Skip to main content
Log in

Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Evoked release of [3H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10–100 μM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 μM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolphin, A. C., and Archer, E. R. 1983. An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neurosci. Lett. 43:49–54.

    PubMed  Google Scholar 

  2. Dolphin, A. C., and Prestwich, S. A. 1985. Pertussis toxin reverse adenosine inhibition of neuronal glutamate release. Nature 316:148–150.

    PubMed  Google Scholar 

  3. Drejer, J., Frandsen, Aa., and Schousboe, A. 1987. Adenosine inhibits glutamate stimulated [3H]d-aspartate release from cerebellar granule cells. Neurochem. Int. 11:77–81.

    Google Scholar 

  4. Kocsis, J. D., Eng, D. L. and Bhisitkul, R. B. 1984. Adenosine selectively blocks parallel-fiber-mediated synaptic potentials in rat cerebellar cortex. Proc. Natl. Acad. Sci. USA 81:6531–6534.

    PubMed  Google Scholar 

  5. Dowdall, M. J., Boyne, A. F., and Whittaker, V. P. 1974. Adenosine triphosphate: a constituent of cholinergic synaptic vesicles. Biochem. J. 140:1–12.

    PubMed  Google Scholar 

  6. Israel, M., Dunant, Y., Lesbats, B., Manaranche, R., Marsal, J., and Meunier, F. 1979. Rapid acetylcholine and adenosine triphosphate oscillations triggered by stimulation of the Torpedo electric organ. J. Exp. Biol. 81:63–73.

    PubMed  Google Scholar 

  7. Douglas, W. W., and Poisner, A. M. 1966. On the relation between ATP splitting and secretion in the adrenal chromaffin cell: extrusion of ATP (unhydrolised) during release of catecholamines. J. Physiol. (Lond.) 183:249–256.

    Google Scholar 

  8. Stevens, P., Robinson, R. L., Van Dyke, K., and Stitzel, R. 1972. Studies of the synthesis and release of adenosine triphosphate-8-3H in the isolated perfused cat adrenal gland. J. Pharmac. Exp. Ther. 181:463–471.

    Google Scholar 

  9. Burnstock, G., Crowe, R., and Wong, H. K. 1979. Comparative pharmacological and histochemical evidence for purinergic inhibitory innervation of the portal vein of the rabbit, but not guinea-pig. Br. J. Pharmac. 65:377–388.

    Google Scholar 

  10. Bradford, H. F., and Peterson, D. W. 1988. Excitatory amino acids in epilepsy. Pages 143–164in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals. Vol. II. CRC-Press, Boca Raton, Fl.

    Google Scholar 

  11. Olney, J. W. 1978. Neurotoxicity of excitatory amino acids. Pages 95–121,in McGeer, E. G., Olney, J. W. and McGeer, P. L. (eds.), Kainic Acid as a Tool in Neurobiology. New York, Raven Press.

    Google Scholar 

  12. Gallo, V., Ciotti, M. T., Coletti, A., Aloisi, F., and Levi, G. 1982. Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl. Acad. Sci. USA 79:7919–7923.

    PubMed  Google Scholar 

  13. Drejer, J., Larsson, O. M., and Schousboe, A. 1982. Characterization ofl-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain. Res. 47:259–269.

    PubMed  Google Scholar 

  14. Stone, T. W. 1979. Glutamate as the neurotransmitter of cerebellar granule cells in the rat: electrophysiological evidence. Br. J. Pharmacol. 66:291–296.

    PubMed  Google Scholar 

  15. Messer, A. 1977. The maintenance and identification of mouse cerebellar granule cells in monolayer cultures. Brain Res. 130:1–12.

    PubMed  Google Scholar 

  16. Drejer, J., Honoré, T., Meier, E., and Schousboe, A. 1986. Pharmacologically distinct glutamate receptors on cerebellar granule cells. Life Sci. 38:2077–2085.

    PubMed  Google Scholar 

  17. Hertz, L., Juurlink, B. H. J., Fosmark, H., and Schousboe, A. 1982. Astrocytes in primary cultures. Pages 175–186in Pfeiffer, S. E. (ed.). Neuroscience Approached Through Cell Culture. Vol. 1. CRC-Press, Boca Raton, Fl.

    Google Scholar 

  18. Schousboe, A., and Hertz, L. 1987. Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. II Developmental aspects. Pages 33–42in Vernadakis, A., Privat, A., Lauder, J. M., Timiras, P. S. and Giacobini E. (eds.) Model Systems of Development and Aging of the Nervous System. Martinus Nijhoff, Boston.

    Google Scholar 

  19. Palaiologos, G., Hertz, L., and Schousboe, A. 1989. Role of aspartate aminotransferase and mitochondrial decarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem. Res. 14:359–366.

    PubMed  Google Scholar 

  20. Drejer, J., Honoré, T., and Schousboe, A. 1987. Excitatory amino acid-induced release of3H-GABA from cultured mouse cerebral cortex interneurons. J. Neurosci. 7:2910–2916.

    PubMed  Google Scholar 

  21. Randerath, K., and Randerath, E. 1964. Ion-exchange chromatography of nucleotides on poly-(ethyleneimine)-cellulose thin layers. J. Chromatogr. 16:111–125.

    PubMed  Google Scholar 

  22. Schousboe, A., Hertz, L., and Svenneby, G. 1977. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2:217–229.

    Google Scholar 

  23. Wilkinson, G. N. 1961. Statistical estimations in enzyme kinetics. Biochem. J. 80:324–332.

    PubMed  Google Scholar 

  24. Meier, E., Drejer, J. and Schousboe, A. 1984. GABA induces functionally active low-affinity GABA receptors on cultured cerebellar granule cells. J. Neurochem. 43:1737–1744.

    PubMed  Google Scholar 

  25. Drejer, J. and Schousboe, A. 1989. Selection of a pure cerebellar granule cell culture by kainate treatment. Neurochem. Res. 14:751–754.

    PubMed  Google Scholar 

  26. Schousboe, A. and Pasantes-Morales, H. 1989. Potassium-stimulated release of3H-taurine from cultured GABAergic and glutamatergic neurons. J. Neurochem. 53: In press.

  27. Burnstock, G. 1983. Recent concepts of chemical communication between excitable cells. Pages 7–35,in Osborne, N. N. (ed.) Dale's Principle and Communication Between Neurones. Pergamon Press, Oxford.

    Google Scholar 

  28. Williams, M. 1984. Mammalian central adenosine receptors. Handb. Neurochem. 6:1–26.

    Google Scholar 

  29. Hertz, L. 1978. Kinetics of adenosine uptake into astrocytes. J. Neurochem. 31:55–62.

    PubMed  Google Scholar 

  30. O'Brien, D. R. 1988. The adenosine hypothesis of epilepsy. Med. Hypotheses 27:281–284.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schousboe, A., Frandsen, A. & Drejer, J. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells. Neurochem Res 14, 871–875 (1989). https://doi.org/10.1007/BF00964817

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964817

Key Words

Navigation