Skip to main content

Use of PGPR to Optimize Soil and Crop Productivity Under Abiotic Stress

  • Chapter
  • First Online:
Plant, Soil and Microbes in Tropical Ecosystems

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 744 Accesses

Abstract

Based on natural and anthropogenic activities, the soil quality has depleted gradually which is also mediated through unpredictably changed environmental conditions. As a consequence, a challenge has been raised before farmers and nations to compensate the degraded soil quality. To replenish the soil quality, farmers deploy synthetic fertilizer which is an unsustainable practice and further lead conditions worse by the diminished biological activity, increased level of toxicity, decreased fertility, etc. As a comparatively safe and sustainable alternative, PGPRs have been characterized as they could always assist plants against various challenges like nutrient unavailability, abiotic stresses, and pathogens. Many of those PGPRs which have been studied for their beneficial impacts are now used on a commercial scale for alleviating abiotic and biotic stresses of crop plants. Some of the PGPRs with wonderful ex situ and in situ performances are Azospirillum brasilense, Azospirillum lipoferum, Bacillus, Pseudomonas, Acinetobacter, Alcaligenes faecalis, Stenotrophomonas, Pseudomonas, Rahnella, Pseudomonas fluorescens, Bacillus megaterium, Bacillus licheniformis, Proteus mirabilis, Achromobacter xylosoxidans, Gluconoacetobacter diazotrophicus, Azoarcus, Pseudomonas migulae, Brachybacterium saurashtrense, Brevibacterium casei, Haererohalobacter, and many more which have surely assisted plant including a list of Arabidopsis, maize, wheat, potato, tomato, capsicum, etc. This chapter unfolds important mechanisms and strategies used by PGPRs to help crop plant cope up the various biotic and abiotic stresses and increase soil and plant health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON et al (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13(1):37–44

    Article  CAS  Google Scholar 

  • Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit Rev Plant Sci 25(1):1–21

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46(1):45–55

    Article  CAS  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6(4):239–246. https://doi.org/10.1080/17429145.2010.545147

    Article  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini A, de Souza R, Passaglia LM (2016) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400(1–2):193–207

    Article  CAS  Google Scholar 

  • Ansari FA, Ahmad I, Pichtel J (2019) Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Appl Soil Ecol 143:45–54

    Article  Google Scholar 

  • Asch F, Padham JL (2005) Root associated bacteria suppress symptoms of iron toxicity in lowland rice. In: Tielkes E, Hülsebusch C, Häuser I, Deininger A, Becker K (eds) The global food & product chain-dynamics, innovations, conflicts, strategies. MDD GmbH, Stuttgart, p 276

    Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    Article  CAS  PubMed  Google Scholar 

  • Aslam F, Ali B (2018) Halotolerant bacterial diversity associated with Suaeda fruticosa (L.) Forssk. improved growth of maize under salinity stress. Agronomy 8(8):131

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  PubMed  CAS  Google Scholar 

  • Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366(1–2):93–105

    Article  CAS  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38

    PubMed  Google Scholar 

  • Barriuso J, Solano BR, Mañero FJG (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672. https://doi.org/10.1094/PHYTO-98-6-0666

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65(5):497–503

    Article  CAS  PubMed  Google Scholar 

  • Bremer E, Kramer R (2019) Responses of microorganisms to osmotic stress. Annu Rev Microbiol 73:313–334

    Article  CAS  PubMed  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30:343–350

    Article  Google Scholar 

  • Chaudhry V, Srivastava S, Chauhan PS, Singh PC, Mishra A, Nautiyal CS (2012) Plant growth promoting rhizobacteria-mediated amelioration of abiotic and biotic stresses for increasing crop productivity. Improving crop productivity in sustainable agriculture. Wiley‐VCH, Weinheim, pp 133–153

    Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Huang L, Li KT (2019) Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. World J Microbiol Biotechnol 35(5):68

    Article  PubMed  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075. https://doi.org/10.1094/MPMI-21-8-1067

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163

    Article  PubMed  PubMed Central  Google Scholar 

  • Crane TA, Roncoli C, Hoogenboom G (2011) Adaptation to climate change and climate variability: the importance of understanding agriculture as performance. NJAS-Wageningen J Life Sci 57(3–4):179–185

    Article  Google Scholar 

  • Cura JA, Franz DR, Filosofía JE, Balestrasse KB, Burgueno LE (2017) Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 5(3):41

    Article  PubMed Central  CAS  Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Rosario Espuny M, Rodríguez Carvajal MA, SoriaDiaz ME, Gil Serrano AM, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10(4):348–358

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    Article  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962

    Article  CAS  Google Scholar 

  • Dutta J, Handique PJ, Thakur D (2015) Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front Microbiol 6:1252

    Article  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571

    Article  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10(1):1–9

    CAS  PubMed  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47(2):197–205

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth SJ, Alam P, Alyemeni MN, Ahmad P (2018) Interactive effects of nutrients and Bradyrhizobium japonicum on the growth and root architecture of soybean (Glycine max L.). Front Microbiol 9:1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791

    Article  PubMed  PubMed Central  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35(7):973–978

    Article  CAS  Google Scholar 

  • El-Daim IAA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379:337–350. https://doi.org/10.1007/s11104-014-2063-3

    Article  CAS  Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot 159:55–65

    Article  CAS  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Tabassum MA (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita DBSMA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Plant responses to drought stress. Springer, Berlin, pp 1–33

    Google Scholar 

  • Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Siddique KH (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217

    Article  CAS  PubMed  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with rhizobium and PGPR on growth and antioxidant status of Viciafaba L. under copper stress. C R Biol 338(4):241–254

    Article  PubMed  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188. https://doi.org/10.1016/j.apsoil.2008.04.005

    Article  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders. Agric Water Manag 78(1–2):15–24

    Article  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49(6):742–750

    Article  CAS  Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Article  PubMed  Google Scholar 

  • German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32:259–264

    Article  Google Scholar 

  • Ghanem ME, van Elteren J, Albacete A, Quinet M, Martínez-Andújar C, Kinet JM, Lutts S (2009) Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicum) in relation to a heterogeneous distribution of toxic ions in flower organs. Funct Plant Biol 36(2):125–136

    Article  CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412

    Article  CAS  Google Scholar 

  • Gupta S, Kaushal R, Sood G, Dipta B, Kirti S, Spehia RS (2019) Water stress amelioration and plant growth promotion in capsicum plants by osmotic stress tolerant bacteria. Int J Plant Soil Sci 29:1–12

    Article  CAS  Google Scholar 

  • Hall AE (2000) Crop responses to environment. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Hidri R, Barea JM, Mahmoud OMB, Abdelly C, Azcon R (2016) Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions. J Plant Physiol 201:28–41

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58(9):2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7(8):1267–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56(4):327–333

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80(1):23–36

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition. Chilean J Agric Res 73(3):213–219

    Article  Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Jing YX (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6(1):1–9

    CAS  Google Scholar 

  • Joshi M, Srivastava R, Sharma AK, Prakash A (2012) Screening of resistant varieties and antagonistic Fusarium oxysporum for biocontrol of Fusarium wilt of chilli. J Plant Pathol Microb 3(134):2

    Google Scholar 

  • Karadeniz A, Topcuoglu SF, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22(10):1061–1064

    Article  CAS  Google Scholar 

  • Karasov TL, Chae E, Herman JJ, Bergelson J (2017) Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29(4):666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlen DL (2005) Tilth. Encyclopedia of soils in the environment. Elsevier Academic Press, San Diego, pp 168–174

    Book  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227

    Article  Google Scholar 

  • Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res 4:31–41. https://doi.org/10.1007/s40003-014-0139-1

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7(1):1–19

    Article  CAS  Google Scholar 

  • Khan MA, Shaukat SS, Shahzad A, Arif H (2012) Growth and yield responses of pearl millet (Pennisetum glaucum [L.] R. Br.) irrigated with treated effluent from waste stabilization ponds. Pak J Bot 44(3):905–910

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44

    Article  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2–3):245–252

    Article  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant–microbe interaction confer stress tolerance in plants: a review. Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Bajpai R, Sarkar A, Mishra RK, Gupta VK, Singh HB, Sarma BK (2019) Identification, characterization and expression profiles of Fusarium udum stress-responsive WRKY transcription factors in Cajanus cajan under the influence of NaCl stress and Pseudomonas fluorescens OKC. Sci Rep 9(1):1–9

    Article  Google Scholar 

  • Kushwaha B, Jadhav I, Verma HN, Geethadevi A, Parashar D, Jadhav K (2019) Betaine accumulation suppresses the de-novo synthesis of ectoine at a low osmotic concentration in Halomonas sp. SBS 10, a bacterium with broad salinity tolerance. Mol Biol Rep 46(5):4779–4786

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102(10):967–973

    Article  CAS  PubMed  Google Scholar 

  • Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Manaf HH, Zayed MS (2015) Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Ann Agric Sci 60(2):219–226

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4(4):806–811

    Article  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Jha B (2013) Microbial exopolysaccharides. In: Rosenberg E, De Long EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 179–192

    Chapter  Google Scholar 

  • Mishra J, Fatima T, Arora NK (2018) Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. In: Plant microbiome: stress response. Springer, Singapore, pp 127–163

    Chapter  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701

    Article  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014a) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014

    Article  CAS  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8(21):5762–5766

    Article  CAS  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed Central  CAS  Google Scholar 

  • Ortiz N, Armada E, Duque E, Roldan A, Azcon R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    Article  CAS  PubMed  Google Scholar 

  • Padgham J (2009) Agricultural development under a changing climate: opportunities and challenges for adaptation. World Bank, Washington, DC

    Book  Google Scholar 

  • Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35(3):877–902

    Article  CAS  Google Scholar 

  • Patel D, Saraf M (2013) Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. Eur J Soil Biol 55:47–54

    Article  CAS  Google Scholar 

  • Piccoli P, Travaglia C, Cohen A, Sosa L, Cornejo P, Masuelli R, Bottini R (2011) An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul 64(2):207–210

    Article  CAS  Google Scholar 

  • Pishchik VN, Provorov NA, Vorobyov NI, Chizevskaya EP, Safronova VI, Tuev AN, Kozhemyakov AP (2009) Interactions between plants and associated bacteria in soils contaminated with heavy metals. Microbiology 78(6):785–793

    Article  CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 247–260

    Chapter  Google Scholar 

  • Qian J, Li D, Zhan G, Zhang L, Su W, Gao P (2012) Simultaneous biodegradation of Ni–citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila. Bioresour Technol 116:66–73

    Article  CAS  PubMed  Google Scholar 

  • Qu AL, Ding YF, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Rajendrakumar CS, Suryanarayana T, Reddy AR (1997) DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett 410(2–3):201–205

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Lee KJ, Lee WH, Banu JR (2005) Growth of Brassica juncea under chromium stress: influence of siderophores and indole 3 acetic acid producing rhizosphere bacteria. J Environ Biol 26(4):693–699

    CAS  PubMed  Google Scholar 

  • Reddy PP (2014) Plant growth promoting rhizobacteria for horticultural crop protection. Springer India, New Delhi

    Book  Google Scholar 

  • Rosier A, Medeiros FH, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428:35–55

    Article  CAS  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28(4):1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P (2014) Bacteria isolated from roots and rhizosphere of Vitisvinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant 151(4):359–374

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26. https://doi.org/10.1007/s00374-009-0401-z

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Saum SH, Muller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189(19):6968–6975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141(1):1–26

    Article  CAS  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216(4553):1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Chandrasekhar CN (2015) Effect of PGPR on enzymatic activities of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 5:44–48

    CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151. https://doi.org/10.1016/j.jplph.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  • Shim JS, Seo JS, Seo JS, Kim Y, Koo Y, Do Choi Y, Jung C (2019) Heterologous expression of bacterial trehalose biosynthetic genes enhances trehalose accumulation in potato plants without adverse growth effects. Plant Biotechnol Rep 13(4):409–418

    Article  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31(2):195–206

    Article  CAS  Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-Maria GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244. https://doi.org/10.1111/jam.12612

    Article  CAS  PubMed  Google Scholar 

  • Skirycz A, Inze D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Praslickova D, Ilangumaran G (2015) Inter-organismal signaling and management of the phytomicrobiome. Front Plant Sci 6:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Solano BR, de la Iglesia MP, Probanza A, García JL, Megías M, Manero FG (2007) Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded Mediterranean ecosystems. In: First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 59–68

    Chapter  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Strigul NS, Kravchenko LV (2006) Mathematical modeling of PGPR inoculation into the rhizosphere. Environ Model Softw 21(8):1158–1171

    Article  Google Scholar 

  • Suman A, Shasany AK, Singh M, Shahi HN, Gaur A, Khanuja SPS (2001) Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. World J Microbiol Biotechnol 17(1):39–45

    Article  CAS  Google Scholar 

  • Tardieu F, Parent B, Simonneau TJP (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33:636–647

    Article  PubMed  Google Scholar 

  • Terre S, Asch F, Padham J, Sikora RA, Becker M (2007) Influence of root zone bacteria on root iron plaque formation in rice subjected to iron toxicity. Utilisation of diversity in land use systems: sustainable and organic approaches to meet human needs. In: Tropentag, Witzenhausen, Germany

    Google Scholar 

  • Tewari S, Arora NK (2018) Role of salicylic acid from Pseudomonas aeruginosa PF23 EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ Sustain 1(1):49–59

    Article  Google Scholar 

  • Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kannaste A, Behers L, Nevo E, Seisenbaeva G, Stenstrom E, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:96086. https://doi.org/10.1371/journal.pone.0096086

    Article  CAS  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2019) Population facts no. 2019/5, December 2019: potential impact of later childbearing on future population

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Verma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288. https://doi.org/10.1002/jobm.201600188

    Article  CAS  PubMed  Google Scholar 

  • Van Velthuizen H (2007) Mapping biophysical factors that influence agricultural production and rural vulnerability (no. 11). Food & Agriculture Organization, Rome

    Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    Article  CAS  Google Scholar 

  • Vigliotta G, Matrella S, Cicatelli A, Guarino F, Castiglione S (2016) Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manag 179:93–102

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Skz A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang W, Wang C, Gu C, Niu D, Liu H (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:0052565. https://doi.org/10.1371/journal.pone.0052565

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: Molecular ecology of rhizosphere microorganisms: biotechnology and the release of GMOs. VCH Verlagsgesellschaft, Weinheim, pp 1–18

    Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30(3):515–527

    Article  CAS  Google Scholar 

  • Yadav J, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Article  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54

    Article  CAS  Google Scholar 

  • Yuan F, Lyu MJA, Leng BY, Zheng GY, Feng ZT, Li PH, Wang BS (2015) Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation. Plant Cell Environ 38(8):1637–1657

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56(3):263–284

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1997) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] growth and physiology at suboptimal root zone temperatures. Ann Bot 79(3):243–249

    Article  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744. https://doi.org/10.1094/MPMI-21-6-0737

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang LH, Yang JC, Liu H, Dai JL (2015) Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Sci Total Environ 508:29–36

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, Ma Z, Wang J (2016) Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem 105:162–173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashid, M.M., Chaturvedi, S., Vaishnav, A., Choudhary, D.K. (2021). Use of PGPR to Optimize Soil and Crop Productivity Under Abiotic Stress. In: Dubey, S.K., Verma, S.K. (eds) Plant, Soil and Microbes in Tropical Ecosystems. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3364-5_10

Download citation

Publish with us

Policies and ethics