Bone health in adults treated with endocrine therapy for early breast or prostate cancer. Am Soc Clin Oncol Educ Book. 2015;35:e567–74. doi:10.14694/EdBook_AM.2015.35.e567.

    Article  Google Scholar 

  603. Lithgow GJ, Miller RA. Determination of aging rate by coordinated resistance to multiple forms of stress. In: Guarente L, Partridge L, Wallace DC, editors. Molecular biology of aging. New York: Cold Spring Harbor Laboratory Press; 2008. p. 427–81.

    Google Scholar 

  604. Kumar V. Innate immune system in sepsis immunopathogenesis and its modulation as a future therapeutic approach. In: Khatami M, editor. Inflammatory diseases; immunopathology, clinical and pharmacological bases. Rijeka: Intech Publishing; 2012. p. 27–56.

    Google Scholar 

  605. Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011;10:205–15.

    Article  CAS  PubMed  Google Scholar 

  606. Buskirk ER, Hodgson JL. Age and aerobic power: the rate of change in men and women. Fed Proc. 1987;46:1824–9.

    CAS  PubMed  Google Scholar 

  607. Evans MC, Buchanan BB, Arnon DI. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A. 1966;55:928–934. , 2001. PMC 224252. doi:10.1073/pnas. 55.4.928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  608. Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005;30:142–50.

    Article  CAS  PubMed  Google Scholar 

  609. Ralser M, Wamelink MM, Kowald A, et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol. 2007;6:article (10).

    Article  Google Scholar 

  610. Kervinen K, Savolainen MJ, Salokannel J, et al. Apolipoprotein E and B polymorphisms—longevity factors assessed in nonagenarians. Atherosclerosis. 1994;105:89–95.

    Article  CAS  PubMed  Google Scholar 

  611. Macauley SH, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, Mahan TM, Sutphen CL, Holtzman DM. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Investig. 2015; doi:10.1172/JCI79742.

  612. Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab. 2003;284:E855–62.

    Article  CAS  PubMed  Google Scholar 

  613. Fitzgerald MD, Tanaka H, Tran ZV, Seals DR. Age-related declines in maximal aerobic capacity in regularly exercising vs. sedentary women: a meta-analysis. J Appl Physiol (1985). 1997;83:160–5.

    Article  CAS  Google Scholar 

  614. Amir S, Hartvigsen K, Gonen A, Leibundgut G, Que X, Jensen-Jarolim E, Wagner O, Tsimikas S, Witztum JL, Binder CJ. Peptide mimotopes of malondialdehyde epitopes for clinical applications in cardiovascular disease. J Lipid Res. 2012;53:1316–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  615. Newsholme P, de Bittencourt PI Jr. The fat cell senescence hypothesis: a mechanism responsible for abrogating the resolution of inflammation in chronic disease. Curr Opin Clin Nutr Metab Care. 2014;17:295–305.

    Article  CAS  PubMed  Google Scholar 

  616. Edney EB, Gill RW. Evolution of senescence and specific longevity. Nature. 1968;220(5164):281–2.

    Article  CAS  PubMed  Google Scholar 

  617. Warner HR. Superoxide dismutase, aging, and degenerative disease. Free Radic Biol Med. 1994;17:249–58.

    Article  CAS  PubMed  Google Scholar 

  618. Sun Z. Aging, arterial stiffness, and hypertension. Hypertension. 2015;65:252–6.

    Article  CAS  PubMed  Google Scholar 

  619. Paredes SD, Forman KA, García C, Vara E, Escames G, Tresguerres JA. Protective actions of melatonin and growth hormone on the aged cardiovascular system. Horm Mol Biol Clin Investig. 2014;18:79–88.

    CAS  PubMed  Google Scholar 

  620. Williams GM, Mattson MP, et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol. 2007;222:122–8.

    Article  PubMed  CAS  Google Scholar 

  621. Cellini E, Nacmias B, Olivieri F, et al. Cholesteryl ester transfer protein (CETP) I405V polymorphism and longevity in Italian centenarians. Mech Ageing Dev. 2005;126:826–8.

    Article  CAS  PubMed  Google Scholar 

  622. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  623. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005;436:660–5.

    Article  CAS  PubMed  Google Scholar 

  624. Milinkovic M, Antin JH, Hergrueter CA, Underhill CB, Sackstein R. CD44-hyaluronic acid interactions mediate shear-resistant binding of lymphocytes to dermal endothelium in acute cutaneous GVHD. Blood. 2004;103:740–2. doi:10.1182/blood-2003-05-1500.

    Article  CAS  PubMed  Google Scholar 

  625. Bellier A, Chen CS, Kao CY, Cinar HN, Aroian RV. Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS Pathog. 2009;5:e1000689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  626. Akiyama K, Suzuki H, Grant P, Bing RJ. Oxidation products of nitric oxide, NO2 and NO3, in plasma after experimental myocardial infarction. J Mol Cell Cardiol. 1997;29:1–9.

    Article  CAS  PubMed  Google Scholar 

  627. de la Haba G, Khatami M, Cooper GW, Backlund P, Flaks JG. Alanine or pyruvate is required for the development of myotubes from myoblasts and cortisol satisfies this requirement. Mol Cell Biochem. 1999;198:163–70.

    Article  PubMed  Google Scholar 

  628. DeLorey DS, Kowalchuk JM, Paterson DH. Effect of age on O(2) uptake kinetics and the adaptation of muscle deoxygenation at the onset of moderate-intensity cycling exercise. J Appl Physiol. 2004;97:165–72.

    Article  PubMed  Google Scholar 

  629. Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Int Med. 2007;262:509–25.

    Google Scholar 

  630. Vogelpoel LTC, Baeten DLP, de Jong EC, den Dunnen J. Control of cytokine production by human Fc gamma receptors: implications for pathogen defense and autoimmunity. Front Immunol. 2015 Feb 24;6:79. doi: 10.3389/fimmu.2015.00079. eCollection 2015.

  631. Lenton KJ, Therriault H, Cantin AM, Fulop T, Payette H, Wagner JR. Direct correlation of glutathione and ascorbate and their dependence on age and season in human lymphocytes. Am J Clin Nutr. 2000;71:1194–200.

    CAS  PubMed  Google Scholar 

  632. Lee YS, Kang YS, Lee JS, Nicolova S, Kim JA. Involvement of NADPH oxidase-mediated generation of reactive oxygen species in the apoptotic cell death by capsaicin in Hep G2 human hepatoma cells. Free Radic Res. 2004;38:405–12.

    Article  CAS  PubMed  Google Scholar 

  633. Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 2007;220:35–46. doi:10.1111/j.1600-065X.2007.00574.x.

    Article  CAS  PubMed  Google Scholar 

  634. Houthoofd K, Braeckman BP, Lenaerts I, et al. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol. 2002;37:1371–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatami, M. (2017). Theories of Aging and Chronic Diseases: Chronic Inflammation an Interdependent ‘Roadmap’ to Age-Associated Illnesses. In: Inflammation, Aging and Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-66475-0_3

Download citation

Publish with us

Policies and ethics