Skip to main content

Purinergic Signaling in the Cerebellum

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders
  • 168 Accesses

Abstract

Purinergic signalling is a highly complex and evolutionarily conserved mechanism of extracellular communication in the brain that is involved in many physiological and pathological functions. The complexity of the system stems from the multitude of purine receptor subtypes and the large number of potential endogenous purine receptor ligands (ATP, ADP, UTP, UDP UDP-glucose, and adenosine) which can either be directly released or arise from extracellular metabolism (and thus are potentially controlled by a variety of metabolizing enzymes). Here we summarize data on the purinergic signalling that occurs in the cerebellum. Although much work has defined purine receptor distribution, the cellular effects of purine receptor activation, how and when purines are released in the cerebellum, little is known on the role of purinergic signalling in cerebellar circuits and the importance of purines in cerebellar motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amadio S, Montilli C, Picconi B et al (2007a) Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: an immunohistological study. Purinergic Signal 3:389–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amadio et al (2007b) P2Y1 receptor switches to neurons from glia in juvenile versus neonatal rat cerebellar cortex. BMC Dev Biol 7:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson CM, Baldwin SA, Young JD et al (1999a) Distribution of mRNA encoding a nitrobenzylthioinosine-insensitive nucleoside transporter (ENT2) in rat brain. Mol Brain Res 70:293–297

    Article  CAS  PubMed  Google Scholar 

  • Anderson CM, Xiong W, Geiger JD et al (1999b) Distribution of equilibrative, nitrobenzylthioinosine-sensitive nucleoside transporters (ENT1) in brain. J Neurochem 73:867–873

    Article  CAS  PubMed  Google Scholar 

  • Atterbury A, Wall MJ (2009) Adenosine signalling at immature parallel fibre-Purkinje cell synapses in rat cerebellum. J Physiol 587:4497–4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atterbury A, Wall MJ (2011) A population of immature cerebellar parallel fibre synapses are insensitive to adenosine but are inhbited by hypoxia. Neuropharm 61:880–888

    Article  CAS  Google Scholar 

  • Bar I, Guns P-J, Metallo J et al (2008) Knockout mice reveal a role for P2Y6 receptor in macrophages, endothelial cells, and vascular smooth muscle cells. Mol Pharmacol 74:777–784

    Article  CAS  PubMed  Google Scholar 

  • Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189

    Article  CAS  PubMed  Google Scholar 

  • Bellamy TC (2007) Presynaptic modulation of parallel fibre signalling to Bergmann glia. Neuropharmacology 52:368–375

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27:652–658

    Article  CAS  PubMed  Google Scholar 

  • Braas KM, Newby AC, Wilson VS et al (1986) Adenosine-containing neurons in the brain localized by immunocytochemistry. J Neurosci 6:1952–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockhaus J, Dressel D, Herold S et al (2004) Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur J Neurosci 19:2221–2230

    Article  PubMed  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2009) Purines and sensory nerves. Sensory nerves Starke K, Born GVR, Duckles S, Eichelbaum M, Ganten D, Hofmann F, Rosenthal W, Rubanyi G, 333–392: Springer Berlin

    Chapter  Google Scholar 

  • Burnstock G, Holman ME (1961) The transmission of excitation from autonomic nerve to smooth muscle. J Physiol 155:115–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasquero et al (2005) Cerebellar astrocytes co-express several ADP receptors. Presence of functional P2Y(13)-like receptors. Purinergic Signal 1:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasquero LMG, Delicado EG, Bustillo D et al (2009) P2X7 and P2Y13 purinergic receptors mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes. J Neurochem 110:879–889

    Article  CAS  PubMed  Google Scholar 

  • Casel D, Brockhaus J, Deitmer JW (2005) Enhancement of spontaneous synaptic activity in rat Purkinje neurones by ATP during development. J Physiol 568:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciruela F, Escriche M, Burgueno J, Angulo E, Casado V, Soloviev MM, Canela EI, Mallol J, Chan WY, Lluis C, McIlhinney RA, Franco R (2001) Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem 276(21):18345–51

    Article  CAS  PubMed  Google Scholar 

  • Chen et al (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  CAS  PubMed  Google Scholar 

  • Collo et al (1996) Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corti F, Cellai L, Melani A, Doanti C, Bruni P, Pedata F (2013) Adenosine is present in rat brain synaptic vesicles. Neuroreport 24:982–987

    Article  CAS  PubMed  Google Scholar 

  • Courjaret R, Trцger M, Deitmer JW (2009) Suppression of GABA input by A1 adenosine receptor activation in rat cerebellar granule cells. Neuroscience 162:946–958

    Article  CAS  PubMed  Google Scholar 

  • D’Ambrosi et al (2002) P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology 42:489–501

    Article  PubMed  Google Scholar 

  • Dale N, Frenguelli BG (2009) Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 7:160–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale N, Hatz S, Tian F et al (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol 23:420–428

    Article  CAS  PubMed  Google Scholar 

  • Dar MS (1997) Mouse cerebellar adenosinergic modulation of ethanol-induced motor incoordination: possible involvement of cAMP. Brain Res 749:263–274

    Article  CAS  PubMed  Google Scholar 

  • Dar MS (2000) Cerebellar CB1 receptor mediation of [Delta]9-THC-induced motor incoordination and its potentiation by ethanol and modulation by the cerebellar adenosinergic A1 receptor in the mouse. Brain Res 864:186–194

    Article  CAS  PubMed  Google Scholar 

  • Dar MS, Mustafa SJ (2002) Acute ethanol/cannabinoid-induced ataxia and its antagonism by oral/systemic/intracerebellar A1 adenosine receptor antisense in mice. Brain Res 957:53–60

    Article  CAS  PubMed  Google Scholar 

  • Diez R, Richardson MJE, Wall MJ (2017) Reducing extracellular Ca2+ induces adenosine release via equilibrative nucleoside transporters to provide negative feedback control of activity in the hippocampus. Frontiers in Neural Circuits 11:75

    Google Scholar 

  • Dittman J, Regehr W (1996) Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci 16:1623–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do KQ, Vollenweider FX, Zollinger M et al (1991) Effect of climbing fibre deprivation on the K+−evoked release of endogenous adenosine from rat cerebellar slices. Eur J Neurosci 3:201–208

    Article  PubMed  Google Scholar 

  • Donato R, Rodrigues RJ, Takahashi M et al (2008) GABA release by basket cells onto Purkinje cells, in rat cerebellar slices, is directly controlled by presynaptic purinergic receptors, modulating Ca2+ influx. Cell Calcium 44:521–532

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Basile AS, Palmer MR (1984) Electrophysiological responses to adenosine analogs in rat hippocampus and cerebellum: evidence for mediation by adenosine receptors of the A1 subtype. Life Sci 34:37–47

    Article  CAS  PubMed  Google Scholar 

  • Egan T, Samways D, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch Eur J Physiol 452:501–512

    Article  CAS  Google Scholar 

  • Fatokun AA, Stone TW, Smith RA (2007) Cell death in rat cerebellar granule neurons induced by hydrogen peroxide in vitro: mechanisms and protection by adenosine receptor ligands. Brain Res 1132:193–202

    Article  CAS  PubMed  Google Scholar 

  • Fatokun A, Stone T, Smith R (2008) Adenosine receptor ligands protect against a combination of apoptotic and necrotic cell death in cerebellar granule neurons. Exp Brain Res 186:151–160

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB (2010) Adenosine receptors as drug targets. Exp Cell Res 316:1284–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  • Garcia-Lecea M, Delicado EG, Miras-Portugal M et al (1999) P2X2 characteristics of the ATP receptor coupled to [Ca2+]i increases in cultured Purkinje neurons from neonatal rat cerebellum. Neuropharmacology 38:699–706

    Article  CAS  PubMed  Google Scholar 

  • Geiger JD, Nagy JI (1986) Distribution of adenosine deaminase activity in rat brain and spinal cord. J Neurosci 6:2707–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman RR, Synder SH (1982) Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J Neurosci 2:1230–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman R, Kuhar M, Hester L et al (1983) Adenosine receptors: autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 220:967–969

    Article  CAS  PubMed  Google Scholar 

  • Guo et al (2008) Expression of P2X5 receptors in the mouse CNS. Neuroscience 156:673–692

    Article  CAS  PubMed  Google Scholar 

  • Haghighi et al (1996) A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J Neurosci 16:448–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliday FC, Gibb AJ (1997) Single -channel properties of P2X ATP receptors in rat cerebellar slices. J Physiol 504

    Google Scholar 

  • Hamann M, Rossi DJ, Mohr C, Andrade AL, Attwell D (2005) The electrical response of cerebellar Purkinje neurons to simulated ischaemia. Brain 128:2408–2420

    Article  PubMed  Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    Article  CAS  PubMed  Google Scholar 

  • Hervás C, Pérez-Sen R, Miras-Portugal MT (2003) Coexpression of functional P2X and P2Y nucleotide receptors in single cerebellar granule cells. J Neurosci Res 73:384–399

    Article  PubMed  CAS  Google Scholar 

  • Hervas et al (2005) Presence of diverse functional P2X receptors in rat cerebellar synaptic terminals. Biochem Pharmacol 70:770–785

    Article  CAS  PubMed  Google Scholar 

  • Hoogland T, Kuhn B (2010) Recent developments in the understanding of astrocyte function in the cerebellum in vivo. Cerebellum 9(3):264–71

    Article  Google Scholar 

  • Hoogland TM, Kuhn B, Göbel W et al (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci 106:3496–3501

    Article  CAS  Google Scholar 

  • Huckstepp RTR, id Bihi R, Eason R et al (2010) Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J Physiol 588:3901–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussl S, Boehm S (2006) Functions of neuronal P2Y receptors. Pflugers Arch Eur J Physiol 452:538–551

    Article  CAS  Google Scholar 

  • Jacobson KA, Nikodijevic O, Shi D et al (1993) A role for central A3-adenosine receptors: mediation of behavioral depressant effects. FEBS Lett 336:57–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56:208–215

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MF, Schulz R, Hutchison AJ et al (1989) [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther 251:888–893

    CAS  PubMed  Google Scholar 

  • Jo Y-H, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV et al (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98:9407–9412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanjhan et al (1999) Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 407:11–32

    Article  CAS  PubMed  Google Scholar 

  • Kessler M, Kiliman B, Humes C, Arai AC (2008) Spontaneous activity in Purkinje cells: multi-electrode recording from organotypic cerebellar slice cultures. Brain Res 1218:54–69

    Article  CAS  PubMed  Google Scholar 

  • Khakh BS (2001) Molecular physiology of p2x receptors and atp signalling at synapses. Nat Rev Neurosci 2:165–174

    Article  CAS  PubMed  Google Scholar 

  • Khakh BS, Henderson G (1998) ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol Pharmacol 54:372–378

    Article  CAS  PubMed  Google Scholar 

  • Kirischuk S, Moller T, Voitenko N et al (1995) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirischuk S, Matiash V, Kulik A et al (1996) Activation of P2-purino-,[alpha]1-adreno and H1-histamine receptors triggers cytoplasmic calcium signalling in cerebellar purkinje neurons. Neuroscience 73:643–647

    Article  CAS  PubMed  Google Scholar 

  • Klyuch BP, Dale N, Wall MJ (2012) Deletion of ecto-5′-nucleotidase (CD73) reveals direct action potential-dependent adenosine release. J Neurosci (Rapid Commun) 32:3842–3847

    Article  CAS  Google Scholar 

  • Kocsis JD, Eng DL, Bhisitkul RB (1984) Adenosine selectively blocks parallel-fiber-mediated synaptic potentials in rat cerebellar cortex. Proc Natl Acad Sci U S A 81:6531–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs FE, Illes P, Szabo B (2011) Purine receptor-mediated endocannabinoid production and retrograde synaptic signalling in the cerebellar cortex. Br J Pharmacol 162(4):974–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  • Leon C, Hechler B, Freund M et al (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 104:1731–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llaudet E, Botting NP, Crayston JA et al (2003) A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens Bioelectron 18:43–52

    Article  CAS  PubMed  Google Scholar 

  • Loesch, Glass (2006) Electron microscopy and in situ hybridization: Expression of P2Y2 receptor mRNA in the cerebellum. Methods Mol Biol 326:151–162

    CAS  PubMed  Google Scholar 

  • Loesch et al (1998) Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum. Cell Tissue Res 294:253–260

    Article  CAS  PubMed  Google Scholar 

  • Logan M, Sweeney M (1997) Adenosine A1 receptor activation preferentially protects cultured cerebellar neurons versus astrocytes against hypoxia-induced death. Mol Chem Neuropathol 31:119–133

    Article  CAS  PubMed  Google Scholar 

  • Maienschein V, Zimmermann H (1996) Immunocytochemical localization of ecto-5′-nucleotidase in cultures of cerebellar granule cells. Neuroscience 70:429–438

    Article  CAS  PubMed  Google Scholar 

  • Mateo J, Garcia-Lecea M, Miras-Portugal MT et al (1998) Ca2+ signals mediated by P2X-type purinoceptors in cultured cerebellar Purkinje cells. J Neurosci 18:1704–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos JM, Azkue J, Sarría R et al (1998) Localization of the mGlu4a metabotropic glutamate receptor in rat cerebellar cortex. Histochem Cell Biol 109:135–139

    Article  CAS  PubMed  Google Scholar 

  • Matos JE, Robaye B, Boeynaems JM et al (2005) K+ secretion activated by luminal P2Y2 and P2Y4 receptors in mouse colon. J Physiol 564:269–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montana V, Malarkey EB, Verderio C et al (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    Article  PubMed  Google Scholar 

  • Moran-Jimenez et al (2000) Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system. Mol Brain Res 78:50–58

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Mukamel EA, Schnitzer MJ (2009) Motor behavior activates Bergmann glial networks. Neuron 62:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurgali K, Furness JB, Stebbing MJ (2003) Analysis of purinergic and cholinergic fast synaptic transmission to identified myenteric neurons. Neuroscience 116:335–347

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Saitow F, Konishi S (2016) Differential modulation of GABAA receptors underlies postsynaptic depolarization- and purinoceptor-mediated enhancement of cerebellar inhibitory transmission: a non-stationary fluctuation analysis study. PLoS One 11(3):e0150636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pangrsic T, Potokar M, Stenovec M et al (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    Article  CAS  PubMed  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A et al (2006) Vesicular release of ATP at central synapses. Pflugers Arch Eur J Physiol 452:589–597

    Article  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A et al (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual O, Casper CB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pearson RA, Dale N, Llaudet E et al (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    Article  CAS  PubMed  Google Scholar 

  • Philibert RA, Dutton GR (1989) Dihydropyridines modulate K+−evoked amino acid and adenosine release from cerebellar neuronal cultures. Neurosci Lett 102:97–102

    Article  CAS  PubMed  Google Scholar 

  • Piet R, Jahr CE (2007) Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J Neurosci 27:4027–4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reppert SM, Weaver DR, Stehle JH et al (1991) Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol 5:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Rivkees SA, Price SL, Zhou FC (1995) Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res 677:193–203

    Article  CAS  PubMed  Google Scholar 

  • Rubio, Soto (2001) Distinct Localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitow F, Murakoshi T, Suzuki H et al (2005) Metabotropic P2Y purinoceptor-mediated presynaptic and postsynaptic enhancement of cerebellar GABAergic transmission. J Neurosci 25:2108–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoen SW, Graeber MB, Tуth L et al (1991) Synaptic 5′-nucleotidase is transient and indicative of climbing fiber plasticity during the postnatal development of rat cerebellum. Dev Brain Res 61:125–138

    Article  CAS  Google Scholar 

  • Schousboe A, Frandsen A, Drejer J (1989) Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells. Neurochem Res 14:871–875

    Article  CAS  PubMed  Google Scholar 

  • Shearman LP, Weaver DR (1997) [125I]4-Aminobenzyl-5′-N-methylcarboxamidoadenosine ([125I]AB-MECA) labels multiple adenosine receptor subtypes in rat brain. Brain Res 745:10–20

    Article  CAS  PubMed  Google Scholar 

  • Shibuki K, Gomi H, Chen L et al (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–599

    Article  CAS  PubMed  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney MI (1996) Adenosine release and uptake in cerebellar granule neurons both occur via an equilibrative nucleoside carrier that is modulated by G proteins. J Neurochem 67:81–88

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Kawakami D, Hashimoto K et al (2007) G protein-independent neuromodulatory action of adenosine on metabotropic glutamate signalling in mouse cerebellar Purkinje cells. J Physiol 581:693–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi M, Kovalchuk Y, Attwell D (1995) Pre- and postsynaptic determinants of EPSC waveform at cerebellar climbing fiber and parallel fiber to Purkinje cell synapses. J Neurosci 15:5693–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villeneuve et al (1998) Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83:177–190

    Article  PubMed  Google Scholar 

  • von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415–432

    Article  CAS  Google Scholar 

  • Wall MJ, Dale N (2007) Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J Physiol 581:553–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wall MJ, Dale N (2008) Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol 6:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall MJ, Dale N (2013) Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus. J Physiol 591:3853–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall MJ, Atterbury A, Dale N (2007) Control of basal extracellular adenosine concentration in rat cerebellum. J Physiol 582:137–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall MJ, Wigmore G, Lopatбr J et al (2008) The novel NTPDase inhibitor sodium polyoxotungstate (POM-1) inhibits ATP breakdown but also blocks central synaptic transmission, an action independent of NTPDase inhibition. Neuropharmacology 55:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Wall M, Eason R, Dale N (2010) Biosensor measurement of purine release from cerebellar cultures and slices. Purinergic Signal 6:339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T-F, Guidotti G (1998) Widespread expression of ecto-apyrase (CD39) in the central nervous system. Brain Res 790:318–322

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2005) Changes in expression of P2X purinoceptors in rat cerebellum during postnatal development. Dev Brain Res 156:147–157

    Article  CAS  Google Scholar 

  • Yamamoto M, Wada N, Kitabatake Y et al (2003) Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci 23:6759–6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu et al (2008) Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res 1194:45–55

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg's Arch Pharmacol 362:299–309

    Article  CAS  Google Scholar 

  • Zinchuk VS, Okada T, Kobayashi T et al (1999) Ecto-ATPase activity in cerebellum: implication to the function of synaptic transmission. Brain Res 815:111–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is currently funded by the BBSRC and Epilepsy Research UK. We are grateful for comments on the chapter by Professor Nicholas Dale, Professor Bruno Frenguelli, and Dr. Yuri Pankratov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Wall .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wall, M.J. (2019). Purinergic Signaling in the Cerebellum. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_40-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_40-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics