Skip to main content

Biofortification: Pathway Ahead and Future Challenges

  • Chapter
  • First Online:
Biofortification of Food Crops

Abstract

A large share of global population is affected by mineral and vitamin deficiency, particularly in the developing countries. Recent estimates exposed the problem will be more disappointing in the near future. Biofortification is emerging as a potential crop-based approach to deal with the mineral malnutrition problem by enriching the density of bioavailable micronutrients and vitamins in food products. In recent years, significant advancement has been made in the fundamental understanding of micronutrient acquisition and translocation in soil-plant system. However, the current knowledge base in this area needs significant advancement to accelerate the pace of biofortification programme. Apart from the conventional breeding techniques, possible transgenic and agronomic approaches have also been identified for increasing the zinc, iron, selenium and iodine concentrations in the edible parts of food crops. Although these approaches are useful to address the mineral malnutrition problems worldwide, the effectiveness of the biofortification programme essentially relies on the farmers’ and consumers’ acceptance and future policy interventions. Therefore, strategic research and appropriate policy can lead to biofortification’s grand success in the near future. In this chapter, we discussed the current knowledge and future prospects of crop biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway BJ (2004) Zinc in soils and crop nutrition. IZA Publications. International Zinc Association, Brussels, pp 1–116

    Google Scholar 

  • Boccio JR, Iyengar V (2003) Iron deficiency: causes, consequences, and strategies to overcome this nutritional problem. Biol Trace Elem Res 94:1–32

    Article  CAS  Google Scholar 

  • Bouis H (1996) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutr Rev 54:131–137

    Article  CAS  Google Scholar 

  • Bouis HE (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494S

    CAS  Google Scholar 

  • Bouis HE, Graham RD, Welch RM (2000) The Consultative Group on International Agricultural Research (CGIAR) micronutrients project: justification and objectives. Food Nutr Bull 21:374–381

    Article  Google Scholar 

  • Bouis HE, Chassy BM, Ochanda JO (2003) Genetically modified food crops and their potential contribution to human nutrition and food quality. Trends Food Sci Technol 14:191–209

    Article  CAS  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Suppl 1):31S–40S

    Google Scholar 

  • Broadley MR, Alcock J, Alford J et al (2010) Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 332:5–18

    Google Scholar 

  • Bruno DB, Erin M, Maria A et al (2008) Iodine deficiency in 2007: global progress since 2003. Food Nutr Bull 29:195–202

    Article  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Kalayci M, Ekiz H, Braun HJ, Kilinc Y, Yilmaz A (1999) Zinc deficiency as a practical problem in plant and human. Field Crop Res 60:175–188

    Article  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010a) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Article  CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010b) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Calderini DF, Ortiz-Monasterio I (2003) Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica 134:169–178

    Article  CAS  Google Scholar 

  • Chong DK, Langridge WH (2000) Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res 9:71–78

    Article  CAS  Google Scholar 

  • CIAT/IFPRI (2004) Biofortified crops for improved human nutrition. Challenge program proposal. International Center for Tropical Agriculture (CIAT) and IFPRI, Washington, DC

    Google Scholar 

  • Connolly EL (2008) Raising the bar for biofortification: enhanced levels of bioavailable calcium in carrots. Trends Biotechnol 26:401–403

    Article  CAS  Google Scholar 

  • Diwadkar-Navsariwala V, Prins GS, Swanson SM, Birch LA, Ray VH, Hedayat S, Lantvit DL, Diamond AM (2006) Selenoprotein deficiency accelerate prostate carcinogenesis in a transgenic model. Proc Natl Acad Sci U S A 103:8179–8184

    Article  CAS  Google Scholar 

  • Douchkov D, Gryczka C, Stephan UW, Hell R, Baumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374

    Article  CAS  Google Scholar 

  • Erdal I, Yilmaz A, Taban S, Eker S, Torun B, Cakmak I (2002) Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J Plant Nutr 25:113–127

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2008) Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv Agron 99:345–399

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in crop production. Adv Agron 77:85–268

    Google Scholar 

  • Fageria NK, Moraes MF, Ferreira EPB, Knupp AM (2012) Biofortification of trace elements in food crops for human health. Commun Soil Sci Plant Anal 43:556–570

    Article  CAS  Google Scholar 

  • Fawzi AFA, EI-Fouly MM, Moubarak ZM (1993) The need of grain legumes for iron, manganese and zinc fertilization under Egyptian soil conditions: effect and uptake of metalosates. J Plant Nutr 16:813–823

    Article  CAS  Google Scholar 

  • Frossard E, Bucher M, Machler F et al (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Genc Y, Humphries JM, Lyons GH, Graham RD (2005) Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations. J Trace Elem Med Biol 18(4):319–324

    Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126:407–417

    Article  CAS  Google Scholar 

  • Go´mez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180

    Article  Google Scholar 

  • Goto F, Yoshimura T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochemica et Biophys Acta–Mol Cell Res 1763:595–608

    Article  CAS  Google Scholar 

  • Haas JD, Beard JL, Murray-Kolb LE et al (2005) Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J Nutr 135:2823–2830

    CAS  Google Scholar 

  • Hao HL, Feng Y, Huang YY, Tian SK, Lu LL, Yang XE, Wei YZ (2005) Situ analysis of cellular distribution of iron and zinc in rice grain using SRXRF method. High Energy Phys Nucl Phys-Chin Ed 29:55–60

    Google Scholar 

  • Hetzel BS, Delange F, Dunn JT, Ling J, Venkatesh M, Pandav CS (eds) (2004) Towards the global elimination of brain damage due to iodine deficiency-a global program for human development with a model applicable to a variety of health, social and environmental problems. Oxford University Press, New Delhi, pp 10–12. http://www.iccidd.org/cm_data/hetzel-a-frontpage.pdf

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204

    Article  Google Scholar 

  • Hotz C, Loechl C, de Brauw A, Eozenou P, Gilligan D, Moursi M, Munhaua B, Jaarsveld PV, Carriquiry A, Meenakshi JV (2012) A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women. Br J Nutr 108(1):163–176

    Google Scholar 

  • Hu YX, Qu CG, Yu JN (2003) Zn and Fe fertilizers’ effects on wheat’s output. Chin Germplasm 2:25–28

    Google Scholar 

  • Huang Y, Yuan L, Yin X (2012) Biofortification to struggle against iron deficiency. In: Yuan L, Yin X (eds) Phytoremediation and biofortification-two sides of one coin. Springer, Netherlands, pp 59–74

    Chapter  Google Scholar 

  • Inal A, Gunes A, Zhang FS et al (2007) Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiol Biochem 45:350–356

    Article  CAS  Google Scholar 

  • Kamal K, Hagagg L, Awad F (2000) Improved Fe and Zn acquisition by guava seedlings grown in calcareous soils intercropped with graminaceous species. J Plant Nutr 23:2071–2080

    Article  CAS  Google Scholar 

  • Khush GS, Lee S, Cho JI, Jeon JS (2012) Biofortification of crops for reducing malnutrition. Plant Biotechnol Rep 6:195–202

    Article  Google Scholar 

  • Li ZG, Ye ZQ, Fang YY, Yang XE (2003) Effects of Zn supply levels on growth and Zn accumulation and distribution. China Rice Sci 17:61–66

    Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Meenakshi JV, Johnson NL, Manyong VM et al (2010) How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev 38(1):64–75. doi:http://dx.doi.org/10.1016/j.worlddev.2009.03.014

  • Muller O, Krawinkle M (2005) Malnutrition and health in developing countries. Can Med Assoc J 173:279–286

    Article  Google Scholar 

  • Nandi S, Suzuki YA, Huang J et al (2002) Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163:713–722

    Article  CAS  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    CAS  Google Scholar 

  • Pedrero Z, Madrid Y, Camara C (2006) Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium. J Agric Food Chem 54:2412–2417

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Article  CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47(Suppl 3):S88

    Google Scholar 

  • Puig S, AndrĂ©s-Colás N, GarcĂ­a-Molina A et al (2007) Copper and iron homeostasis in arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290

    Article  CAS  Google Scholar 

  • Raboy V (2000) Low-phytic-acid grains. Food Nutr Bull 21:423–427

    Article  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    Google Scholar 

  • Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density inedible portions of field crops. Field Crop Res 60:27–40

    Article  Google Scholar 

  • Rodriguez-Lucena P, Ropero E, Apaolaza-Hernandez L, Lucena JJ (2010) Iron supply to soybean plants through the foliar application of IDHA/Fe3+: effect of plant nutritional status and adjuvants. J Sci Food Agric 90:2633–2640

    Article  CAS  Google Scholar 

  • Römheld V, Marschner H (1990) Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant Soil 22:147–153

    Article  Google Scholar 

  • Shamsuddin AM (1999) Metabolism and cellular functions of IP6: a review. Anticancer Res 19:3733–3736

    CAS  Google Scholar 

  • Shrimpton (2002) Nutrition, the millennium development goals and poverty reduction in ECOWAS countries. Paper presented at 7th annual ECOWAS nutrition forum, Banjul, Gambia 2–6 Sept 2002. Centre for International Child Health, London, pp 10. http://www.ich.ucl.acuk/ich/htm/academicunits/cich/pdfs/RogerMGpaper.do/. Accessed 12 Jan 2015

  • Smkolji P, Pograje L, Hlaston-Ribic C, Stibilj V (2005) Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem 90:691–697

    Article  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Waldow VDA, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39

    Article  CAS  Google Scholar 

  • Stein AJ (2010) Global impact of human mineral malnutrition. Plant Soil 335:133–154

    Article  CAS  Google Scholar 

  • Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HPS, Bhutta ZA (2008) Potential impacts of iron biofortification in India. Social Sci Med 66:1797–1808

    Article  Google Scholar 

  • Swietlik D, Faust M (1984) Foliar nutrition of fruit crops. Hortic Rev 6:287–356

    Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S et al (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P (2012) Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: biofortification opportunities to combat global micronutrient malnutrition. Food Res Int 49:99–104

    Article  CAS  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P et al (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J Hered 100:771–776

    Article  CAS  Google Scholar 

  • Tucker G (2003) Nutritional enhancement of plants. Curr Opin Biotechnol 14:221–225

    Article  CAS  Google Scholar 

  • United Nations (2006a) The Millennium Development Goals report, Department of Economic and Social Affairs

    Google Scholar 

  • United Nations (2006b) World population prospects: the 2006 revision, Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, New York. http://www.un.org/esa/population/publications/wpp2006/English.pdf/. Accessed 12 Jan 2015

  • Vasconcelos M, Datta K, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation with transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574

    Article  CAS  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J et al (2009) Wheat (Triticum aestivum) proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274

    Article  CAS  Google Scholar 

  • Welch RM (1986) Effects of nutrient deficiencies on seed production and quality. Adv Plant Nutr 2:205–247

    CAS  Google Scholar 

  • Welch RM (2002) The impact of mineral nutrients in food crops on global human health. Plant Soil 247:83–90

    Article  CAS  Google Scholar 

  • Welch RM, Graham R (1999) A new paradigm for world agriculture: meeting human needs-productive, sustainable, nutritious. Field Crop Res 60:1–10

    Article  Google Scholar 

  • Welch RM (2001) Impact of mineral nutrients in plants on human nutrition on a worldwide scale. In: Plant nutrition. Springer, Dordrecht, pp 284–285

    Google Scholar 

  • Welch RM, Graham R (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

    Article  CAS  Google Scholar 

  • Welch RM, Graham R (2004a) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004b) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

    Article  Google Scholar 

  • Whanger PD (2004) Selenium and its relationships to cancer: an update. British J Nutr 91:11–18

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  Google Scholar 

  • WHO (2002) World health report 2002: reducing risks, promoting healthy life. World Health Organization, Geneva

    Google Scholar 

  • Xiao Y, Li YT, Cao YP (2000) Effects of Fe-fertilizer composition and application methods on the iron chlorosis correction of peanut. Soil Fertil 5:21–28

    Google Scholar 

  • Yang X, Romheld V (1999) Physiological and genetic aspects of micronutrient uptake by higher plants. In: Jensen A, Gissel-Nielsen G (eds) Plant nutrition-molecular biology and genetics. Springer Netherlands, pp 151–186

    Google Scholar 

  • Yang XE, Chen WR, Feng Y (2007) Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environ Geochem Health 29:413–428

    Article  CAS  Google Scholar 

  • Zapata-Caldas E, Hyman G, PachĂłn H, Monserrate FA, Varela LV (2009) Identifying candidate sites for crop biofortification in Latin America: case studies in Colombia, Nicaragua and Bolivia. Int J Health Geogr 8:29

    Article  Google Scholar 

  • Zeng H, Combs GF (2008) Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem 19:1–7

    Article  Google Scholar 

  • Zhang J, Wu LH, Kong XJ, Li YS, Zhao YD (2006) Effect of foliar application of iron, zinc mixed fertilizers on the content of iron, zinc, soluble sugar and vitamin C in green pea seeds. Plant Nutr Fert Sci 12:245–249

    CAS  Google Scholar 

  • Zuo YM, Liu YX, Zhang FS, Christie P (2004) A study on the improvement in iron nutrition of peanut by intercropping maize on nitrogen fixation at early stages of growth peanut on calcareous soil. Soil Sci Plant Nutr 50(7):1071–1078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Singh, S.S., Hazra, K.K., Praharaj, C.S., Singh, U. (2016). Biofortification: Pathway Ahead and Future Challenges. In: Singh, U., Praharaj, C., Singh, S., Singh, N. (eds) Biofortification of Food Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_34

Download citation

Publish with us

Policies and ethics