Skip to main content

Advertisement

Log in

Functions of neuronal P2Y receptors

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Within the last 15 years, at least eight different G protein-coupled nucleotide receptors, i.e., P2Y receptors, have been characterized by molecular means. While ionotropic P2X receptors are mainly involved in fast synaptic neurotransmission, P2Y receptors rather mediate slower neuromodulatory effects. This P2Y receptor-dependent neuromodulation relies on changes in synaptic transmission via either pre- or postsynaptic sites of action. At both sites, the regulation of voltage-gated or transmitter-gated ion channels via G protein-linked signaling cascades has been identified as the predominant underlying mechanisms. In addition, neuronal P2Y receptors have been found to be involved in neurotoxic and neurotrophic effects of extracellular adenosine 5-triphosphate. This review provides an overview of the most prominent actions mediated by neuronal P2Y receptors and describes the signaling cascades involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52–55

    PubMed  CAS  Google Scholar 

  2. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    PubMed  CAS  Google Scholar 

  3. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA (2005) The recently deorphanized GPR80 (GPR99) proposed to be the P2Y15 receptor is not a genuine P2Y receptor. Trends Pharmacol Sci 26:8–9

    PubMed  CAS  Google Scholar 

  4. Abe M, Endoh T, Suzuki T (2003) Extracellular ATP-induced calcium channel inhibition mediated by P1/P2Y purinoceptors in hamster submandibular ganglion neurons. Br J Pharmacol 138:1535–1543

    PubMed  CAS  Google Scholar 

  5. Adams PR, Brown DA, Constanti A (1982) Pharmacological inhibition of the M-current. J Physiol 332:223–262

    PubMed  CAS  Google Scholar 

  6. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonte C, Aloisi F, Visentin S (2005) ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res Brain Res Rev 48:157–165

    PubMed  CAS  Google Scholar 

  7. Akasu T, Hirai K, Koketsu K (1983) Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells. Brain Res 258:313–317

    PubMed  CAS  Google Scholar 

  8. Amadio S, D’Ambrosi N, Cavaliere F, Murra B, Sancesario G, Bernardi G, Burnstock G, Volonté C (2002) P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology 42:489–501

    PubMed  CAS  Google Scholar 

  9. Anderson CM, Parkinson FE (1997) Potential signalling roles for UTP and UDP: sources, regulation and release of uracil nucleotides. Trends Pharmacol Sci 18:387–392

    PubMed  CAS  Google Scholar 

  10. Aono K, Nakanishi N, Yamada S (1990) Increase in intracellular Ca2+ level and modulation of nerve growth factor action on pheochromocytoma PC12h cells by extracellular ATP. Meikai Daigaku Shigaku Zasshi 19:221–229

    PubMed  CAS  Google Scholar 

  11. Arthur DB, Akassoglou K, Insel PA (2005) P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Proc Natl Acad Sci USA 102:19138–19143

    PubMed  CAS  Google Scholar 

  12. Barnard EA, Burnstock G, Webb TE (1994) G protein-coupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol Sci 15:67–70

    PubMed  CAS  Google Scholar 

  13. Benians A, Leaney JL, Milligan G, Tinker A (2003) The dynamics of formation and action of the ternary complex revealed in living cells using a G-protein-gated K+ channel as a biosensor. J Biol Chem 278:10851–10858

    PubMed  CAS  Google Scholar 

  14. Bennett GC, Ford APDW, Smith JAM, Emmett CJ, Webb TE, Boarder M (2003) P2Y receptor regulation of cultured rat cerebral cortical cells: calcium responses and mRNA expression in neurons and glia. Br J Pharmacol 139:279–288

    PubMed  CAS  Google Scholar 

  15. Birder LA, Ruan HZ, Chopra B, Xiang Z, Barrick S, Buffington CA, Roppolo JR, Ford AP, de Groat WC, Burnstock G (2004) Alterations in P2X and P2Y purinergic receptor expression in urinary bladder from normal cats and cats with interstitial cystitis. Am J Physiol Renal Physiol 287:1084–1091

    Google Scholar 

  16. Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, Harden TK (2003) Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol 64:1210–1216

    PubMed  CAS  Google Scholar 

  17. Boehm S (1998) Selective inhibition of M-type potassium channels in rat sympathetic neurons by uridine nucleotide preferring receptors. Br J Pharmacol 124:1261–1269

    PubMed  CAS  Google Scholar 

  18. Boehm S (2003) Signaling via nucleotide receptors in the sympathetic nervous system. Drug News Perspect 16:141–148

    PubMed  CAS  Google Scholar 

  19. Boehm S, Huck S, Freissmuth M (1996) Involvement of a phorbol ester-insensitive protein kinase C in the alpha2-adrenergic inhibition of voltage-gated calcium current in chick sympathetic neurons. J Neurosci 16:4596–4603

    PubMed  CAS  Google Scholar 

  20. Boehm S, Huck S, Illes P (1995) UTP- and ATP-triggered transmitter release from rat sympathetic neurones via separate receptors. Br J Pharmacol 116:2341–2343

    PubMed  CAS  Google Scholar 

  21. Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43–99

    PubMed  CAS  Google Scholar 

  22. Bofill-Cardona E, Vartian N, Nanoff C, Freissmuth M, Boehm S (2000) Two different signaling mechanisms involved in the excitation of rat sympathetic neurons by uridine nucleotides. Mol Pharmacol 57:1165–1172

    PubMed  CAS  Google Scholar 

  23. Borvendeg SJ, Gerevich Z, Gillen C, Illes P (2003) P2Y receptor-mediated inhibition of voltage-dependent Ca2+ channels in rat dorsal root ganglion neurons. Synapse 47:159–161

    PubMed  CAS  Google Scholar 

  24. Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620

    PubMed  CAS  Google Scholar 

  25. Boyer JL, Romero-Avila T, Schachter JB, Harden TK (1996) Identification of competitive antagonists of the P2Y1 receptor. Mol Pharmacol 50:1323–1329

    PubMed  CAS  Google Scholar 

  26. Brown DA (1983) Slow cholinergic excitation—a mechanism for increasing neuronal excitability. Trends Neurosci 6:302–307

    Google Scholar 

  27. Brown DA, Filippov AK, Barnard EA (2000) Inhibition of potassium and calcium currents in neurones by molecularly-defined P2Y receptors. J Auton Nerv Syst 81:31–36

    PubMed  CAS  Google Scholar 

  28. Brown P, Dale N (2002) Modulation of K(+) currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation. J Physiol 540:843–850

    PubMed  CAS  Google Scholar 

  29. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  30. Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139

    PubMed  CAS  Google Scholar 

  31. Burnstock G (2003) Purinergic receptors in the nervous system. Curr Top Membr 54:307–368

    CAS  Google Scholar 

  32. Calvert JA, Atterbury-Thomas AE, Leon C, Forsythe ID, Gachet C, Evans RJ (2004) Evidence for P2Y1, P2Y2, P2Y6 and atypical UTP-sensitive receptors coupled to rises in intracellular calcium in mouse cultured superior cervical ganglion neurons and glia. Br J Pharmacol 143:525–532

    PubMed  CAS  Google Scholar 

  33. Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E (2003) International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55:579–581

    PubMed  CAS  Google Scholar 

  34. Cavaliere F, D’Ambrosi N, Ciotti MT, Mancino G, Sancesario G, Bernardi G, Volonte C (2001a) Glucose deprivation and chemical hypoxia: neuroprotection by P2 receptor antagonists. Neurochem Int 38:189–197

    PubMed  CAS  Google Scholar 

  35. Cavaliere F, D’Ambrosi N, Sancesario G, Bernardi G, Volonté C (2001b) Hypoglycaemia-induced cell death: features of neuroprotection by the P2 receptor antagonist basilen blue. Neurochem Int 38:199–207

    PubMed  CAS  Google Scholar 

  36. Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275:10767–10771

    PubMed  CAS  Google Scholar 

  37. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM (2001) Identification of a novel human ADP receptor coupled to G(i). J Biol Chem 276:41479–4185

    PubMed  CAS  Google Scholar 

  38. Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–1973

    PubMed  CAS  Google Scholar 

  39. Connolly GP, Harrison PJ, Stone TW (1993) Action of purine and pyrimidine nucleotides on the rat superior cervical ganglion. Br J Pharmacol 110:1297–1304

    PubMed  CAS  Google Scholar 

  40. Cunha RA, Ribeiro JA (2000) ATP as a presynaptic modulator. Life Sci 68:119–137

    PubMed  CAS  Google Scholar 

  41. Currie KP, Fox AP (1996) ATP serves as a negative feedback inhibitor of voltage-gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neuron 16:1027–1036

    PubMed  CAS  Google Scholar 

  42. D’Ambrosi N, Murra B, Cavaliere F, Amadio S, Bernardi G, Burnstock G, Volonte C (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108:527–534

    PubMed  CAS  Google Scholar 

  43. D’Ambrosi N, Murra B, Vacca F, Volonte C (2004) Pathways of survival induced by NGF and extracellular ATP after growth factor deprivation. Prog Brain Res 146:93–100

    Article  PubMed  CAS  Google Scholar 

  44. D’Ambrosi N, Cavaliere F, Merlo D, Milazzo L, Mercanti D, Volonté C (2000) Antagonists of P2 receptor prevent NGF-dependent neuritogenesis in PC12 cells. Neuropharmacology 39:1083–1094

    PubMed  CAS  Google Scholar 

  45. Dave S, Mogul DJ (1996) ATP receptor activation potentiates a voltage-dependent Ca channel in hippocampal neurons. Brain Res 715:208–216

    PubMed  CAS  Google Scholar 

  46. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    PubMed  CAS  Google Scholar 

  47. Deng G, Matute C, Kumar CK, Fogarty DJ, Miledi R (1998) Cloning and expression of a P2y purinoceptor from the adult bovine corpus callosum. Neurobiol Dis 5:259–270

    PubMed  CAS  Google Scholar 

  48. Diverse-Pierluissi M, Dunlap K (1993) Distinct, convergent second messenger pathways modulate neuronal calcium currents. Neuron 10:753–760

    PubMed  CAS  Google Scholar 

  49. Diverse-Pierluissi M, Dunlap K, Westhead EW (1991) Multiple actions of extracellular ATP on calcium currents in cultured bovine chromaffin cells. Proc Natl Acad Sci USA 88:1261–1265

    PubMed  CAS  Google Scholar 

  50. Dodson PD, Forsythe ID (2004) Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci 27:210–217

    PubMed  CAS  Google Scholar 

  51. Dolphin AC (1999) L-type calcium channel modulation. Adv Second Messenger Phosphoprotein Res 33:153–177

    PubMed  CAS  Google Scholar 

  52. Dolphin AC (2003) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607–627

    PubMed  CAS  Google Scholar 

  53. Doupnik CA, Davidson N, Lester HA, Kofuji P (1997) RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci USA 94:10461–10466

    PubMed  CAS  Google Scholar 

  54. Elmslie KS (1992) Calcium current modulation in frog sympathetic neurones: multiple neurotransmitters and G proteins. J Physiol 451:229–246

    PubMed  CAS  Google Scholar 

  55. Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633

    PubMed  CAS  Google Scholar 

  56. Filippov AK, Brown DA (1996) Activation of nucleotide receptors inhibits high-threshold calcium currents in NG108-15 neuronal hybrid cells. Eur J Neurosci 8:1149–1155

    PubMed  CAS  Google Scholar 

  57. Filippov AK, Brown DA, Barnard EA (2000) The P2Y(1) receptor closes the N-type Ca(2+) channel in neurones, with both adenosine triphosphates and diphosphates as potent agonists. Br J Pharmacol 129:1063–1066

    PubMed  CAS  Google Scholar 

  58. Filippov AK, Fernandez-Fernandez JM, Marsh SJ, Simon J, Barnard EA, Brown DA (2004) Activation and inhibition of neuronal G protein-gated inwardly rectifying K(+) channels by P2Y nucleotide receptors. Mol Pharmacol 66:468–477

    PubMed  CAS  Google Scholar 

  59. Filippov AK, Selyanko AA, Robbins J, Brown DA (1994) Activation of nucleotide receptors inhibits M-type K current [IK(M)] in neuroblastoma × glioma hybrid cells. Pflugers Arch 429:223–230

    PubMed  CAS  Google Scholar 

  60. Filippov AK, Simon J, Barnard EA, Brown DA (2003) Coupling of the nucleotide P2Y4 receptor to neuronal ion channels. Br J Pharmacol 138:400–406

    PubMed  CAS  Google Scholar 

  61. Filippov AK, Webb TE, Barnard EA, Brown DA (1998) P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J Neurosci 18:5170–5179

    PubMed  CAS  Google Scholar 

  62. Filippov AK, Webb TE, Barnard EA, Brown DA (1999) Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones. Br J Pharmacol 126:1009–1017

    PubMed  CAS  Google Scholar 

  63. Fong AY, Krstew EV, Barden J, Lawrence AJ (2002) Immunoreactive localisation of P2Y1 receptors within the rat and human nodose ganglia and rat brainstem: comparison with [alpha 33P]deoxyadenosine 5′-triphosphate autoradiography. Neuroscience 113:809–823

    PubMed  CAS  Google Scholar 

  64. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324

    PubMed  CAS  Google Scholar 

  65. Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–203

    Google Scholar 

  66. Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP (2004) Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol 68:113–124

    PubMed  CAS  Google Scholar 

  67. Galietta LJ, Falzoni S, Di Virgilio F, Romeo G, Zegarra-Moran O (1997) Characterization of volume-sensitive taurine- and Cl(−)-permeable channels. Am J Physiol 273:C57–C66

    PubMed  CAS  Google Scholar 

  68. Gamper N, Li Y, Shapiro MS (2005) Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell 16:3538–3551

    PubMed  CAS  Google Scholar 

  69. Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS (2004) Phosphatidylinositol 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24:10980–10992

    PubMed  CAS  Google Scholar 

  70. Gandia L, Garcia AG, Morad M (1993) ATP modulation of calcium channels in chromaffin cells. J Physiol 470:55–72

    PubMed  CAS  Google Scholar 

  71. Gerevich Z, Borvendeg SJ, Schroder W, Franke H, Wirkner K, Norenberg W, Furst S, Gillen C, Illes P (2004) Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADP-induced analgesia. J Neurosci 24:797–807

    PubMed  CAS  Google Scholar 

  72. Gerevich Z, Muller C, Illes P (2005) Metabotropic P2Y1 receptors inhibit P2X3 receptor-channels in rat dorsal root ganglion neurons. Eur J Pharmacol 521:34–38

    Google Scholar 

  73. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (2003) International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol Rev 55:583–586

    PubMed  CAS  Google Scholar 

  74. Haley JE, Abogadie FC, Delmas P, Dayrell M, Vallis Y, Milligan G, Caulfield MP, Brown DA, Buckley NJ (1998) The alpha subunit of Gq contributes to muscarinic inhibition of the M-type potassium current in sympathetic neurons. J Neurosci 18:4521–4531

    PubMed  CAS  Google Scholar 

  75. Haley JE, Abogadie FC, Fernandez-Fernandez JM, Dayrell M, Vallis Y, Buckley NJ, Brown DA (2000) Bradykinin, but not muscarinic, inhibition of M-current in rat sympathetic ganglion neurons involves phospholipase C-beta 4. J Neurosci 20:RC105

    PubMed  CAS  Google Scholar 

  76. Haley JE, Delmas P, Offermanns S, Abogadie FC, Simon MI, Buckley NJ, Brown DA (2000) Muscarinic inhibition of calcium current and M current in Galpha q-deficient mice. J Neurosci 20:3973–3979

    PubMed  CAS  Google Scholar 

  77. Heilbronn A, Maienschein V, Carstensen K, Gann W, Zimmermann H (1995) Crucial role of ecto-5′-nucleotidase in differentiation and survival of developing neural cells. Neuroreport 7:257–261

    Google Scholar 

  78. Heine C, Heimrich B, Vogt J, Wegner A, Illes P, Franke H (2006) P2 receptor-stimulation influences axonal outgrowth in the developing hippocampus in vitro. Neuroscience 138:303–311

    PubMed  CAS  Google Scholar 

  79. Hervás C, Pérez-Sen R, Miras-Portugal MT (2003) Coexpression of functional P2X and P2Y nucleotide receptors in single cerebellar granule cells. J Neurosci Res 73:384–399

    PubMed  Google Scholar 

  80. Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531–536

    PubMed  CAS  Google Scholar 

  81. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    PubMed  CAS  Google Scholar 

  82. Houston D, Ohno M, Nicholas RA, Jacobson KA, Harden TK (2005) [(32)P]2-iodo-N(6)-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([(32)P]MRS2500), a novel radioligand for quantification of native P2Y(1) receptors. Br J Pharmacol

  83. Hu HZ, Gao N, Zhu MX, Liu S, Ren J, Gao C et al (2003) Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J Physiol 550:493–504

    PubMed  CAS  Google Scholar 

  84. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806

    PubMed  CAS  Google Scholar 

  85. Huang CM, Kao LS (1996) Nerve growth factor, epidermal growth factor, and insulin differentially potentiate ATP-induced [Ca2+]i rise and dopamine secretion in PC12 cells. J Neurochem 66:124–130

    Google Scholar 

  86. Ikeda SR, Dunlap K (1999) Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprotein Res 33:131–151

    PubMed  CAS  Google Scholar 

  87. Ikeuchi Y, Nishizaki T (1995a) ATP-evoked potassium currents in rat striatal neurons are mediated by a P2 purinergic receptor. Neurosci Lett 190:89–92

    PubMed  CAS  Google Scholar 

  88. Ikeuchi Y, Nishizaki T (1995b) The P2Y purinoceptor-operated potassium channel is possibly regulated by the beta gamma subunits of a pertussis toxin-insensitive G-protein in cultured rat inferior colliculus neurons. Biochem Biophys Res Commun 214:589–596

    PubMed  CAS  Google Scholar 

  89. Ikeuchi Y, Nishizaki T (1996) P2 purinoceptor-operated potassium channel in rat cerebellar neurons. Biochem Biophys Res Commun 218:67–71

    PubMed  CAS  Google Scholar 

  90. Ikeuchi Y, Nishizaki T, Okada Y (1996) Repetitive applications of ATP potentiate potassium current by Ca2+/calmodulin kinase in cultured rat hippocampal neurons. Neurosci Lett 203:115–118

    PubMed  CAS  Google Scholar 

  91. Illes P, Ribeiro JA (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483:5–17

    PubMed  CAS  Google Scholar 

  92. Inbe H, Watanabe S, Miyawaki M, Tanabe E, Encinas JA (2004) Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J Biol Chem 279:19790–19799

    PubMed  CAS  Google Scholar 

  93. Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226

    PubMed  CAS  Google Scholar 

  94. Jacobson KA, Jarvis MF, Williams M (2002) Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 45:4057–4093

    PubMed  CAS  Google Scholar 

  95. Kaczmarek L, Levitan IB (1987) Neuromodulation: the biochemical control of neuronal excitability. Oxford University Press, New York

    Google Scholar 

  96. Kammermeier PJ, Ruiz-Velasco V, Ikeda SR (2000) A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both Galpha q/11 and Gbeta gamma. J Neurosci 20:5623–5629

    PubMed  CAS  Google Scholar 

  97. Kennedy C, Qi AD, Herold CL, Harden TK, Nicholas RA (2000) ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor. Mol Pharmacol 57:926–931

    PubMed  CAS  Google Scholar 

  98. Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    PubMed  CAS  Google Scholar 

  99. Kittner H, Franke H, Fischer W, Schultheis N, Krügel U, Illes P (2003) Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology 28:435–444

    PubMed  CAS  Google Scholar 

  100. Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HH, MacDonald JF (2002) A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 35:1111–1122

    PubMed  CAS  Google Scholar 

  101. Kristufek D, Koth G, Motejlek A, Schwarz K, Huck S, Boehm S (1999) Modulation of spontaneous and stimulation-evoked transmitter release from rat sympathetic neurons by the cognition enhancer linopirdine: insights into its mechanisms of action. J Neurochem 72:2083–2091

    PubMed  CAS  Google Scholar 

  102. Krügel U, Kittner H, Franke H, Illes P (2001) Stimulation of P2 receptors in the ventral tegmental area enhances dopaminergic mechanisms in vivo. Neuropharmacology 40:1084–1093

    PubMed  Google Scholar 

  103. Kubista H, Lechner SG, Wolf AM, Boehm S (2003) Attenuation of the P2Y receptor-mediated control of neuronal Ca2+ channels in PC12 cells by antithrombotic drugs. Br J Pharmacol 138:343–350

    PubMed  CAS  Google Scholar 

  104. Kulick MB, von Kugelgen I (2002) P2Y-receptors mediating an inhibition of the evoked entry of calcium through N-type calcium channels at neuronal processes. J Pharmacol Exp Ther 303:520–526

    PubMed  CAS  Google Scholar 

  105. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–95

    PubMed  CAS  Google Scholar 

  106. Lechner SG, Dorostkar MM, Mayer M, Edelbauer H, Pankevych H, Boehm S (2004) Autoinhibition of transmitter release from PC12 cells and sympathetic neurons through a P2Y receptor-mediated inhibition of voltage-gated Ca2+ channels. Eur J Neurosci 20:2917–2928

    PubMed  Google Scholar 

  107. Lechner SG, Hussl S, Schicker KW, Drobny H, Boehm S (2005) Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels. Mol Pharmacol 68:1387–1396

    PubMed  CAS  Google Scholar 

  108. Lechner SG, Mayer M, Boehm S (2003) Activation of M1 muscarinic receptors triggers transmitter release from rat sympathetic neurons through an inhibition of M-type K+ channels. J Physiol 553:789–802

    PubMed  CAS  Google Scholar 

  109. Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein–protein interactions with the dopamine D1 receptor. Cell 111:219–230

    PubMed  CAS  Google Scholar 

  110. Lim W, Kim SJ, Yan HD, Kim J (1997) Ca2+-channel-dependent and -independent inhibition of exocytosis by extracellular ATP in voltage-clamped rat adrenal chromaffin cells. Pflugers Arch 435:34–42

    PubMed  CAS  Google Scholar 

  111. Liu D-M, Katnik C, Stafford M, Adams DJ (2000) P2Y purinoceptor activation mobilizes intracellular Ca2+ and induces a membrane current in rat intracardiac neurones. J Physiol 526:287–298

    PubMed  CAS  Google Scholar 

  112. Lopez HS, Adams PR (1989) A G protein mediates the inhibition of the voltage-dependent potassium M current by Muscarine, LHRH, substance P and UTP in bullfrog sympathetic neurons. Eur J Neurosci 1:529–542

    PubMed  Google Scholar 

  113. Lu WY, Xiong ZG, Lei S, Orser BA, Dudek E, Browning MD, MacDonald JF (1999) G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2:331–338

    PubMed  CAS  Google Scholar 

  114. Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687–695

    PubMed  CAS  Google Scholar 

  115. Luthardt J, Borvendeg SJ, Sperlagh B, Poelchen W, Wirkner K, Illes P (2003) P2Y(1) receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex. Neurochem Int 42:161–172

    PubMed  CAS  Google Scholar 

  116. Mamedova LK, Joshi BV, Gao ZG, von Kugelgen I, Jacobson KA (2004) Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors. Biochem Pharmacol 67:1763–1770

    PubMed  CAS  Google Scholar 

  117. Man JG de, Winter BY de, Seerden TC, Schepper HU de, Herman AG, Pelckmans PA (2003) Functional evidence that ATP or a related purine is an inhibitory NANC neurotransmitter in the mouse jejunum: study on the identity of P2X and P2Y purinoceptors involved. Br J Pharmacol 140:1108–1116

    PubMed  Google Scholar 

  118. Mark MD, Herlitze S (2000) G-protein mediated gating of inward-rectifier K+ channels. Eur J Biochem 267:5830–5836

    PubMed  CAS  Google Scholar 

  119. Mark MD, Ruppersberg JP, Herlitze S (2000) Regulation of GIRK channel deactivation by Galpha(q) and Galpha(i/o) pathways. Neuropharmacology 39:2360–2373

    PubMed  CAS  Google Scholar 

  120. Marrion NV (1997) Control of M-current. Annu Rev Physiol 59:483–504

    PubMed  CAS  Google Scholar 

  121. Marteau F, Le Poul E, Communi D, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64:104–112

    PubMed  CAS  Google Scholar 

  122. Martire M, Castaldo P, D’Amico M, Preziosi P, Annunziato L, Taglialatela M (2004) M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci 24:592–597

    PubMed  CAS  Google Scholar 

  123. Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 79:1019–1088

    PubMed  CAS  Google Scholar 

  124. Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, Austen KF, Boyce, JA (2003) Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc Natl Acad Sci USA 100:11589–11593

    PubMed  CAS  Google Scholar 

  125. Mellor EA, Maekawa A, Austen KF, Boyce JA (2001) Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci USA 98:7964–7969

    PubMed  CAS  Google Scholar 

  126. Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C (2000) ATP inhibits glutamate release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J Pharmacol Exp Ther 293:172–179

    PubMed  CAS  Google Scholar 

  127. Meng H, Sakakibara M, Nakazawa H, Tokimasa T (2003) Pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid can antagonize the purinoceptor-mediated inhibition of M-current in bullfrog sympathetic neurons. Neurosci Lett 337:93–96

    PubMed  CAS  Google Scholar 

  128. Miras-Portugal MT, Pintor J, Gualix J (2003) Ca2+ signalling in brain synaptosomes activated by dinucleotides. J Membr Biol 194:1–10

    PubMed  CAS  Google Scholar 

  129. Molliver DC, Cook SP, Carlsten JA, Wright DE, McCleskey EW (2002) ATP and UTP excite sensory neurons and induce CREB phosphorylation through the metabotropic receptor, P2Y2. Eur J Neurosci 16:1850–1860

    PubMed  Google Scholar 

  130. Moore D, Chambers J, Waldvogel H, Faull R, Emson P (2000) Regional and cellular distribution of the P2Y(1) purinergic receptor in the human brain: striking neuronal localisation. J Comp Neurol 421:374–384

    PubMed  CAS  Google Scholar 

  131. Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521:107–119

    PubMed  CAS  Google Scholar 

  132. Móran-Jiménez MJ, Matute C (2000) Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system. Brain Res 78:50–58

    Google Scholar 

  133. Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C, Noguchi K, Tominaga M (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23:6058–6062

    PubMed  CAS  Google Scholar 

  134. Mosbacher J, Maier R, Fakler B, Glatz A, Crespo J, Bilbe G (1998) P2Y receptor subtypes differentially couple to inwardly-rectifying potassium channels. FEBS Lett 436:104–110

    PubMed  CAS  Google Scholar 

  135. Moskvina E, Unterberger U, Boehm S (2003) Activity-dependent autocrine–paracrine activation of neuronal P2Y receptors. J Neurosci 23:7479–7488

    PubMed  CAS  Google Scholar 

  136. Mullner C, Vorobiov D, Bera AK, Uezono Y, Yakubovich D, Frohnwieser-Steinecker B, Dascal N, Schreibmayer W. (2000) Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase. J Gen Physiol 115:547–558

    PubMed  CAS  Google Scholar 

  137. Nakamura F, Strittmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci USA 93(19):10465–10470

    PubMed  CAS  Google Scholar 

  138. Nakazawa K, Inoue K (1994) ATP reduces voltage-activated K+ current in cultured rat hippocampal neurons. Pflugers Arch 429:143–145

    PubMed  CAS  Google Scholar 

  139. Nandanan E, Camaioni E, Jang SY, Kim YC, Cristalli G, Herdewijn P, Secrist JA 3rd, Tiwari KN, Mohanram A, Harden TK, Boyer JL, Jacobson KA (1999) Structure-activity relationships of bisphosphate nucleotide derivatives as P2Y1 receptor antagonists and partial agonists. J Med Chem 42:1625–1638

    PubMed  CAS  Google Scholar 

  140. Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    PubMed  CAS  Google Scholar 

  141. Nicholas RA, Watt WC, Lazarowski ER, Li Q, Harden K (1996) Uridine nucleotide selectivity of three phospholipase C-activating P2 receptors: identification of a UDP-selective, a UTP-selective, and an ATP- and UTP-specific receptor. Mol Pharmacol 50:224–229

    PubMed  CAS  Google Scholar 

  142. Nishizaki T, Ikeuchi Y (1996) Adenosine evokes potassium currents by protein kinase C activated via a novel signaling pathway in superior colliculus neurons. FEBS Lett 378:1–6

    PubMed  CAS  Google Scholar 

  143. Norenberg W, Göbel I, Meyer A, Cox SL, Starke K, Trendelenburg AU (2001) Stimulation of mouse cultured sympathetic neurons by uracil but not adenine nucleotides. Neuroscience 103:227–236

    PubMed  CAS  Google Scholar 

  144. Norenberg W, von Kugelgen I, Meyer A, Illes P, Starke K (2000) M-type K+ currents in rat cultured thoracolumbar sympathetic neurones and their role in uracil nucleotide-evoked noradrenaline release. Br J Pharmacol 129:709–723

    PubMed  CAS  Google Scholar 

  145. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  146. North RA, Barnard EA (1997) Nucleotide receptors. Curr Opin Neurobiol 7:346–357

    PubMed  CAS  Google Scholar 

  147. Ortinau S, Laube B, Zimmermann H (2003) ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J Neurosci 23:4996–5003

    PubMed  CAS  Google Scholar 

  148. Papp L, Balazsa T, Kofalvi A, Erdelyi F, Szabo G, Vizi ES, Sperlagh B (2004) P2X receptor activation elicits transporter-mediated noradrenaline release from rat hippocampal slices. J Pharmacol Exp Ther 310:973–980

    PubMed  CAS  Google Scholar 

  149. Peleg S, Varon D, Ivanina T, Dessauer CW, Dascal N (2002) G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron 33:87–99

    PubMed  CAS  Google Scholar 

  150. Peoples RW, Li C (1998) Inhibition of NMDA-gated ion channels by the P2 purinoceptor antagonists suramin and reactive blue 2 in mouse hippocampal neurones. Br J Pharmacol 124:400–408

    PubMed  CAS  Google Scholar 

  151. Pooler AM, Guez DH, Benedictus R, Wurtman RJ (2005) Uridine enhances neurite outgrowth in nerve growth factor-differentiated PC12 cells. Neuroscience 134:207–214

    PubMed  CAS  Google Scholar 

  152. Powell AD, Teschemacher AG, Seward EP (2000) P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. J Neurosci 20:606–616

    PubMed  CAS  Google Scholar 

  153. Price GD, Robertson SJ, Edwards FA (2003) Long-term potentiation of glutamatergic synaptic transmission induced by activation of presynaptic P2Y receptors in the rat medial habenula nucleus. Eur J Neurosci 17:844–850

    PubMed  Google Scholar 

  154. Qi AD, Zambon AC, Insel PA, Nicholas RA (2001) An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. Mol Pharmacol 60:1375–1382

    PubMed  CAS  Google Scholar 

  155. Queiroz G, Talaia C, Goncalves J (2003) ATP modulates noradrenaline release by activation of inhibitory P2Y receptors and facilitatory P2X receptors in the rat vas deferens. J Pharmacol Exp Ther 307:809–815

    PubMed  CAS  Google Scholar 

  156. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  157. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    PubMed  CAS  Google Scholar 

  158. Robbins J (2001) KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 90:1–19

    PubMed  CAS  Google Scholar 

  159. Robertson SJ, Ennion SJ, Evans RJ, Edwards FA (2001) Synaptic P2X receptors. Curr Opin Neurobiol 11:378–386

    PubMed  CAS  Google Scholar 

  160. Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295

    PubMed  CAS  Google Scholar 

  161. Ruan H-Z, Birder LA, de Groat WC, Tai C, Roppolo J, Buffington CA, Burnstock G (2005a) Localization of P2X and P2Y receptors in dorsal root ganglia of the cat. J Histochem Cytochem 53:1273–1282

    PubMed  CAS  Google Scholar 

  162. Ruan H-Z, Birder LA, Xiang Z, Chopra B, Buffington T, Tai C, Roppolo JR, de Groat WC, Burnstock G (2005b) Expression of P2X and P2Y receptors in the intramural parasympathetic ganglia of the cat urinary bladder Am J Physiol Renal Physiol (in press)

  163. Ruan H-Z, Burnstock G (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol 120:415–426

    PubMed  CAS  Google Scholar 

  164. Safiulina VF, Kasyanov AM, Sokolova E, Cherubini E, Giniatullin R (2005) ATP contributes to the generation of network-driven giant depolarizing potentials in the neonatal rat hippocampus. J Physiol 15(565):981–992

    Google Scholar 

  165. Saitow F, Murakoshi T, Suzuki H, Konishi S (2005) Metabotropic P2Y purinoceptor-mediated presynaptic and postsynaptic enhancement of cerebellar GABAergic transmission. J Neurosci 25:2108–2116

    PubMed  CAS  Google Scholar 

  166. Sak K, Webb TE (2002) A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys 397:131–136

    PubMed  CAS  Google Scholar 

  167. Sanada M, Yasuda H, Omatsu-Kanbe M, Sango K, Isono T, Matsuura H, Kikkawa R (2002) Increase in intracellular Ca(2+) and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion neurons. Neuroscience 111:413–422

    PubMed  CAS  Google Scholar 

  168. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44:242–250

    PubMed  Google Scholar 

  169. Scamps F, Vassort G (1994) Pharmacological profile of the ATP-mediated increase in L-type calcium current amplitude and activation of a non-specific cationic current in rat ventricular cells. Br J Pharmacol 113:982–986

    PubMed  CAS  Google Scholar 

  170. Scheibler P, Pesic M, Franke H, Reinhardt R, Wirkner K, Illes P, Norenberg W (2004) P2X2 and P2Y1 immunofluorescence in rat neostriatal medium-spiny projection neurones and cholinergic interneurones is not linked to respective purinergic receptor function. Br J Pharmacol 143:119–131

    PubMed  CAS  Google Scholar 

  171. Selyanko AA, Brown DA (1996) Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron 16:151–162

    PubMed  CAS  Google Scholar 

  172. Simon J, Filippov AK, Goransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA (2002) Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277:31390–31400

    PubMed  CAS  Google Scholar 

  173. Skladchikova G, Ronn LC, Berezin V, Bock E (1999) Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 57:207–218

    PubMed  CAS  Google Scholar 

  174. Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179

    PubMed  CAS  Google Scholar 

  175. Stevens CF (2004) Presynaptic function. Curr Opin Neurobiol 14:341–345

    PubMed  CAS  Google Scholar 

  176. Stjarne L, Astrand P (1985) Relative pre- and postjunctional roles of noradrenaline and adenosine 5′-triphosphate as neurotransmitters of the sympathetic nerves of guinea-pig and mouse vas deferens. Neuroscience 14:929–946

    PubMed  CAS  Google Scholar 

  177. Suh BC, Hille B (2002) Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35:507–520

    PubMed  CAS  Google Scholar 

  178. Tokimasa T, Akasu T (1990) ATP regulates muscarine-sensitive potassium current in dissociated bull-frog primary afferent neurones. J Physiol 426:241–264

    PubMed  CAS  Google Scholar 

  179. Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956

    PubMed  CAS  Google Scholar 

  180. Trendelenburg AU, Bultmann R (2000) P2 receptor-mediated inhibition of dopamine release in rat neostriatum. Neuroscience 96:249–252

    PubMed  CAS  Google Scholar 

  181. van Giezen JJ, Humphries RG (2005) Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin Thromb Hemost 31:195–204

    PubMed  Google Scholar 

  182. Vartian N, Boehm S (2001) P2Y receptor-mediated inhibition of voltage-activated Ca2+ currents in PC12 cells. Eur J Neurosci 13:899–908

    PubMed  CAS  Google Scholar 

  183. Vartian N, Moskvina E, Scholze T, Unterberger U, Allgaier C, Boehm S (2001) UTP evokes noradrenaline release from rat sympathetic neurons by activation of protein kinase C. J Neurochem 77:876–885

    PubMed  CAS  Google Scholar 

  184. Vial C, Roberts JA, Evans RJ (2004a) Molecular properties of ATP-gated P2X receptor ion channels. Trends Pharmacol Sci 25:487–493

    PubMed  CAS  Google Scholar 

  185. Vial C, Tobin AB, Evans RJ (2004b) G-protein-coupled receptor regulation of P2X(1) receptors does not involve direct channel phosphorylation. Biochem J 382:101–110

    PubMed  CAS  Google Scholar 

  186. von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther (in press)

  187. von Kugelgen I, Koch H, Starke K (1997a) P2 receptor-mediated inhibition of serotonin release in rat brain cortex. Neuropharmacology 36:1221–1227

    Google Scholar 

  188. von Kugelgen I, Kurz K, Starke K (1993) Axon terminal P2-purinoceptors in feedback control of sympathetic transmitter release. Neuroscience 56:263–267

    Google Scholar 

  189. von Kügelgen I, Nörenberg W, Illes P, Schobert A, Starke K (1997b) Differences in the mode of stimulation of cultured rat sympathetic neurons between ATP and UDP. Neuroscience 78:935–941

    Google Scholar 

  190. von Kugelgen I, Spath L, Starke K (1994) Evidence for P2- purinoceptor-mediated inhibition of noradrenaline release in at brain cortex. Br J Pharmacol 113:815–822

    Google Scholar 

  191. Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, Gonzalez FA, Seye CI, Erb L (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31:169–183

    PubMed  CAS  Google Scholar 

  192. White PJ, Webb TE, Boarder MR (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol 63:1356–1363

    PubMed  CAS  Google Scholar 

  193. Wirkner K, Koles L, Thummler S, Luthardt J, Poelchen W, Franke H, Furst S, Illes P (2002) Interaction between P2Y and NMDA receptors in layer V pyramidal neurons of the rat prefrontal cortex. Neuropharmacology 42:476–488

    PubMed  CAS  Google Scholar 

  194. Wirkner K, Schweigel J, Gerevich Z, Franke H, Allgaier C, Barsoumian EL, Draheim H, Illes P (2004) Adenine nucleotides inhibit recombinant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type. Br J Pharmacol 141:141–151

    PubMed  CAS  Google Scholar 

  195. Xiang Z, Burnstock G (2005a) Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin. Histochem Cell Biol 124:379–390

    PubMed  CAS  Google Scholar 

  196. Xiang Z, Burnstock G (2005b) Distribution of P2Y(6) and P2Y(12) receptor: their colocalization with calbindin, calretinin and nitric oxide synthase in the guinea pig enteric nervous system. Histochem Cell Biol (in press)

  197. Xu J, Tse FW, Tse A (2003) ATP triggers intracellular Ca2+ release in type II cells of the rat carotid body. J Physiol 549:739–747

    PubMed  CAS  Google Scholar 

  198. Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr. (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608–8615

    PubMed  CAS  Google Scholar 

  199. Zhang FL, Luo L, Gustafson E, Palmer K, Qiao X, Fan X, Yang S, Laz TM, Bayne M, Monsma F Jr (2002) P2Y(13): identification and characterization of a novel Galphai-coupled ADP receptor from human and mouse. J Pharmacol Exp Ther 301:705–713

    PubMed  CAS  Google Scholar 

  200. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    PubMed  CAS  Google Scholar 

  201. Zimmermann H (1994) Signalling via ATP in the nervous system. Trends Neurosci 17:420–426

    PubMed  CAS  Google Scholar 

  202. Zimmermann K, Reeh PW, Averbeck B (2002) ATP can enhance the proton-induced CGRP release through P2Y receptors and secondary PGE(2) release in isolated rat dura mater. Pain 97:259–265

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by grants from the Austrian Science Fund, FWF (P15797 and P17611), and from the Virologiefonds of the Medical University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Boehm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussl, S., Boehm, S. Functions of neuronal P2Y receptors. Pflugers Arch - Eur J Physiol 452, 538–551 (2006). https://doi.org/10.1007/s00424-006-0063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0063-8

Keywords

Navigation