Skip to main content
Log in

When a theory of aging ages badly

  • Visions & Reflections (Minireview)
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

According to the widely acknowledged mitochondrial free radical theory of aging (MFRTA), the macromolecular damage that results from the production of toxic reactive oxygen species (ROS) during cellular respiration is the cause of aging. However, although it is clear that oxidative damage increases during aging, the fundamental question regarding whether mitochondrial oxidative stress is in any way causal to the aging process remains unresolved. An increasing number of studies on long-lived vertebrate species, mutants and transgenic animals have seriously challenged the pervasive MFRTA. Here, we describe some of these new results, including those pertaining to the phenotype of the long-lived Mclk1 +/− mice, which appear irreconcilable with the MFRTA. Thus, we believe that it is reasonable to now consider the MFRTA as refuted and that it is time to use the insight gained by many years of testing this theory to develop new views as to the physiological causes of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  CAS  PubMed  Google Scholar 

  2. Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 65:375–398

    Article  CAS  PubMed  Google Scholar 

  3. Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Radic Res 40:1230–1238

    Article  CAS  PubMed  Google Scholar 

  4. Hayflick L (2007) Biological aging is no longer an unsolved problem. Ann NY Acad Sci 1100:1–13

    Article  CAS  PubMed  Google Scholar 

  5. Holliday R (2006) Aging is no longer an unsolved problem in biology. Ann NY Acad Sci 1067:1–9

    Article  PubMed  Google Scholar 

  6. Kirkwood TB (2008) A systematic look at an old problem. Nature 451:644–647

    Article  CAS  PubMed  Google Scholar 

  7. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CAS  PubMed  Google Scholar 

  8. Gruber J, Schaffer S, Halliwell B (2008) The mitochondrial free radical theory of ageing—where do we stand? Front Biosci 13:6554–6579

    Article  CAS  PubMed  Google Scholar 

  9. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503

    Article  CAS  PubMed  Google Scholar 

  10. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  11. Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299:1351–1354

    Article  CAS  PubMed  Google Scholar 

  12. de Magalhaes JP, Church GM (2006) Cells discover fire: employing reactive oxygen species in development and consequences for aging. Exp Gerontol 41:1–10

    Article  PubMed  Google Scholar 

  13. Blagosklonny MV (2008) Aging: ROS or TOR. Cell Cycle 7:3344–3354

    CAS  PubMed  Google Scholar 

  14. Bonawitz ND, Shadel GS (2007) Rethinking the mitochondrial theory of aging: the role of mitochondrial gene expression in lifespan determination. Cell Cycle 6:1574–1578

    CAS  PubMed  Google Scholar 

  15. Buffenstein R, Edrey YH, Yang T, Mele J (2008) The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. Age (Dordr) 30:99–109

    Article  CAS  Google Scholar 

  16. Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8

  17. Fukui H, Moraes CT (2008) The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 31:251–256

    Article  CAS  PubMed  Google Scholar 

  18. Howes RM (2006) The free radical fantasy: a panoply of paradoxes. Ann NY Acad Sci 1067:22–26

    Article  CAS  PubMed  Google Scholar 

  19. Magwere T, West M, Riyahi K, Murphy MP, Smith RA, Partridge L (2006) The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mech Ageing Dev 127:356–370

    Article  CAS  PubMed  Google Scholar 

  20. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857

    Article  CAS  PubMed  Google Scholar 

  21. Collins R, Armitage J, Parish S, Sleigh P, Peto R (2003) MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361:2005–2016

    Article  PubMed  Google Scholar 

  22. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155

    Article  CAS  PubMed  Google Scholar 

  23. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  CAS  PubMed  Google Scholar 

  24. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  PubMed  Google Scholar 

  25. Sohal RS, Kamzalov S, Sumien N, Ferguson M, Rebrin I, Heinrich KR, Forster MJ (2006) Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice. Free Radic Biol Med 40:480–487

    Article  CAS  PubMed  Google Scholar 

  26. Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228

    CAS  PubMed  Google Scholar 

  27. Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ (2000) Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 55:B5–B9

    CAS  PubMed  Google Scholar 

  28. Perez VI, Van Remmen H, Bokov A, Epstein CJ, Vijg J, Richardson A (2009) The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8:73–75

    Article  CAS  PubMed  Google Scholar 

  29. Mele J, Van Remmen H, Vijg J, Richardson A (2006) Characterization of transgenic mice that overexpress both copper zinc superoxide dismutase and catalase. Antioxid Redox Signal 8:628–638

    Article  CAS  PubMed  Google Scholar 

  30. Raineri I, Carlson EJ, Gacayan R, Carra S, Oberley TD, Huang TT, Epstein CJ (2001) Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility. Free Radic Biol Med 31:1018–1030

    Article  CAS  PubMed  Google Scholar 

  31. Shan X, Chi L, Ke Y, Luo C, Qian S, Gozal D, Liu R (2007) Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxidative damage. Neurobiol Dis 28:206–215

    Article  CAS  PubMed  Google Scholar 

  32. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911

    Article  CAS  PubMed  Google Scholar 

  33. Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119:2789–2797

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Liang H, Van Remmen H, Vijg J, Richardson A (2004) Catalase transgenic mice: characterization and sensitivity to oxidative stress. Arch Biochem Biophys 422:197–210

    Article  CAS  PubMed  Google Scholar 

  35. Treuting PM, Linford NJ, Knoblaugh SE, Emond MJ, Morton JF, Martin GM, Rabinovitch PS, Ladiges WC (2008) Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci 63:813–822

    PubMed  Google Scholar 

  36. Connor KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, Aplin AE, Tai YT, Aguirre-Ghiso J, Flores SC, Melendez JA (2005) Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem 280:16916–16924

    Article  CAS  PubMed  Google Scholar 

  37. Chandel NS, Budinger GR (2007) The cellular basis for diverse responses to oxygen. Free Radic Biol Med 42:165–174

    Article  CAS  PubMed  Google Scholar 

  38. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    Article  CAS  PubMed  Google Scholar 

  39. Miller RA (2004) ‘Accelerated aging’: a primrose path to insight? Aging Cell 3:47–51

    Article  CAS  PubMed  Google Scholar 

  40. Hekimi S (2006) How genetic analysis tests theories of animal aging. Nat Genet 38:985–991

    Article  CAS  PubMed  Google Scholar 

  41. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    Article  PubMed  Google Scholar 

  42. Williams MD, Van Remmen H, Conrad CC, Huang TT, Epstein CJ, Richardson A (1998) Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem 273:28510–28515

    Article  CAS  PubMed  Google Scholar 

  43. Perez VI, Lew CM, Cortez LA, Webb CR, Rodriguez M, Liu Y, Qi W, Li Y, Chaudhuri A, Van Remmen H, Richardson A, Ikeno Y (2008) Thioredoxin 2 haploin sufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic Biol Med 44:882–892

    Article  CAS  PubMed  Google Scholar 

  44. Jang YC, Remmen VH (2009) The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol 44:256–260

    Article  CAS  PubMed  Google Scholar 

  45. Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology

  46. Lapointe J, Stepanyan Z, Bigras E, Hekimi S (2009) Reversal of the mitochondrial phenotype and slow development of oxidative biomarkers of aging in long-lived Mclk1+/− mice. J Biol Chem 284(30):20364–20374

    Article  CAS  PubMed  Google Scholar 

  47. Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5:463–471

    Article  CAS  PubMed  Google Scholar 

  48. Andziak B, Buffenstein R (2006) Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell 5:525–532

    Article  CAS  PubMed  Google Scholar 

  49. Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P, Losonczy G, Pacher P, Austad SN, Bartke A, Ungvari Z (2008) Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol 295:H1882–H1894

    Article  CAS  PubMed  Google Scholar 

  50. Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ, Wolf N, Van Remmen H, Richardson A (2007) Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci 62:932–942

    PubMed  Google Scholar 

  51. Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 5:e1000361

    Article  PubMed  Google Scholar 

  52. Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S (2005) Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev 19:2424–2434

    Article  CAS  PubMed  Google Scholar 

  53. Wong A, Boutis P, Hekimi S (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139:1247–1259

    CAS  PubMed  Google Scholar 

  54. Lapointe J, Hekimi S (2008) Early mitochondrial dysfunction in long-lived Mclk1+/− mice. J Biol Chem 283(38):26217–26227

    Article  CAS  PubMed  Google Scholar 

  55. Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG, Wang M, Balaban RS (2007) Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol 292:C689–C697

    Article  CAS  PubMed  Google Scholar 

  56. Hekimi S, Burgess J, Bussiere F, Meng Y, Benard C (2001) Genetics of lifespan in C elegans: molecular diversity, physiological complexity, mechanistic simplicity. Trends Genet 17:712–718

    Article  CAS  PubMed  Google Scholar 

  57. Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013

    Article  CAS  PubMed  Google Scholar 

  58. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096

    Article  CAS  PubMed  Google Scholar 

  59. Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci USA 106:3059–3064

    Article  CAS  PubMed  Google Scholar 

  60. Liang H, Van Remmen H, Frohlich V, Lechleiter J, Richardson A, Ran Q (2007) Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem Biophys Res Commun 356:893–898

    Article  CAS  PubMed  Google Scholar 

  61. Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105:14447–14452

    Article  CAS  PubMed  Google Scholar 

  62. Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    Article  CAS  PubMed  Google Scholar 

  63. Gems D, Partridge L (2008) Stress–response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7:200–203

    Article  CAS  PubMed  Google Scholar 

  64. Rattan SI (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  65. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    Article  CAS  PubMed  Google Scholar 

  66. Tapia PC (2006) Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “Mitohormesis” for health and vitality. Med Hypotheses 66:832–843

    Article  CAS  PubMed  Google Scholar 

  67. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C686

    Article  CAS  PubMed  Google Scholar 

  68. Lambert AJ, Brand MD (2007) Research on mitochondria and aging, 2006–2007. Aging Cell 6:417–420

    Article  CAS  PubMed  Google Scholar 

  69. Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Hekimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapointe, J., Hekimi, S. When a theory of aging ages badly. Cell. Mol. Life Sci. 67, 1–8 (2010). https://doi.org/10.1007/s00018-009-0138-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0138-8

Keywords

Navigation