Skip to main content
Log in

Adenosine receptor ligands protect against a combination of apoptotic and necrotic cell death in cerebellar granule neurons

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Agonists at A1 receptors and antagonists at A2A receptors are known to be neuroprotective against excitotoxicity. We set out to clarify the mechanisms involved by studying interactions between adenosine receptor ligands and endogenous glutamate in cultures of rat cerebellar granule neurons (CGNs). Glutamate and the selective agonist N-methyl-d-aspartate (NMDA), applied to CGNs at 9 div (days in vitro), both induced cell death in a concentration-dependent manner, which was attenuated by treatment with the NMDA receptor antagonists dizocilpine, d-2-amino-5-phosphono-pentanoic acid (d-AP5) or kynurenic acid (KYA), but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Glutamate toxicity was reduced in the presence of all of the following: cyclosporin A (CsA), a blocker of the membrane permeability transition pore, the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone (Z-DEVD-fmk), the poly (ADP-ribose) polymerase (PARP-1) inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ), and nicotinamide. This is indicative of involvement of both apoptotic and necrotic processes. The A1 receptor agonist, N 6-cyclopentyladenosine (CPA), and the A2A receptor antagonist 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazo-5-yl-amino]ethyl)phenol (ZM241385) afforded significant protection, while the A1 receptor blocker 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxyamidoadenosine (CGS21680) had no effect. These results confirm that glutamate-induced neurotoxicity in CGNs is mainly via the NMDA receptor, but show that a form of cell death which exhibits aspects of both apoptosis and necrosis is involved. The protective activity of A1 receptor activation or A2A receptor blockade occurs against this mixed profile of cell death, and appears not to involve the selective inhibition of classical apoptotic or necrotic cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbracchio MP, Cattabeni F (1999) Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative disease. Ann N Y Acad Sci 890:79–92

    Article  PubMed  CAS  Google Scholar 

  • Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK (2003) Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci 23:10982–10987

    PubMed  CAS  Google Scholar 

  • Almeida CG, de Mendonca A, Cunha RA, Ribeiro JA (2003) Adenosine promotes neuronal recovery from reactive oxygen species induced lesion in rat hippocampal slices. Neurosci Lett 339:127–130

    Article  PubMed  CAS  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    Article  PubMed  CAS  Google Scholar 

  • Ascher P, Nowak L (1998) The role of divalent cations in the NMDA responses of mouse central neurones in culture. J Physiol (London) 399:247–266

    Google Scholar 

  • Atlante A, Gagliardi S, Minervini GM, Marra E, Passarella S, Calissano P (1996) Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells. Neuroreport 7:2519–2523

    Article  PubMed  CAS  Google Scholar 

  • Becker EBE, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72:1–25

    Article  PubMed  CAS  Google Scholar 

  • Behan WMH, Stone TW (2000) Role of kynurenines in the neurotoxic actions of kainic acid. Br J Pharmacol 129:1764–1770

    Article  PubMed  CAS  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154:85–87

    Article  PubMed  CAS  Google Scholar 

  • Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN (2006) Adenosine 5 ‘-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Therap 112:358–404

    Article  CAS  Google Scholar 

  • Carpenedo R, Meli E, Peruginelli F, Pellegrini-Giampietro DE, Moroni F (2002) Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures. J Neurochem 82:1465–1471

    Article  PubMed  CAS  Google Scholar 

  • Cebers G, Zhivotovsky B, Ankarcrona M, Liljuquist S (1997) AMPA neurotoxicity in cultured cerebellar granule neurons: mode of cell death. Brain Res Bull 43:393–403

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Huang ZH, Ma JY, Zhu JM, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA (1999) A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19:9192–9200

    PubMed  CAS  Google Scholar 

  • Choi DW, Maulucci-Gedde M, Kriedstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7:357–368

    PubMed  CAS  Google Scholar 

  • Connick JH, Stone TW (1989) Quinolinic acid neurotoxicity: protection by intracerebral phenylisopropyl adenosine (PIA) and potentiation by hypotension. Neurosci Lett 101:191–196

    Article  PubMed  CAS  Google Scholar 

  • Connick JH, Heywood GC, Sills GJ, Thompson GG, Brodie MJ, Stone TW (1992) Nicotinylalanine increases cerebral kynurenic acid content and has anticonvulsant activity. Gen Pharmacol 23:235–239

    PubMed  CAS  Google Scholar 

  • Cosi C, Suzuki H, Milani D, Facci L, Menegazzi M, Vantini G, Kanai Y, Skaper SD (1994) Poly(ADP-ribose) polymerase—early involvement in glutamate-induced neurotoxicity in cultured cerebellar granule cells. J Neurosci Res 39:38–46

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glial metabolites of tryptophan and excitotoxicity: coming unglued. Exp Neurol 197:4–7

    Article  PubMed  CAS  Google Scholar 

  • Cozzi A, Carpenedo R, Moroni F (1999) Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2YL]-benzenesulfonamide (Ro 61–8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab 19:771–777

    Article  PubMed  CAS  Google Scholar 

  • D’Alimonte I, Ballerini P, Nargi E, Buccella S, Giuliani P, Di Iorio P, Caciagli F, Ciccarelli R (2007) Staurosporine-induced apoptosis in astrocytes is prevented by A(1) adenosine receptor activation. Neurosci Lett 418:66–71

    Article  PubMed  CAS  Google Scholar 

  • Dall’lgna OP, Porciuncula LO, Souza DO, Cunha RA, Lara DR (2003) Neuroprotection by caffeine and adenosine A(2A) receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138:1207–1209

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (2004) Deadly conversations: nuclear-mitochondrial cross-talk. J Bioenerg Biomembr 36:287–294

    Article  PubMed  CAS  Google Scholar 

  • de Mendonca A, Sebastiao AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 6:1097–1100

    Article  PubMed  Google Scholar 

  • Dessi F, Charriaut-Mariangue C, Khrestchatisky M, Ben-Ari Y (1993) Glutamate-induced neuronal death is not a programmed cell death in cerebellar culture. J Neurochem 60:1953–1955

    Article  PubMed  CAS  Google Scholar 

  • Domenici MR, Scotti de Carolis A, Sagratella A (1996) Block by N6-L-phenylisopropyladenosine of the electrophysiological and morphological correlates of hippocampal ischaemic injury in the gerbil. Br J Pharmacol 118:1551–1557

    PubMed  CAS  Google Scholar 

  • Du YS, Bales KR, Dodel RC, Hamilton-Byrd E, Horn JW, Czilli DL, Simmons LK, Ni BH, Paul SM (1997) Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci USA 94:11657–11662

    Article  PubMed  CAS  Google Scholar 

  • Eschke D, Brand A, Scheibler P, Hess S, Eger K, Allgaier C, Nieber K (2001) Effect of an adenosine A(1) receptor agonist and a novel pyrimidoindole on membrane properties and neurotransmitter release in rat cortical and hippocampal neurons. Neurochem Int 38:391–398

    Article  PubMed  CAS  Google Scholar 

  • Fatokun AA, Stone TW, Smith RA (2006) Hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells: the effects of glutamate and protection by purines. Bone 39:542–551

    Article  PubMed  CAS  Google Scholar 

  • Fatokun AA, Stone TW, Smith RA (2007) Cell death in rat cerebellar granule neurones induced by hydrogen peroxide in vitro: mechanisms and protection by adenosine receptor ligands. Brain Res 1132:193–202

    Article  PubMed  CAS  Google Scholar 

  • Fossati S, Cipriani G, Moroni F, Chiarugi A (2007) Neither energy collapse nor transcription underlie in vitro neurotoxicity of poly(ADP-ribose) polymerase hyper-activation. Neurochem Int 50:203–210

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Ferre S, Torvinen M, Gines S, Hilion J, Ciruela F, Canela EI, Mallol J, Casado V, Lluis C, Fuxe K (2001) Adenosine/dopamine receptor-receptor interactions in the central nervous system. Drug Devel Res 52:296–302

    Article  CAS  Google Scholar 

  • Gao Y, Phillis JW (1994) CGS 15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic injury in the mongolian gerbil. Life Sci 55:PL61–PL65

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MP, Monyer H, Weiss JH, Choi DW (1988) Adenosine reduces cortical neuronal injury induced by oxygen or glucose deprivation in vitro. Neurosci Lett 89:323–327

    Article  PubMed  CAS  Google Scholar 

  • Hannon JP, Bray-French KM, Phillips RM, Fozard JR (1998) Further pharmacological characterization of the adenosine receptor subtype mediating inhibition of oxidative burst in human isolated neutrophils. Drug Dev Res 43:214–224

    Article  CAS  Google Scholar 

  • Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148

    PubMed  CAS  Google Scholar 

  • Hou ST, Jiang SX, Desbois A, Huang D, Kelly J, Tessier L, Karchewski L, Kappler J (2006) Calpain-cleaved collapsin response mediator protein-3 induces neuronal death after glutamate toxicity and cerebral ischemia. J Neurosci 26:2241–2249

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Smith RA, Stone TW (1998a) Protection against hippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist. Brain Res 800:328–335

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Smith RA, Stone TW (1998b) Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists. Neuroscience 85:229–237

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, Nishida E (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem 272:18518–18521

    Article  PubMed  CAS  Google Scholar 

  • Kelly M, Bailey A, Ledent C, Kitchen I, Hourani S (2004) Characterization of [H-3]ZM241385 binding in wild-type and adenosine A(2A) receptor knockout mice. Eur J Pharmacol 504:55–59

    Article  PubMed  CAS  Google Scholar 

  • Kure S, Tominaga T, Yoshimoto T, Tada K, Narisawa K (1991) Glutamate triggers internucleosomal DNA cleavage in neuronal cells. Biochem Biophys Res Commun 179:39–45

    Article  PubMed  CAS  Google Scholar 

  • Lasley RD, Kristo G, Keith BJ, Mentzer RM Jr (2007) The A(2a)/A(2b) receptor antagonist ZM-241385 blocks the cardioprotective effect of adenosine agonist pretreatment in in vivo rat myocardium. Amer J Physiol Heart Circ Physiol 292:H426–H431

    Article  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  PubMed  CAS  Google Scholar 

  • Lau Y-S, Mouradian MM (1993) Protection against acute MPT-induced dopamine depletion in mice by adenosine. J Neurochem 60:768–771

    Article  PubMed  CAS  Google Scholar 

  • Li XH, Eisenach JC (2005) Adenosine reduces glutamate release in rat spinal synaptosomes. Anesthesiology 103:1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Lin YP, Desbois A, Jiang S, Hou ST (2004) Group B vitamins protect murine cerebellar granule cells from glutamate/NMDA toxicity. Neuroreport 15:2241–2244

    Article  PubMed  CAS  Google Scholar 

  • Lopes LV, Cunha RA, Ribeiro JA (1999) ZM 241385, an adenosine A(2A) receptor antagonist, inhibits hippocampal A(1) receptor responses. Eur J Pharmacol 383:395–398

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46:281–309

    Article  PubMed  CAS  Google Scholar 

  • Monopoli A, Lozza G, Forloni A, Mattavelli A, Ongini E (1998) Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. NeuroReport 9:3955–3959

    Article  PubMed  CAS  Google Scholar 

  • Moroni F, Meli E, Peruginelli F, Chiarugi A, Cozzi A, Picca R, Romagnoli P, Pellicciari R, Pellegrini-Giampietro DE (2001) Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ 8:921–932

    Article  PubMed  CAS  Google Scholar 

  • Ogura A, Miyamoto M, Kudo Y (1988) Neuronal death in vitro: parallelism between survivability of hippocampal neurons and sustained elevation of cytosolic Ca2+ after exposure to glutamate receptor agonist. Exp Brain Res 73:447–458

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1982) An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW (1995) The effect of selective A1 and A2A adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 705:79–84

    Article  PubMed  CAS  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  PubMed  CAS  Google Scholar 

  • Poucher SM, Keddie JR, Singh P, Stoggall SM, Caulkett PWR, Jones G, Collis MG (1995) The in vitro pharmacology of ZM-241385, a potent, nonxanthine, A(2a) selective adenosine receptor antagonist. Br J Pharmacol 115:1096–1102

    PubMed  CAS  Google Scholar 

  • Prass K, Dirnagl U (1998) Glutamate antagonists in therapy and stroke. Rest Neurol Neurosci 13:3–10

    CAS  Google Scholar 

  • Rebola N, Rodrigues RJ, Oliveira CR, Cunha RA (2005) Different roles of adenosine A(1), A(2A) and A(3) receptors in controlling kainate-induced toxicity in cortical cultured neurons. Neurochem Int 47:317–325

    Article  PubMed  CAS  Google Scholar 

  • Ruiz F, Alvarez G, Ramos M, Hernandez M, Bogonez E, Satrustegui J (2000) Cyclosporin A targets involved in protection against glutamate excitotoxicity. Eur J Pharmacol 404:29–39

    Article  PubMed  CAS  Google Scholar 

  • Segal JA, Skolnick P (2000) Spermine-induced toxicity in cerebellar granule neurons is independent of its actions at NMDA receptors. J Neurochem 74:60–69

    Article  PubMed  CAS  Google Scholar 

  • Sei Y, von Lubitz DJKE, Abbraccchio MP, Ji XD, Jacobson KA (1997) Adenosine A3 receptor agonist-induced neurotoxicity in rat cerebellar granule neurons. Drug Dev Res 40:267–273

    Article  CAS  Google Scholar 

  • Sheardown MJ, Knutsen LJS (1996) Unexpected neuroprotection observed with the adenosine A2A receptor agonist CGS21680. Drug Develop Res 39:108–114

    Article  CAS  Google Scholar 

  • Slagsvold HH, Marvik OJ, Eidem G, Kristoffersen N, Paulsen RE (2000) Detection of high molecular weight DNA fragments characteristic of early stage apoptosis in cerebellar granule cells exposed to glutamate. Exp Brain Res 135:173–178

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Stone TW, Smith RA (2007) Neurotoxicity of tryptophan metabolites. Biochem Soc Trans 35:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Smith RA, Walker T, Xie X, Hou ST (2003) Involvement of the transcription factor E2F1/Rb in kainic acid-induced death of murine cerebellar granule cells. Mol Brain Res 116:70–79

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Behan WM (2007) Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A(2A) receptor antagonist. J Neurosci Res 85:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2002) Purines and neuroprotection. Adv Exp Med Biol 513:249–280

    PubMed  CAS  Google Scholar 

  • Stone TW (2005) Adenosine, neurodegeneration and neuroprotection. Neurol Res 27:161–168

    Article  PubMed  CAS  Google Scholar 

  • Vissiennon Z, Sichardt K, Koetter U, Brattström A, Nieber K (2006) Valerian extract Ze 911 inhibits postsynaptic potentials by activation of adenosine A1 receptors in rat cortical neurons. Planta Med 72:579–583

    Article  PubMed  CAS  Google Scholar 

  • Wirkner K, Gerevich Z, Krause T, Gunther A, Koles L, Schneider D, Norenberg W, Illes P (2004) Adenosine A(2A) receptor-induced inhibition of NMDA and GABA(A) receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology 46:994–1007

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Saggau P (1994) Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12:1139–1148

    Article  PubMed  CAS  Google Scholar 

  • Yan GM, Ni BH, Weller M, Wood KA, Paul SM (1994) Depolarization or glutamate-receptor activation blocks apoptotic cell-death of cultured CGNs. Brain Res 656:43–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy of the University of Glasgow (AAF). AAF was in receipt of a Nigerian Government Scholarship during part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatokun, A.A., Stone, T.W. & Smith, R.A. Adenosine receptor ligands protect against a combination of apoptotic and necrotic cell death in cerebellar granule neurons. Exp Brain Res 186, 151–160 (2008). https://doi.org/10.1007/s00221-007-1218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1218-3

Keywords

Navigation