Skip to main content

Introduction to Biofortification and Challenges for Nutrition Security

  • Chapter
  • First Online:
Legumes Biofortification

Abstract

By the middle of the century, the global population will have surpassed 9 billion people, increasing the demand for food, water, and space. Maintaining food security and sustainability presents several significant hurdles like nutritional deficits, postharvest losses, and inconsistent regulation. Micronutrient deficiency is one of the major concerns of the time that imparts negative health impacts on millions of people and is also referred to as “hidden hunger.” To deal with the deficiency impacts, biofortification is presented as the most effective strategy that enhances the micronutrients in staple crops. This technique can also increase bioavailability by removing antinutrients from plants. The cultivars developed by biofortification are tagged as ideal for nutritional security which shows a positive response in vulnerable countries. The ability of biofortification to improve crop micronutrient levels has been demonstrated through research; the next step is effective execution and public consumption. Current chapter highlights various approaches for food biofortification and challenges related to food nutritional security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora NK (2019) Impact of climate change on agriculture production and its sustainable solutions. In: Environmental sustainability, 2, 95–96. https://doi.org/10.1007/s42398-019-00078-w

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203. https://doi.org/10.1016/j.foodchem.2005.07.042

    Article  CAS  Google Scholar 

  • Banerjee A, Duflo E (2011) More than 1 billion people are hungry in the world. Foreign Policy 186:66–72

    Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50(S1):S-20–S-32. https://doi.org/10.2135/cropsci2009.09.0531

    Article  Google Scholar 

  • Burke M, Dykema J, Lobell DB, Miguel E, Satyanath S (2015) Incorporating climate uncertainty into estimates of climate change impacts. Rev Econ Stat 97(2):461–471

    Article  Google Scholar 

  • Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Change Strategies Manage 12(2):201–221

    Article  Google Scholar 

  • Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17(1):23–42. https://doi.org/10.1079/NRR200373

    Article  PubMed  Google Scholar 

  • Chung K-T, Wei C-I, Johnson MG (1998) Are tannins a double-edged sword in biology and health? Trends Food Sci Technol 9(4):168–175. https://doi.org/10.1016/S0924-2244(98)00028-4

    Article  CAS  Google Scholar 

  • De Valença AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14

    Article  Google Scholar 

  • Desai M, Rangarajan P, Donahue JL, Williams SP, Land ES, Mandal MK, Phillippy BQ, Perera IY, Raboy V, Gillaspy GE (2014) Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. Plant J 80(4):642–653

    Article  CAS  PubMed  Google Scholar 

  • Franzke CLE, O’Kane TJ, Berner J, Williams PD, Lucarini V (2015) Stochastic climate theory and modeling. Wiley Interdiscip Rev Clim Chang 6(1):63–78

    Article  Google Scholar 

  • Garcia-Casal MN, Peña-Rosas JP, Giyose B, Groups CW (2017) Staple crops biofortified with increased vitamins and minerals: considerations for a public health strategy. Ann N Y Acad Sci 1390(1):3–13

    Article  PubMed  Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12. https://doi.org/10.3389/fnut.2018.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson RS, Raboy V, King JC (2018) Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr Rev 76(11):793–804

    Article  PubMed  Google Scholar 

  • Góral I, Wojciechowski K (2020) Surface activity and foaming properties of saponin-rich plants extracts. Adv Colloid Interf Sci 279:102145. https://doi.org/10.1016/j.cis.2020.102145

    Article  CAS  Google Scholar 

  • Grover K, Arora S, Choudhary M (2020) Development of quality protein product using biofortified maize to combat malnutrition among young children. Cereal Chem 97(5):1037–1044

    Article  CAS  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65(4):547–570

    Article  CAS  PubMed  Google Scholar 

  • Jha AB, Warkentin TD (2020) Biofortification of pulse crops: status and future perspectives. Plan Theory 9(1):73

    CAS  Google Scholar 

  • Kaur S, Kumari A, Singh P, Kaur L, Sharma N, Garg M (2020) Biofortification in pulses, pp 85–103. https://doi.org/10.1007/978-981-15-2874-3_4

    Book  Google Scholar 

  • Kregiel D, Berlowska J, Witonska I, Antolak H, Proestos C, Babic M, Babic L, Zhang B (2017) Saponin-based, biological-active surfactants from plants. Appl Characterization Surfactants 6(1):184–205

    Google Scholar 

  • Kumar S, Pandey G (2020) Biofortification of pulses and legumes to enhance nutrition. Heliyon 6(3):e03682. https://doi.org/10.1016/j.heliyon.2020.e03682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dikshit HK, Mishra GP, Singh A, Aski M, Virk PS (2022) Biofortification of staple crops: present status and future strategies. In: Kumar S, Dikshit HK, Mishra GP, Singh A (eds) Biofortification of staple crops. Springer Singapore, pp 1–30. https://doi.org/10.1007/978-981-16-3280-8_1

    Chapter  Google Scholar 

  • La Frano MR, de Moura FF, Boy E, Lönnerdal B, Burri BJ (2014) Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr Rev 72(5):289–307. https://doi.org/10.1111/nure.12108

    Article  PubMed  Google Scholar 

  • Lewis E (2021) Biofortification as a sustainable solution for ‘hidden hunger’: evaluating its impact on the environment, nutrition, culture, and ethics

    Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil 269(1):369–380. https://doi.org/10.1007/s11104-004-0909-9

    Article  CAS  Google Scholar 

  • Majumder S, Datta K, Datta SK (2019) Rice biofortification: high iron, zinc, and vitamin-A to fight against “hidden hunger.”. Agronomy 9(12):803

    Article  CAS  Google Scholar 

  • Malik KA, Maqbool A (2020) Transgenic crops for biofortification. Front Sustain Food Syst 4:571402

    Article  Google Scholar 

  • McCarthy U, Uysal I, Badia-Melis R, Mercier S, O’Donnell C, Ktenioudaki A (2018) Global food security–issues, challenges and technological solutions. Trends Food Sci Technol 77:11–20

    Article  CAS  Google Scholar 

  • Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R (2019) Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 134:110827. https://doi.org/10.1016/j.fct.2019.110827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Peña RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46(3):293–307. https://doi.org/10.1016/j.jcs.2007.06.005

    Article  CAS  Google Scholar 

  • Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B (2014) Phenolics in human health. Int J Chem Eng Appl 5(5):393–396. https://doi.org/10.7763/IJCEA.2014.V5.416

    Article  CAS  Google Scholar 

  • Peña M, Bacallao J (2002) Malnutrition and poverty. Annu Rev Nutr 22(1):241–253

    Article  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47(S3):S-88–S-105. https://doi.org/10.2135/cropsci2007.09.0020IPBS

    Article  Google Scholar 

  • Philipo M, Ndakidemi PA, Mbega ER (2021) Importance of common bean genetic zinc biofortification in alleviating human zinc deficiency in sub-Saharan Africa. Cogent Food Agric 7(1):1907954. https://doi.org/10.1080/23311932.2021.1907954

    Article  CAS  Google Scholar 

  • Pizzi A (2019) Tannins: Prospectives and actual industrial applications. Biomol Ther 9(8):344

    CAS  Google Scholar 

  • Porter JR, Xie L, UK AC, Howden M, Iqbal MM, Lobell D, Travasso MI, Garrett K, UK JI, Lipper L (2014) Food security and food production systems. Methods 7:1

    Google Scholar 

  • Premanandh J (2011) Factors affecting food security and contribution of modern technologies in food sustainability. J Sci Food Agric 91(15):2707–2714. https://doi.org/10.1002/jsfa.4666

    Article  CAS  PubMed  Google Scholar 

  • Rashid A, Ram H, Zou C, Guilherme LRG, Corguinha APB, Guo S, Kaur C, Naeem A, Yamuangmorn S, Ashraf MY (2020) Simultaneous biofortification of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front Plant Sci 11:589835

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I (2021) Do only calcium and vitamin D matter? Micronutrients in the diet of inflammatory bowel diseases patients and the risk of osteoporosis. Nutrients 13(2):525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rempel J, Grover K, El-Matary W (2021) Micronutrient deficiencies and anemia in children with inflammatory bowel disease. Nutrients 13(1):236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riaz U, Aziz H, Anum W, Mehdi SM, Murtaza G, Jamil M (2020) Biofortification technologies used in agriculture in relation to micronutrients. In: Plant micronutrients. Springer, pp 225–239

    Chapter  Google Scholar 

  • Saltzman A, Birol E, Oparinde A, Andersson MS, Asare-Marfo D, Diressie MT, Gonzalez C, Lividini K, Moursi M, Zeller M (2017) Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann N Y Acad Sci 1390(1):104–114. https://doi.org/10.1111/nyas.13314

    Article  PubMed  Google Scholar 

  • Sarwar N, Akhtar M, Kamran MA, Imran M, Riaz MA, Kamran K, Hussain S (2020) Selenium biofortification in food crops: key mechanisms and future perspectives. J Food Compos Anal 93:103615. https://doi.org/10.1016/j.jfca.2020.103615

    Article  CAS  Google Scholar 

  • Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53(S2):S330–S375

    Article  PubMed  Google Scholar 

  • Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, Kanwal S, Aslam HMU, Gill RA, Zhou W (2021) Biofortification of cereals and pulses using new breeding techniques: current and future perspectives. Front Nutr 665:721728

    Article  Google Scholar 

  • Shan, V., Singh, S.K., Haritash, A.K. (2020). Water crisis in the Asian countries: status and future trends. In: Kumar, M., Munoz-Arriola, F., Furumai, H., Chaminda, T. (eds) Resilience, response, and risk in water systems. Springer transactions in civil and environmental engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4668-6_10

  • Sheoran, S., Kumar, S., Ramtekey, V., Kar, P., Meena, R. S., & Jangir, C. K. (2022). Current Status and Potential of Biofortification to Enhance Crop Nutritional Quality: An Overview. Sustainability, 14(6). https://doi.org/10.3390/su14063301.

  • Singh U, Praharaj CS, Chaturvedi SK, Bohra A (2016) Biofortification: introduction, approaches, limitations, and challenges. In: Singh U, Praharaj CS, Singh SS, Singh NP (eds) Biofortification of food crops. Springer India, pp 3–18. https://doi.org/10.1007/978-81-322-2716-8_1

    Chapter  Google Scholar 

  • Sinha K, Khare V (2017) Review on: Antinutritional factors in vegetable crops. Pharma Innov J 6(12):353–358

    CAS  Google Scholar 

  • Siwela M, Pillay K, Govender L, Lottering S, Mudau FN, Modi AT, Mabhaudhi T (2020) Biofortified crops for combating hidden hunger in South Africa: availability, acceptability, micronutrient retention and bioavailability. Foods 9(6). https://doi.org/10.3390/foods9060815

  • Sunderland T, Powell B, Ickowitz A, Foli S, Pinedo-Vasquez M, Nasi R, Padoch C (2013) Food security and nutrition. Center for International Forestry Research (CIFOR), Bogor

    Google Scholar 

  • Tian J, Bryksa BC, Yada RY (2016) Feeding the world into the future–food and nutrition security: the role of food science and technology. Front Life Sci 9(3):155–166

    Article  CAS  Google Scholar 

  • Ugwu FM, Oranye NA (2006) Effects of some processing methods on the toxic components of African breadfruit (Treculia africana). Afr J Biotechnol 5(22): 2329–2333

    Google Scholar 

  • Vasconcelos IM, Oliveira JTA (2004) Antinutritional properties of plant lectins. Toxicon 44(4):385–403

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164(3):371–378. https://doi.org/10.1016/S0168-9452(02)00421-1

    Article  CAS  Google Scholar 

  • Wang Y-H, Zou C-Q, Mirza Z, Li H, Zhang Z-Z, Li D-P, Xu C-L, Zhou X-B, Shi X-J, Xie D-T, He X-H, Zhang Y-Q (2016) Cost of agronomic biofortification of wheat with zinc in China. Agron Sustain Dev 36(3):44. https://doi.org/10.1007/s13593-016-0382-x

    Article  CAS  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180(4):562–574. https://doi.org/10.1016/j.plantsci.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (2005) Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J Trace Elem Med Biol 18(4):299–307. https://doi.org/10.1016/j.jtemb.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  • Yahia EM, Fonseca JM, Kitinoja L (2019) Chapter 2 - Postharvest losses and waste. In: Yahia EM (ed) Postharvest technology of perishable horticultural commodities. Woodhead Publishing, pp 43–69. https://doi.org/10.1016/B978-0-12-813276-0.00002-X

    Chapter  Google Scholar 

  • Yeom WW, Kim HJ, Lee K-R, Cho HS, Kim J-Y, Jung HW, Oh S-W, Jun SE, Kim HU, Chung Y-S (2020) Increased production of α-linolenic acid in soybean seeds by overexpression of lesquerella FAD3-1. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01812

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12(12):548–555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Azeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasheed, A., Hussain, S., Rashid, M.A.R., Rasul, I., Azeem, F. (2023). Introduction to Biofortification and Challenges for Nutrition Security. In: Nadeem, M.A., et al. Legumes Biofortification. Springer, Cham. https://doi.org/10.1007/978-3-031-33957-8_1

Download citation

Publish with us

Policies and ethics