Skip to main content

Biofortification of Staple Crops: Present Status and Future Strategies

  • Chapter
  • First Online:
Biofortification of Staple Crops

Abstract

Micronutrient deficiencies affect nearly one-third of global population. Biofortification of staple crops is considered as a long-term and sustainable approach to ameliorate micronutrient deficiencies The review summarizes the need for biofortification, conventional breeding, genetic variation for micronutrient concentration of different crops, quantitative trait loci identified in different crops for micronutrient concentration, transgenic approach, status of release of biofortified crop varieties and efficacy of biofortified crop varieties. Research efforts focus on increasing both micronutrient concentration and bioavailability. Key challenges (mainstreaming biofortification, building consumer demand and integration of biofortification in policies, programs and investments) have been briefly highlighted. The achievements made in the biofortification of staple crops are very promising and raise hope for nutritional security for all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aluru M, Xu Y, Guo R et al (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson MS, Saltzman A, Virk PS et al (2017) Progress update: crop development of biofortified staple food crops under HarvestPlus. Afr J Food Agric Nutr Dev 17:11905–11935

    CAS  Google Scholar 

  • Anuradha K, Agarwal S, Rao YV et al (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508:233

    Article  CAS  PubMed  Google Scholar 

  • Ariza-Nieto M, Blair MW, Welch RM (2007) Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agric Food Chem 55:7950–7956

    Article  CAS  PubMed  Google Scholar 

  • Badakhshan H, Moradi N, Mohammadzadeh H et al (2013) Genetic variability analysis of grains Fe, Zn and beta-carotene concentration of prevalent wheat varieties in Iran. Int J Agric Crop Sci 6:57

    CAS  Google Scholar 

  • Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66:22–33

    Article  CAS  PubMed  Google Scholar 

  • Balint JP (1998) Physical findings in nutritional deficiencies. Pediatr Clin N Am 45(1):245–260

    Article  CAS  Google Scholar 

  • Bálint AF, Kovács G, Erdei L, Sutka J (2001) Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Res Commun 29(3):375–382

    Article  Google Scholar 

  • Banerjee S, Sharma DJ, Verulkar SB et al (2010) Use of in silico and semiquantitative RT-PCR approaches to develop nutrient rich rice (Oryza sativa L.). Indian J Biotechnol 9:203–212

    Google Scholar 

  • Bashir EM, Ali AM, Melchinger AE, Parzies HK, Haussmann BI (2014) Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional values. Plant Genet Res 12(1):35–47

    Article  CAS  Google Scholar 

  • Beintema JJ, Gallego-Castillo S, Londoño-Hernandez LF et al (2018) Scaling-up biofortified beans high in iron and zinc through the school-feeding program: a sensory acceptance study with schoolchildren from two departments in Southwest Colombia. Food Sci Nutr 6:1138–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer P, Babili SA, Ye X et al (2002) Rice golden. Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506S–510S

    Article  PubMed  Google Scholar 

  • Blair MW, Medina JI, Astudillo C et al (2010) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Black RE, Allen LH, Bhutta ZA, Caulfield LE, De Onis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371(9608):243–260

    Article  PubMed  Google Scholar 

  • Bollinedi H, Yadav AK, Vinod KK et al (2020) Genome-wide association study reveals novel marker-trait associations (MTAs) governing the localization of Fe and Zn in the rice grain. Front Genet 11:213. https://doi.org/10.3389/fgene.2020.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B et al (2012) Improving the iron content of the wheat grain. J Cereal Sci 56:204–213

    Article  CAS  Google Scholar 

  • Bouis H, Saltzman A, Low J et al (2017) An overview of the landscape and approach for biofortification in Africa. Afr J Food Agric Nutr Dev 17:11848–11864

    CAS  Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ et al (2000) Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food Nutr Bull 21:401–403

    Article  Google Scholar 

  • Cakmak İ, Torun A, Millet E et al (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50(7):1047–1054

    Article  CAS  Google Scholar 

  • Calayugan MIC, Formantes AK, Amparado A (2020) Genetic analysis of agronomic traits and grain iron and zinc concentrations in a doubled haploid population of rice (Oryza sativa L.). Sci Rep 10:2283. https://doi.org/10.1038/s41598-020-59184-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centeno Tablante E, Pachón H, Guetterman HM et al (2019) Fortification of wheat and maize flour with folic acid for population health outcomes. Cochrane Database Syst Rev 7(7):CD012150. https://doi.org/10.1002/14651858.CD012150.pub2

    Article  PubMed  Google Scholar 

  • Cercamondi CI, Egli IM, Mitchikpe E et al (2013) Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. J Nutr 143(9):1376–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chander S, Meng Y, Zhang Y et al (2008) Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J Agric Food Chem 56:6506–6511

    Article  CAS  PubMed  Google Scholar 

  • Chaparro CM, Suchdev PS (2019) Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann N Y Acad Sci 1450(1):15–31. https://doi.org/10.1111/nyas.14092

    Article  PubMed  PubMed Central  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS et al (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Clarke JM, Norvell WA, Clarke FR et al (2002) Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Canad J Anim Sci 82:27–33

    CAS  Google Scholar 

  • Combs GF Jr (2000) Food system-based approaches to improving micronutrient nutrition: the case for selenium. Biofactors 12:39–43. https://doi.org/10.1002/biof.5520120107

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Wang C, Chen L et al (2009) Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J Agric Food Chem 57:8652–8660

    Article  CAS  PubMed  Google Scholar 

  • Crespo-Herrera LA, Velu G, Singh RP (2016) Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Annal Appl Biol 169:27–35

    Article  CAS  Google Scholar 

  • Crespo-Herrera LA, Govindan V, Stangoulis J, Hao Y, Singh RP (2017) QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Front Plant Sci 8:1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Descalsota-Empleo GI, Amparado A, Inabangan-Asilo MA et al (2019) Genetic mapping of QTL for agronomic traits and grain mineral elements in rice. Crop J 7(4):560–572

    Article  Google Scholar 

  • Diapari M, Sindhu A, Bett K et al (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:459–468

    Article  CAS  PubMed  Google Scholar 

  • Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35(1):1–14

    Article  Google Scholar 

  • Dipti SS (2012) Bioavailability of selected minerals in different processing and cooking methods of rice (Oryza sativa L.). Human Nutrition Doctoral Thesis, University of the Philippines Los Baños

    Google Scholar 

  • Dixit S, Singh UM, Abbai R et al (2019) Identification of genomic region (s) responsible for high iron and zinc content in rice. Sci Rep 9(1):1–8

    Article  Google Scholar 

  • Drakakaki G, Christou P, Stoger E (2000) Constitutive expression of soybean ferritin cDNA in transgenic results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res 9:445–452

    Article  CAS  PubMed  Google Scholar 

  • Egesel CO, Wong JC, Lambert RJ et al (2003) Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci 43:818–823

    Article  CAS  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14(7):1337–1383

    Article  CAS  PubMed  Google Scholar 

  • FAO, IFAD, UNICEF, WFP and WHO (2019) The state of food security and nutrition in the world 2019. Safeguarding against economic slowdowns and downturns. FAO, Rome

    Google Scholar 

  • FAO/WHO (2004) Vitamin and mineral requirements in human nutrition. Report of a joint FAO/WHO expert consultation. FAO/WHO, Bangkok

    Google Scholar 

  • FAO/WHO (2005) Vitamin and mineral requirements in human nutrition, 2nd edn. World Health Organization, Geneva. http://whqlibdoc.who.int/publications/2004/9241546123

    Google Scholar 

  • Finkelstein J, Mehta S, Udipi S et al (2015) A randomized trial of iron-biofortified pearl millet in school children in India. J Nutr. https://doi.org/10.3945/jn.114.208009

  • Gannon B, Kaliwile C, Arscott S et al (2014) Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial. Am J Clin Nutr 100(6):1541–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y et al (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84

    Article  CAS  PubMed  Google Scholar 

  • Garg M, Sharma N, Sharma S et al (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Genc Y, Verbyla AP, Torun AA et al (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314:49

    Article  CAS  Google Scholar 

  • Goel S, Singh B, Grewal S et al (2018) Variability in Fe and Zn content among Indian wheat landraces for improved nutritional quality. Indian J Genet Plant Breed 78(4):426–432

    CAS  Google Scholar 

  • Gorafi YS, Ishii T, Kim JS et al (2018) Genetic variation and association mapping of grain iron and zinc contents in synthetic hexaploid wheat germplasm. Plant Genet Res 16(1):9–17

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  • Govindaraj M, Rai KN, Shanmugasundaram P et al (2013) Combining ability and heterosis for grain iron and zinc densities in pearl millet. Crop Sci 53:507–517

    Article  CAS  Google Scholar 

  • Govindaraj M, Rai K, Cherian B et al (2019) Breeding biofortified pearl millet varieties and hybrids to enhance millet markets for human nutrition. Agriculture 9:106

    Article  CAS  Google Scholar 

  • Graham R, Senadhira D, Beebe S et al (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res 60:57–80

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H et al (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Article  Google Scholar 

  • Gupta SK, Velu G, Rai KN et al (2009) Association of grain iron and zinc content with grain yield and other traits in pearl millet (Pennisetum glaucum (L.) R. Br.). Crop Improv 36:4–7

    Google Scholar 

  • Haas JD, Beard JL, Murray-Kolb LE et al (2005) Iron biofortified rice improves the iron stores of non-anemic Filipino women. J Nutr 135(12):2823–2830

    Article  CAS  PubMed  Google Scholar 

  • Haas J, Luna SV, Lung’aho MG et al (2017) Consuming iron biofortified beans significantly improved iron status in Rwandan women after 18 weeks. J Nutr. https://doi.org/10.3945/jn.115.224741

  • Hambridge KM (1987) Zinc. In: Mertz W (ed) Trace elements in human and animal nutrition, vol 1. Academic Press, Inc., Orlando, FL, pp 1–137

    Google Scholar 

  • Hambridge KM (2000) Human zinc deficiency. J Nutr 130:S1344–S1349

    Article  Google Scholar 

  • Hidalgo A, Brandolini A, Pompei C, Piscozzi R (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J Cereal Sci 44(2):182–193

    Article  CAS  Google Scholar 

  • Hao Y, Velu G, Peña RJ et al (2014) Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed 34:1893–1902

    Article  CAS  Google Scholar 

  • Haskell MJ, Jamil KM, Hassan F (2004) Daily consumption of Indian spinach (Basella alba) or sweet potatoes has a positive effect on total-body vitamin A stores in Bangladeshi men. Am J Clin Nutr 80:705–714

    Article  CAS  PubMed  Google Scholar 

  • Havrlentova M, Psenakova I, Zofajova A et al (2014) Anthocyanins in wheat seed—a mini review. Nova Biotechnol Chim 13:1–12

    Article  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    Article  CAS  PubMed  Google Scholar 

  • Hoddinott JF, Rosegrant MW, Torero M (2013) Investments to reduce hunger and undernutrition. Cph Consens Chall Pap, 2012

    Google Scholar 

  • Hojyo S, Fukada T (2016) Roles of zinc signaling in the immune system. J Immunol Res 2016:6762343. https://doi.org/10.1155/2016/6762343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain F, Muthusamy V, Pandey N et al (2018) Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J Genet 97:287–298

    Article  CAS  PubMed  Google Scholar 

  • Hotz C, Loechl C, de Brauw A et al (2012) A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women. Br J Nutr 108:163–176

    Article  CAS  PubMed  Google Scholar 

  • Hu BL, Huang DR, Xiao YQ et al (2016) Mapping QTLs for mineral element contents in brown and milled rice using an Oryza sativa× O. rufipogon backcross inbred line population. Cereal Res Commun 44:57–68

    Article  CAS  Google Scholar 

  • Hussain B, Lucas SJ, Ozturk L et al (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci Rep 7:15662

    Article  PubMed  PubMed Central  Google Scholar 

  • Indurkar AB, Majgahe SK, Sahu VK et al (2015) Identification, characterization and mapping of QTLs related to grain Fe, Zn and protein contents in rice (Oryza sativa L.). Electron J Plant Breed 6(4):1059–1068

    Google Scholar 

  • Ishikawa S, Abe T, Kuramata M et al (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61:923–934

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa R, Iwata M, Taniko K et al (2017) Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS One 12:e0187224

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam FMA, Basford KE, Jara C et al (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Res Crop Evol 49:285–293

    Article  Google Scholar 

  • Izquierdo P, Astudillo C, Blair MW et al (2018) Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). Theor Appl Genet 131:1645–1658. https://doi.org/10.1007/s00122-018-3104-8

    Article  CAS  PubMed  Google Scholar 

  • Jahan GS, Hassan L, Begum SN et al (2013) Identification of iron rich rice genotypes in Bangladesh using chemical analysis. J Bangladesh Agric Univ 11:73–78

    Article  Google Scholar 

  • Jeong OY, Lee JH, Jeong EG et al (2020) Analysis of QTL responsible for grain iron and zinc content in doubled haploid lines of rice (Oryza sativa) derived from an intra-japonica cross. Plant Breed 139(2):344–355

    Article  CAS  Google Scholar 

  • Jin T, Zhou J, Chen J et al (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63(3):317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL et al (2011) Constitutive overexpression of the OsNAS gene family reveals single gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6(9):e24476. https://doi.org/10.1371/journal.pone.0024476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KM, De Brauw A (2015) Using agriculture to improve child health: promoting orange sweet potatoes reduces diarrhea. World Dev 74:15–24

    Article  Google Scholar 

  • Juliano BO (1985) Rice properties and processing. Food Rev Int 1(3):432–445

    Article  Google Scholar 

  • Katuuramu DN, Hart JP, Porch TG et al (2018) Genome-wide association analysis of nutritional composition-related traits and iron bioavailability in cooked dry beans (Phaseolus vulgaris L.). Mol Breed 38:44

    Article  Google Scholar 

  • Khazaei H, Podder R, Caron CT et al (2017) Marker–trait association analysis of iron and zinc concentration in lentil (Medik.) seeds. Plant Genome 10:2. https://doi.org/10.3835/plantgenome2017.02.0007

    Article  CAS  Google Scholar 

  • Khokhar JS, King J, King IP et al (2020) Novel sources of variation in grain zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS One 15(2):e0229107. https://doi.org/10.1371/journal.pone.0229107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King KE, Peiffer GA, Reddy M et al (2013) Mapping of iron and zinc quantitative trait loci in soybean for association to iron deficiency chlorosis resistance. J Plant Nutr 36(14):2132–2153

    Article  CAS  Google Scholar 

  • Kodkany BS, Bellad RM, Mahantshetti NS et al (2013) Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J Nutr 143(9):1489–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotla A, Phuke R, Hariprasanna K et al (2019) Identification of QTLs and candidate genes for high grain Fe and Zn concentration in sorghum [Sorghum bicolor (L.) Moench]. J Cereal Sci 90:102850

    Article  CAS  Google Scholar 

  • Krishnappa G, Singh AM, Chaudhary S et al (2017) Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weights in wheat (Triticum aestivum L.). PLoS One 12:e0174972

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Jain S, Jain RK (2014) Linkage mapping for grain iron and zinc content in F2 population derived from the cross between PAU201 and Palman 579 in rice (Oryza sativa L.). Cereal Res Commun 42:389

    Article  CAS  Google Scholar 

  • Kumar S, Hash CT, Thirunavukkarasu N et al (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1636. https://doi.org/10.3389/fpls.2016.01636

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Hash CT, Nepolean T et al (2018) Mapping grain iron and zinc content quantitative trait loci in an iniadi-derived immortal population of pearl millet. Genes 9(5):248

    Article  PubMed Central  Google Scholar 

  • Kumar N, Jain RK, Chowdhury VK (2019) Linkage mapping of QTLs for grain minerals (iron and zinc) and physio-morphological traits for development of mineral rich rice (Oryza sativa L.). Indian J Biotechnol 18:69–80

    CAS  Google Scholar 

  • Kwon SJ, Brown AF, Hu J et al (2012) Genetic diversity, population structure and genome-wide marker–trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Gene Genome 34:305–320. https://doi.org/10.1007/s13258-011-0213-z

    Article  CAS  Google Scholar 

  • Low JW, Arimond M, Osman N et al (2007) A food-based approach introducing orange fleshed sweet potato increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr 137:1320–1327

    Article  CAS  PubMed  Google Scholar 

  • Loy SL, Lim LM, Chan SY et al (2019) Iron status and risk factors of iron deficiency among pregnant women in Singapore: a cross-sectional study. BMC Public Health 19:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K, Li L, Zheng X et al (2008) Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet 87:305

    Article  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Ma JF, Higashitani A, Sato K et al (2004) Genotypic variation in Fe concentration of barley grain. Soil Sci Plant Nutr 50:1115–1117

    Article  CAS  Google Scholar 

  • Maqbool MA, Beshir A (2019) Zinc biofortification of maize (Zea mays L.): status and challenges. Plant Breed 138:1–28

    Article  CAS  Google Scholar 

  • March of Dimes (2006) Global report on birth defects: the hidden toll of dying and disabled children. March of Dimes Birth Defects Foundation, White Plains, NY, p 2006

    Google Scholar 

  • Masuda H, Usuda K, Kobayashi T et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increase iron and zinc concentrations in rice grains. Rice 6:155–166

    Article  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS et al (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:534

    Article  Google Scholar 

  • Masuda H, Aung MS, Nishizawa NK (2013) Iron biofortification of rice using different transgenic approaches. Rice 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Menkir A, Liu W, White WS et al (2008) Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem 109:521–529

    Article  CAS  Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Article  Google Scholar 

  • Morgounov A, Gómez-Becerra HF, Abugalieva A et al (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155(1–2):193–203

    Article  Google Scholar 

  • Mwanga ROM, Kyalo G, Ssemakula GN et al (2016) NASPOT 12 O’ and ‘NASPOT 13 O’ sweetpotato. Hort Sci 51:291–295

    Google Scholar 

  • Mwanga RO, Odongo B, Niringiye C, Alajo A, Abidin PE, Kapinga R, Tumwegamire S, Lemaga B, Nsumba J, Carey EE (2007) Release of two orange-fleshed sweetpotato cultivars, ‘spk004’ (‘kakamega’) and ‘ejumula’, in Uganda. Hort Sci 42(7):1728–1730

    Google Scholar 

  • Mwanga RO, Odongo B, Niringiye C, Alajo A, Kigozi B, Makumbi R, Lugwana E, Namukula J, Mpembe I, Kapinga R, Lemaga B (2009) ‘NASPOT 7’, ‘NASPOT 8’, ‘NASPOT 9 O’, ‘NASPOT 10 O’, and ‘Dimbuka-Bukulula’ Sweetpotato. Hort Sci 44(3):828–832

    Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci 106:7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz Z, Kakar KU, Li XB et al (2015) Genome-wide association mapping of quantitative trait loci (QTLs) for contents of eight elements in brown rice (Oryza sativa L.). J Agric Food Chem 63:8008–8016

    Article  CAS  PubMed  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136(4):1064–1067

    Article  CAS  PubMed  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L et al (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139

    Article  CAS  Google Scholar 

  • Onuegbu NC, Ihediohanma NC, Eze CF et al (2017) Biofortification of local staples in Nigeria: prospects and problems. J Food Biotechnol Res 1:5

    Google Scholar 

  • Paine J, Shipton C, Chaggar S et al (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Palmer AC, Healy K, Barffour MA et al (2016) Provitamin A carotenoid-biofortified maize consumption increases pupillary responsiveness among Zambian children in a randomized controlled trial. J Nutr 146(12):2551–2558. https://doi.org/10.3945/jn.116.239202

    Article  CAS  PubMed  Google Scholar 

  • Peiffer GA, King KE, Severin AJ et al (2012) Identification of candidate genes underlying an iron efficiency quantitative trait locus in soybean. Plant Physiol 158(4):1745–1754. https://doi.org/10.1104/pp.111.189860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L et al (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Gahutu JB et al (2012) Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. J Nutr 142(3):492–497

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Gahutu JB et al (2014) Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J Nutr 144(11):1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Rohner F, Gahutu JB et al (2016) In Rwandese women with low iron status, iron absorption from low-phytic acid beans and biofortified beans is comparable, but low-phytic acid beans cause adverse gastrointestinal symptoms. J Nutr 146:970–975

    Article  CAS  PubMed  Google Scholar 

  • Pradhan SK, Pandit E, Pawar S et al (2020) Linkage disequilibrium mapping for grain Fe and Zn enhancing QTLs useful for nutrient dense rice breeding. BMC Plant Biol 20:57. https://doi.org/10.1186/s12870-020-2262-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 42:176–190

    Article  Google Scholar 

  • Prasanna BM, Mazumdar S, Chakraborti M et al (2011) Genetic variability and genotype x environment interactions for kernel iron and zinc concentrations in maize (Zea mays) genotypes. Indian J Agric Sci 81:704–711

    CAS  Google Scholar 

  • Pu ZE, Ma YU, He QY et al (2014) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integr Agric 13:2322–2329

    Article  CAS  Google Scholar 

  • Pu Z, Pei Y, Yang J et al (2018) QTL located on chromosome 3D enhances the selenium concentration of wheat grain by improving phytoavailability and root structure. Plant Soil 425:287–296

    Article  CAS  Google Scholar 

  • Pucher A, Høgh-Jensen H, Gondah J et al (2014) Micronutrient density and stability in West African pearl millet—potential for biofortification. Crop Sci 54:1709–1720

    Article  CAS  Google Scholar 

  • Queiroz VA, Guimarães PE, Queiroz LR et al (2011) Iron and zinc availability in maize lines. Food Sci Technol 31:577–583

    Article  Google Scholar 

  • Rai KN, Yadav OP, Rajpurohit BS et al (2013) Breeding pearl millet cultivars for high iron density with zinc density as an associated trait. J SAT Agric Res 11:1–7

    Google Scholar 

  • Rao PP, Birthal PS, Reddy BVS et al (2006) Diagnostics of sorghum and pearl millet grains-based nutrition in India. Int Sorghum Millets Newsl 47:93–96

    Google Scholar 

  • Ravanello MP, Ke D, Alvarez J et al (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–623

    Article  CAS  PubMed  Google Scholar 

  • Rayman M (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215. https://doi.org/10.1079/PNS2002153

    Article  CAS  PubMed  Google Scholar 

  • Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  • Reddy BV, Ramesh S, Longvah T (2005) Prospects of breeding for micronutrients and b-carotene-dense sorghums. Intern Sorghum Millets Newsl 46:10–14

    Google Scholar 

  • Rosado J, Hambidge KM, Miller L et al (2009) The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J Nutr 139:1920–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen MJ, Dhawan A, Saeed SA (2015) Inflammatory bowel disease in children and adolescents. JAMA Pediatr 169(11):1053–1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Roshanzamir H, Kordenaeej A, Bostani A (2013) Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers. Iran J Genet Plant Breed 2:10–17

    Google Scholar 

  • Scholl TO (2005) Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr 81:1218S–1222S

    Article  CAS  PubMed  Google Scholar 

  • Scott J, Rébeillé F, Fletcher J (2000) Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 80(7):795–824

    Article  CAS  Google Scholar 

  • Shi R, Li H, Tong Y et al (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104

    Article  CAS  Google Scholar 

  • Shi RL, Tong YP, Jing RL et al (2013) Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J Integr Agric 12:1512–1521

    Article  Google Scholar 

  • Šimić D, Mladenović Drinić S, Zdunić Z et al (2012) Quantitative trait loci for biofortification traits in maize grain. J Hered 103(1):47–54

    Article  PubMed  Google Scholar 

  • Singh A, Sharma V, Dikshit HK et al (2017) Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 12:e0188296

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommers A (1995) Vitamin A deficiency and its consequences, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Srinivasa J, Arun B, Mishra VK et al (2014) Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor Appl Genet 127:1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Stangoulis JC, Huynh BL, Welch RM et al (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289

    Article  Google Scholar 

  • Stevens GA, Bennett JE, Hennocq Q et al (2015) Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population based surveys. Lancet Glob Health 3(9):e528–e536

    Article  PubMed  Google Scholar 

  • Swami BM, Descalsota GIL, Nha CT et al (2018) Identification of genomic regions associated with agronomic and biofortification traits in DH populations of rice. PLoS One 13:e0201756

    Article  Google Scholar 

  • Swamy BPM, Kaladhar K, Anuradha K et al (2018) QTL analysis for grain iron and zinc concentrations in two O. nivara derived backcross populations. Rice Sci 25(4):197–207

    Article  Google Scholar 

  • Talsma E, Brouwer I, Verhoef H et al (2016) Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. Am J Clin Nutr 103(1):258–267

    Article  CAS  PubMed  Google Scholar 

  • Tamas L (2000) A szel´en betegs´egmegel˝oz˝o szerepe. Komplementer Med 4:16–20

    Google Scholar 

  • Thurnham DI, Northrop-Clewes CA (2016) Inflammation and biomarkers of micronutrient status. Curr Opin Clin Nutr Metab Care 19(6):458–463. https://doi.org/10.1097/MCO.0000000000000323

    Article  CAS  PubMed  Google Scholar 

  • Thurnham DI, Northrop-Clewes CA, Knowles J (2015) The use of adjustment factors to address the impact of inflammation on vitamin A and iron status in humans. J Nutr 145(5):1137S–1143S. https://doi.org/10.3945/jn.114.194712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P et al (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J Hered 100:771–776

    Article  CAS  PubMed  Google Scholar 

  • Tiwari C, Wallwork H, Arun B et al (2016) Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207:563–570

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Bajaj D, Das S et al (2016) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:240–250

    Article  Google Scholar 

  • Van Jaarsveld PJ, Faber M, Tanumihardjo SA et al (2005) ß-Carotene rich orange fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test. Am J Clin Nutr 81:1080–1087

    Article  PubMed  Google Scholar 

  • Vanlauwe B, Descheemaeker K, Giller K et al (2015) Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil 1:491–508

    Article  Google Scholar 

  • Velu G, Rai KN, Muralidharan V et al (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126:182–185

    Article  CAS  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J et al (2011) Breeding for enhanced zinc and iron concentration in CIMMYT spring wheat germplasm. Czech J Genet Plant Breed 47:S174–S177

    Article  CAS  Google Scholar 

  • Velu G, Tutus Y, Gomez-Becerra HF et al (2017) QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant Soil 411:81–99

    Article  CAS  Google Scholar 

  • Velu G, Singh RP, Crespo-Herrera L et al (2018) Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-31951-z

    Article  CAS  Google Scholar 

  • Vignesh M, Hossain F, Nepolean T et al (2012) Genetic variability for kernel β-carotene and utilization of crtRB1 3’TE gene for biofortification in maize (Zea mays L.). Indian J Genet Plant Breed 72:189

    CAS  Google Scholar 

  • Wang C, Zeng J, Li Y et al (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65:545–556

    Article  Google Scholar 

  • Wang P, Wang H, Liu Q et al (2017) QTL mapping of selenium content using a RIL population in wheat. PLoS One 12:e0184351

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsch R, Arango J, Bar C et al (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesseler J, Zilberman D (2014) The economic power of the Golden Rice opposition. Environ Dev Econ 19:724–742

    Article  Google Scholar 

  • WHO (2014) Xerophthalmia and night blindness for the assessment of clinical vitamin A deficiency in individuals and populations. World Health Organization, Geneva

    Google Scholar 

  • WHO (2015) The global prevalence of anaemia in 2011. World Health Organization, Geneva

    Google Scholar 

  • WHO (2018) Guideline: fortification of rice with vitamins and minerals as a public health strategy. Available at: www.apps.who.int/iris/bitstream/handle/10665/272535/9789241550291-eng.pdf?ua=1. Accessed 29 Aug 2020

  • WHO/UNICEF/ICCIDD (2008) Assessment of the iodine deficiency disorders and monitoring their elimination. A guide for program managers. World Health Organization, Geneva

    Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:1–14

    Article  Google Scholar 

  • Xu Y, An D, Liu D et al (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crop Res 138:57–62

    Article  Google Scholar 

  • Xu F, Sun C, Huang Y et al (2015) QTL mapping for rice grain quality: a strategy to detect more QTLs within sub-populations. Mol Breed 35:105

    Article  Google Scholar 

  • Yadava DK, Hossain F, Mohapatra T (2018) Nutritional security through crop biofortification in India: status & future prospects. Indian J Med Res 148:621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Xue WT, Yang RZ et al (2018) Quantitative trait loci conferring grain selenium nutrient in durum wheat× wild emmer wheat RIL population. Czech J Genet Plant Breed 54:52–58

    Article  CAS  Google Scholar 

  • Yang X, Ye ZQ, Shi CH et al (1998) Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains. J Plant Nutr 21:1453–1462

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A et al (2000) Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang G, Guo L et al (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173

    Article  CAS  Google Scholar 

  • Zimmermann MB, Andersson M (2012) Update on iodine status worldwide. Curr Opin Endocrinol Diabetes Obes 19(5):382–387

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Dikshit, H.K., Mishra, G.P., Singh, A., Aski, M., Virk, P.S. (2022). Biofortification of Staple Crops: Present Status and Future Strategies. In: Kumar, S., Dikshit, H.K., Mishra, G.P., Singh, A. (eds) Biofortification of Staple Crops. Springer, Singapore. https://doi.org/10.1007/978-981-16-3280-8_1

Download citation

Publish with us

Policies and ethics